Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2024

Open Access 01-12-2024 | Parkinson's Disease | Research article

Mitochondrial CISD1/Cisd accumulation blocks mitophagy and genetic or pharmacological inhibition rescues neurodegenerative phenotypes in Pink1/parkin models

Authors: Aitor Martinez, Alvaro Sanchez-Martinez, Jake T. Pickering, Madeleine J. Twyning, Ana Terriente-Felix, Po-Lin Chen, Chun-Hong Chen, Alexander J. Whitworth

Published in: Molecular Neurodegeneration | Issue 1/2024

Login to get access

Abstract

Background

Mitochondrial dysfunction and toxic protein aggregates have been shown to be key features in the pathogenesis of neurodegenerative diseases, such as Parkinson’s disease (PD). Functional analysis of genes linked to PD have revealed that the E3 ligase Parkin and the mitochondrial kinase PINK1 are important factors for mitochondrial quality control. PINK1 phosphorylates and activates Parkin, which in turn ubiquitinates mitochondrial proteins priming them and the mitochondrion itself for degradation. However, it is unclear whether dysregulated mitochondrial degradation or the toxic build-up of certain Parkin ubiquitin substrates is the driving pathophysiological mechanism leading to PD. The iron-sulphur cluster containing proteins CISD1 and CISD2 have been identified as major targets of Parkin in various proteomic studies.

Methods

We employed in vivo Drosophila and human cell culture models to study the role of CISD proteins in cell and tissue viability as well as aged-related neurodegeneration, specifically analysing aspects of mitophagy and autophagy using orthogonal assays.

Results

We show that the Drosophila homolog Cisd accumulates in Pink1 and parkin mutant flies, as well as during ageing. We observed that build-up of Cisd is particularly toxic in neurons, resulting in mitochondrial defects and Ser65-phospho-Ubiquitin accumulation. Age-related increase of Cisd blocks mitophagy and impairs autophagy flux. Importantly, reduction of Cisd levels upregulates mitophagy in vitro and in vivo, and ameliorates pathological phenotypes in locomotion, lifespan and neurodegeneration in Pink1/parkin mutant flies. In addition, we show that pharmacological inhibition of CISD1/2 by rosiglitazone and NL-1 induces mitophagy in human cells and ameliorates the defective phenotypes of Pink1/parkin mutants.

Conclusion

Altogether, our studies indicate that Cisd accumulation during ageing and in Pink1/parkin mutants is a key driver of pathology by blocking mitophagy, and genetically and pharmacologically inhibiting CISD proteins may offer a potential target for therapeutic intervention.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primer. 2017;3:1–21. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primer. 2017;3:1–21.
2.
go back to reference Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.PubMedCrossRef Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.PubMedCrossRef
3.
go back to reference Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, et al. Hereditary early-Onset Parkinson’s Disease caused by mutations in PINK1. Science. 2004;304:1158–60.PubMedCrossRef Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, et al. Hereditary early-Onset Parkinson’s Disease caused by mutations in PINK1. Science. 2004;304:1158–60.PubMedCrossRef
4.
go back to reference Narendra D, Tanaka A, Suen D-F, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183:795–803.PubMedPubMedCentralCrossRef Narendra D, Tanaka A, Suen D-F, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183:795–803.PubMedPubMedCentralCrossRef
5.
go back to reference Narendra DP, Jin SM, Tanaka A, Suen D-F, Gautier CA, Shen J, et al. PINK1 is selectively stabilized on impaired Mitochondria to activate Parkin. PLOS Biol. 2010;8: e1000298.PubMedPubMedCentralCrossRef Narendra DP, Jin SM, Tanaka A, Suen D-F, Gautier CA, Shen J, et al. PINK1 is selectively stabilized on impaired Mitochondria to activate Parkin. PLOS Biol. 2010;8: e1000298.PubMedPubMedCentralCrossRef
7.
go back to reference Ge P, Dawson VL, Dawson TM. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Mol Neurodegener. 2020;15:20.PubMedPubMedCentralCrossRef Ge P, Dawson VL, Dawson TM. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson’s disease. Mol Neurodegener. 2020;15:20.PubMedPubMedCentralCrossRef
8.
go back to reference Lee JJ, Sanchez-Martinez A, Zarate AM, Benincá C, Mayor U, Clague MJ, et al. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J Cell Biol. 2018;217:1613–22.PubMedPubMedCentralCrossRef Lee JJ, Sanchez-Martinez A, Zarate AM, Benincá C, Mayor U, Clague MJ, et al. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J Cell Biol. 2018;217:1613–22.PubMedPubMedCentralCrossRef
9.
go back to reference McWilliams TG, Prescott AR, Montava-Garriga L, Ball G, Singh F, Barini E, et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 2018;27:439-449e5.PubMedPubMedCentralCrossRef McWilliams TG, Prescott AR, Montava-Garriga L, Ball G, Singh F, Barini E, et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 2018;27:439-449e5.PubMedPubMedCentralCrossRef
10.
go back to reference Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P, Vandenberghe W. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. Youle RJ, editor. eLife. 2018;7:e35878.PubMedPubMedCentralCrossRef Cornelissen T, Vilain S, Vints K, Gounko N, Verstreken P, Vandenberghe W. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila. Youle RJ, editor. eLife. 2018;7:e35878.PubMedPubMedCentralCrossRef
11.
go back to reference Kim YY, Um J-H, Yoon J-H, Kim H, Lee D-Y, Lee YJ, et al. Assessment of mitophagy in mt-keima Drosophila revealed an essential role of the PINK1-Parkin pathway in mitophagy induction in vivo. FASEB J. 2019;33:9742–51.PubMedCrossRef Kim YY, Um J-H, Yoon J-H, Kim H, Lee D-Y, Lee YJ, et al. Assessment of mitophagy in mt-keima Drosophila revealed an essential role of the PINK1-Parkin pathway in mitophagy induction in vivo. FASEB J. 2019;33:9742–51.PubMedCrossRef
12.
go back to reference Sanchez-Martinez A, Martinez A, Whitworth AJ. FBXO7/ntc and USP30 antagonistically set the ubiquitination threshold for basal mitophagy and provide a target for Pink1 phosphorylation in vivo. PLOS Biol. 2023;21: e3002244.PubMedPubMedCentralCrossRef Sanchez-Martinez A, Martinez A, Whitworth AJ. FBXO7/ntc and USP30 antagonistically set the ubiquitination threshold for basal mitophagy and provide a target for Pink1 phosphorylation in vivo. PLOS Biol. 2023;21: e3002244.PubMedPubMedCentralCrossRef
13.
go back to reference Martinez A, Lectez B, Ramirez J, Popp O, Sutherland JD, Urbé S, et al. Quantitative proteomic analysis of parkin substrates in Drosophila neurons. Mol Neurodegener. 2017;12:29.PubMedPubMedCentralCrossRef Martinez A, Lectez B, Ramirez J, Popp O, Sutherland JD, Urbé S, et al. Quantitative proteomic analysis of parkin substrates in Drosophila neurons. Mol Neurodegener. 2017;12:29.PubMedPubMedCentralCrossRef
14.
go back to reference Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013;496:372–6.PubMedPubMedCentralCrossRef Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature. 2013;496:372–6.PubMedPubMedCentralCrossRef
15.
go back to reference Ordureau A, Paulo JA, Zhang J, An H, Swatek KN, Cannon JR, et al. Global Landscape and Dynamics of Parkin and USP30-Dependent ubiquitylomes in iNeurons during Mitophagic Signaling. Mol Cell. 2020;77:1124-1142e10.PubMedPubMedCentralCrossRef Ordureau A, Paulo JA, Zhang J, An H, Swatek KN, Cannon JR, et al. Global Landscape and Dynamics of Parkin and USP30-Dependent ubiquitylomes in iNeurons during Mitophagic Signaling. Mol Cell. 2020;77:1124-1142e10.PubMedPubMedCentralCrossRef
16.
go back to reference Antico O, Ordureau A, Stevens M, Singh F, Nirujogi RS, Gierlinski M, et al. Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous parkin targets following activation of PINK1. Sci Adv. 2021;7: eabj0722.PubMedPubMedCentralCrossRef Antico O, Ordureau A, Stevens M, Singh F, Nirujogi RS, Gierlinski M, et al. Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous parkin targets following activation of PINK1. Sci Adv. 2021;7: eabj0722.PubMedPubMedCentralCrossRef
17.
go back to reference Cunningham CN, Baughman JM, Phu L, Tea JS, Yu C, Coons M, et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol. 2015;17:160–9.PubMedCrossRef Cunningham CN, Baughman JM, Phu L, Tea JS, Yu C, Coons M, et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol. 2015;17:160–9.PubMedCrossRef
18.
go back to reference Phu L, Rose CM, Tea JS, Wall CE, Verschueren E, Cheung TK, et al. Dynamic regulation of mitochondrial import by the Ubiquitin System. Mol Cell. 2020;77:1107-1123e10.PubMedCrossRef Phu L, Rose CM, Tea JS, Wall CE, Verschueren E, Cheung TK, et al. Dynamic regulation of mitochondrial import by the Ubiquitin System. Mol Cell. 2020;77:1107-1123e10.PubMedCrossRef
20.
go back to reference Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014;510:370–5.PubMedCrossRef Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014;510:370–5.PubMedCrossRef
21.
go back to reference Nechushtai R, Karmi O, Zuo K, Marjault H-B, Darash-Yahana M, Sohn Y-S, et al. The balancing act of NEET proteins: Iron, ROS, calcium and metabolism. Biochim Biophys Acta BBA - Mol Cell Res. 2020;1867:118805.CrossRef Nechushtai R, Karmi O, Zuo K, Marjault H-B, Darash-Yahana M, Sohn Y-S, et al. The balancing act of NEET proteins: Iron, ROS, calcium and metabolism. Biochim Biophys Acta BBA - Mol Cell Res. 2020;1867:118805.CrossRef
22.
23.
go back to reference Lipper CH, Karmi O, Sohn YS, Darash-Yahana M, Lammert H, Song L, et al. Structure of the human monomeric NEET protein MiNT and its role in regulating iron and reactive oxygen species in cancer cells. Proc Natl Acad Sci. 2018;115:272–7.PubMedCrossRef Lipper CH, Karmi O, Sohn YS, Darash-Yahana M, Lammert H, Song L, et al. Structure of the human monomeric NEET protein MiNT and its role in regulating iron and reactive oxygen species in cancer cells. Proc Natl Acad Sci. 2018;115:272–7.PubMedCrossRef
24.
go back to reference Wiley SE, Murphy AN, Ross SA, van der Geer P, Dixon JE. MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc Natl Acad Sci. 2007;104:5318–23.PubMedPubMedCentralCrossRef Wiley SE, Murphy AN, Ross SA, van der Geer P, Dixon JE. MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc Natl Acad Sci. 2007;104:5318–23.PubMedPubMedCentralCrossRef
25.
go back to reference Kusminski CM, Holland WL, Sun K, Park J, Spurgin SB, Lin Y, et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med. 2012;18:1539–49.PubMedPubMedCentralCrossRef Kusminski CM, Holland WL, Sun K, Park J, Spurgin SB, Lin Y, et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med. 2012;18:1539–49.PubMedPubMedCentralCrossRef
26.
go back to reference Landry AP, Wang Y, Cheng Z, Crochet RB, Lee Y-H, Ding H. Flavin nucleotides act as electron shuttles mediating reduction of the [2Fe-2S] clusters in mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med. 2017;102:240–7.PubMedCrossRef Landry AP, Wang Y, Cheng Z, Crochet RB, Lee Y-H, Ding H. Flavin nucleotides act as electron shuttles mediating reduction of the [2Fe-2S] clusters in mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med. 2017;102:240–7.PubMedCrossRef
27.
28.
go back to reference Amr S, Heisey C, Zhang M, Xia X-J, Shows KH, Ajlouni K, et al. A homozygous mutation in a Novel zinc-finger protein, ERIS, is responsible for Wolfram Syndrome 2. Am J Hum Genet. 2007;81:673–83.PubMedPubMedCentralCrossRef Amr S, Heisey C, Zhang M, Xia X-J, Shows KH, Ajlouni K, et al. A homozygous mutation in a Novel zinc-finger protein, ERIS, is responsible for Wolfram Syndrome 2. Am J Hum Genet. 2007;81:673–83.PubMedPubMedCentralCrossRef
29.
go back to reference Chang NC, Nguyen M, Germain M, Shore GC. Antagonism of beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J. 2010;29:606–18.PubMedCrossRef Chang NC, Nguyen M, Germain M, Shore GC. Antagonism of beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J. 2010;29:606–18.PubMedCrossRef
30.
go back to reference Wiley SE, Andreyev AY, Divakaruni AS, Karisch R, Perkins G, Wall EA, et al. Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2 + homeostasis. EMBO Mol Med. 2013;5:904–18.PubMedPubMedCentralCrossRef Wiley SE, Andreyev AY, Divakaruni AS, Karisch R, Perkins G, Wall EA, et al. Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2 + homeostasis. EMBO Mol Med. 2013;5:904–18.PubMedPubMedCentralCrossRef
31.
go back to reference Du X, Xiao R, Xiao F, Chen Y, Hua F, Yu S, et al. NAF-1 antagonizes starvation-induced autophagy through AMPK signaling pathway in cardiomyocytes. Cell Biol Int. 2015;39:816–23.PubMedCrossRef Du X, Xiao R, Xiao F, Chen Y, Hua F, Yu S, et al. NAF-1 antagonizes starvation-induced autophagy through AMPK signaling pathway in cardiomyocytes. Cell Biol Int. 2015;39:816–23.PubMedCrossRef
32.
go back to reference Chen P-L, Huang K-T, Cheng C-Y, Li J-C, Chan H-Y, Lin T-Y, et al. Vesicular transport mediates the uptake of cytoplasmic proteins into mitochondria in Drosophila melanogaster. Nat Commun. 2020;11:2592.PubMedPubMedCentralCrossRef Chen P-L, Huang K-T, Cheng C-Y, Li J-C, Chan H-Y, Lin T-Y, et al. Vesicular transport mediates the uptake of cytoplasmic proteins into mitochondria in Drosophila melanogaster. Nat Commun. 2020;11:2592.PubMedPubMedCentralCrossRef
33.
go back to reference Aparicio R, Rana A, Walker DW. Upregulation of the Autophagy adaptor p62/SQSTM1 Prolongs Health and Lifespan in Middle-aged Drosophila. Cell Rep. 2019;28:1029-1040e5.PubMedPubMedCentralCrossRef Aparicio R, Rana A, Walker DW. Upregulation of the Autophagy adaptor p62/SQSTM1 Prolongs Health and Lifespan in Middle-aged Drosophila. Cell Rep. 2019;28:1029-1040e5.PubMedPubMedCentralCrossRef
34.
go back to reference Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A. 2003;100:4078–83.PubMedPubMedCentralCrossRef Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A. 2003;100:4078–83.PubMedPubMedCentralCrossRef
35.
go back to reference Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441:1157–61.PubMedCrossRef Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441:1157–61.PubMedCrossRef
36.
go back to reference Nezis IP, Lamark T, Velentzas AD, Rusten TE, Bjørkøy G, Johansen T, et al. Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. Autophagy. 2009;5:298–302.PubMedCrossRef Nezis IP, Lamark T, Velentzas AD, Rusten TE, Bjørkøy G, Johansen T, et al. Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. Autophagy. 2009;5:298–302.PubMedCrossRef
37.
go back to reference Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.PubMedCrossRef Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.PubMedCrossRef
38.
go back to reference Terriente-Felix A, Wilson EL, Whitworth AJ. Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes. Lu B, editor. PLOS Genet. 2020;16:e1008844.PubMedPubMedCentralCrossRef Terriente-Felix A, Wilson EL, Whitworth AJ. Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes. Lu B, editor. PLOS Genet. 2020;16:e1008844.PubMedPubMedCentralCrossRef
39.
go back to reference Tufi R, Gleeson TP, von Stockum S, Hewitt VL, Lee JJ, Terriente-Felix A, et al. Comprehensive Genetic characterization of mitochondrial Ca2 + Uniporter Components reveals their different physiological requirements in vivo. Cell Rep. 2019;27:1541-1550e5.PubMedPubMedCentralCrossRef Tufi R, Gleeson TP, von Stockum S, Hewitt VL, Lee JJ, Terriente-Felix A, et al. Comprehensive Genetic characterization of mitochondrial Ca2 + Uniporter Components reveals their different physiological requirements in vivo. Cell Rep. 2019;27:1541-1550e5.PubMedPubMedCentralCrossRef
40.
go back to reference Ziviani E, Tao RN, Whitworth AJ. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin. Proc Natl Acad Sci. 2010;107:5018–23.PubMedPubMedCentralCrossRef Ziviani E, Tao RN, Whitworth AJ. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin. Proc Natl Acad Sci. 2010;107:5018–23.PubMedPubMedCentralCrossRef
41.
go back to reference Whitworth AJ, Theodore DA, Greene JC, Beneš H, Wes PD, Pallanck LJ. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci. 2005;102:8024–9.PubMedPubMedCentralCrossRef Whitworth AJ, Theodore DA, Greene JC, Beneš H, Wes PD, Pallanck LJ. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci. 2005;102:8024–9.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Usher JL, Sanchez-Martinez A, Terriente-Felix A, Chen P-L, Lee JJ, Chen C-H, et al. Parkin drives pS65-Ub turnover independently of canonical autophagy in Drosophila. EMBO Rep. 2022;23:e53552.PubMedPubMedCentralCrossRef Usher JL, Sanchez-Martinez A, Terriente-Felix A, Chen P-L, Lee JJ, Chen C-H, et al. Parkin drives pS65-Ub turnover independently of canonical autophagy in Drosophila. EMBO Rep. 2022;23:e53552.PubMedPubMedCentralCrossRef
44.
go back to reference Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, et al. MitoNEET is a uniquely folded 2Fe–2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc Natl Acad Sci. 2007;104:14342–7.PubMedPubMedCentralCrossRef Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, et al. MitoNEET is a uniquely folded 2Fe–2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc Natl Acad Sci. 2007;104:14342–7.PubMedPubMedCentralCrossRef
45.
go back to reference Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, et al. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci. 2011;108:834–9.PubMedCrossRef Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, et al. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci. 2011;108:834–9.PubMedCrossRef
46.
go back to reference Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441:1162–6.PubMedCrossRef Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441:1162–6.PubMedCrossRef
47.
go back to reference Ham SJ, Lee D, Yoo H, Jun K, Shin H, Chung J. Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination. Proc Natl Acad Sci. 2020;117:4281–91.PubMedPubMedCentralCrossRef Ham SJ, Lee D, Yoo H, Jun K, Shin H, Chung J. Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination. Proc Natl Acad Sci. 2020;117:4281–91.PubMedPubMedCentralCrossRef
48.
go back to reference Geldenhuys WJ, Skolik R, Konkle ME, Menze MA, Long TE, Robart AR. Binding of thiazolidinediones to the endoplasmic reticulum protein nutrient-deprivation autophagy factor-1. Bioorg Med Chem Lett. 2019;29:901–4.PubMedPubMedCentralCrossRef Geldenhuys WJ, Skolik R, Konkle ME, Menze MA, Long TE, Robart AR. Binding of thiazolidinediones to the endoplasmic reticulum protein nutrient-deprivation autophagy factor-1. Bioorg Med Chem Lett. 2019;29:901–4.PubMedPubMedCentralCrossRef
49.
go back to reference Vernay A, Marchetti A, Sabra A, Jauslin TN, Rosselin M, Scherer PE, et al. MitoNEET-dependent formation of intermitochondrial junctions. Proc Natl Acad Sci U S A. 2017;114:8277–82.PubMedPubMedCentralCrossRef Vernay A, Marchetti A, Sabra A, Jauslin TN, Rosselin M, Scherer PE, et al. MitoNEET-dependent formation of intermitochondrial junctions. Proc Natl Acad Sci U S A. 2017;114:8277–82.PubMedPubMedCentralCrossRef
50.
go back to reference Molino D, Pila-Castellanos I, Marjault H-B, Dias Amoedo N, Kopp K, Rochin L, et al. Chemical targeting of NEET proteins reveals their function in mitochondrial morphodynamics. EMBO Rep. 2020;21:e49019.PubMedPubMedCentralCrossRef Molino D, Pila-Castellanos I, Marjault H-B, Dias Amoedo N, Kopp K, Rochin L, et al. Chemical targeting of NEET proteins reveals their function in mitochondrial morphodynamics. EMBO Rep. 2020;21:e49019.PubMedPubMedCentralCrossRef
51.
go back to reference Kusminski CM, Chen S, Ye R, Sun K, Wang QA, Spurgin SB, et al. MitoNEET-Parkin effects in pancreatic α- and β-Cells, Cellular Survival, and Intrainsular Cross Talk. Diabetes. 2016;65:1534–55.PubMedPubMedCentralCrossRef Kusminski CM, Chen S, Ye R, Sun K, Wang QA, Spurgin SB, et al. MitoNEET-Parkin effects in pancreatic α- and β-Cells, Cellular Survival, and Intrainsular Cross Talk. Diabetes. 2016;65:1534–55.PubMedPubMedCentralCrossRef
53.
go back to reference Picard M, McManus MJ, Csordás G, Várnai P, Dorn IIGW, Williams D, et al. Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat Commun. 2015;6:6259.PubMedCrossRef Picard M, McManus MJ, Csordás G, Várnai P, Dorn IIGW, Williams D, et al. Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat Commun. 2015;6:6259.PubMedCrossRef
54.
go back to reference Leduc-Gaudet J-P, Picard M, Pelletier FS-J, Sgarioto N, Auger M-J, Vallée J, et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget. 2015;6:17923–37.PubMedPubMedCentralCrossRef Leduc-Gaudet J-P, Picard M, Pelletier FS-J, Sgarioto N, Auger M-J, Vallée J, et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget. 2015;6:17923–37.PubMedPubMedCentralCrossRef
55.
go back to reference Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. Elegans. Nature. 2015;521:525–8.PubMedCrossRef Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. Elegans. Nature. 2015;521:525–8.PubMedCrossRef
56.
go back to reference Brandt T, Mourier A, Tain LS, Partridge L, Larsson N-G, Kühlbrandt W. Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila. Subramaniam S, editor. eLife. 2017;6:e24662.PubMedPubMedCentralCrossRef Brandt T, Mourier A, Tain LS, Partridge L, Larsson N-G, Kühlbrandt W. Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila. Subramaniam S, editor. eLife. 2017;6:e24662.PubMedPubMedCentralCrossRef
57.
go back to reference Liang W, Moyzis AG, Lampert MA, Diao RY, Najor RH, Gustafsson ÅB. Aging is associated with a decline in Atg9b-mediated autophagosome formation and appearance of enlarged mitochondria in the heart. Aging Cell. 2020;19: e13187.PubMedPubMedCentralCrossRef Liang W, Moyzis AG, Lampert MA, Diao RY, Najor RH, Gustafsson ÅB. Aging is associated with a decline in Atg9b-mediated autophagosome formation and appearance of enlarged mitochondria in the heart. Aging Cell. 2020;19: e13187.PubMedPubMedCentralCrossRef
58.
go back to reference López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–78.PubMedCrossRef López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–78.PubMedCrossRef
59.
go back to reference Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther. 2019;25:816–24.PubMedPubMedCentralCrossRef Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther. 2019;25:816–24.PubMedPubMedCentralCrossRef
65.
go back to reference Bootman MD, Chehab T, Bultynck G, Parys JB, Rietdorf K. The regulation of autophagy by calcium signals: do we have a consensus? Cell Calcium. 2018;70:32–46.PubMedCrossRef Bootman MD, Chehab T, Bultynck G, Parys JB, Rietdorf K. The regulation of autophagy by calcium signals: do we have a consensus? Cell Calcium. 2018;70:32–46.PubMedCrossRef
66.
go back to reference Colca JR, McDonald WG, Waldon DJ, Leone JW, Lull JM, Bannow CA, et al. Identification of a novel mitochondrial protein (mitoNEET) cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol-Endocrinol Metab. 2004;286:E252-260.PubMedCrossRef Colca JR, McDonald WG, Waldon DJ, Leone JW, Lull JM, Bannow CA, et al. Identification of a novel mitochondrial protein (mitoNEET) cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol-Endocrinol Metab. 2004;286:E252-260.PubMedCrossRef
67.
go back to reference Han K, Kim B, Lee SH, Kim MK. A nationwide cohort study on diabetes severity and risk of Parkinson disease. Npj Park Dis. 2023;9:1–8. Han K, Kim B, Lee SH, Kim MK. A nationwide cohort study on diabetes severity and risk of Parkinson disease. Npj Park Dis. 2023;9:1–8.
68.
go back to reference Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain. 2020;143:3067–76.PubMedPubMedCentralCrossRef Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain. 2020;143:3067–76.PubMedPubMedCentralCrossRef
69.
go back to reference Zhao H, Zhuo L, Sun Y, Shen P, Lin H, Zhan S. Thiazolidinedione use and risk of Parkinson’s disease in patients with type 2 diabetes mellitus. NPJ Park Dis. 2022;8:138.CrossRef Zhao H, Zhuo L, Sun Y, Shen P, Lin H, Zhan S. Thiazolidinedione use and risk of Parkinson’s disease in patients with type 2 diabetes mellitus. NPJ Park Dis. 2022;8:138.CrossRef
Metadata
Title
Mitochondrial CISD1/Cisd accumulation blocks mitophagy and genetic or pharmacological inhibition rescues neurodegenerative phenotypes in Pink1/parkin models
Authors
Aitor Martinez
Alvaro Sanchez-Martinez
Jake T. Pickering
Madeleine J. Twyning
Ana Terriente-Felix
Po-Lin Chen
Chun-Hong Chen
Alexander J. Whitworth
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2024
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-024-00701-3

Other articles of this Issue 1/2024

Molecular Neurodegeneration 1/2024 Go to the issue