Skip to main content
Top
Published in: BMC Neurology 1/2020

Open Access 01-12-2020 | Parkinson's Disease | Research article

Inflammation biomarker discovery in Parkinson’s disease and atypical parkinsonisms

Authors: Anna Santaella, H. Bea Kuiperij, Anouke van Rumund, Rianne A. J. Esselink, Alain J. van Gool, Bastiaan R. Bloem, Marcel M. Verbeek

Published in: BMC Neurology | Issue 1/2020

Login to get access

Abstract

Background

Parkinson’s disease (PD) and atypical parkinsonisms (APD) have overlapping symptoms challenging an early diagnosis. Diagnostic accuracy is important because PD and APD have different prognosis and response to treatment. We aimed to identify diagnostic inflammatory biomarkers of PD and APD in cerebrospinal fluid (CSF) using the multiplex proximity extension assay (PEA) technology and to study possible correlations of biomarkers with disease progression.

Methods

CSF from a longitudinal cohort study consisting of PD and APD patients (PD, n = 44; multiple system atrophy (MSA), n = 14; vascular parkinsonism (VaP), n = 9; and PD with VaP, n = 7) and controls (n = 25) were analyzed.

Results

Concentrations of CCL28 were elevated in PD compared to controls (p = 0.0001). Five other biomarkers differentiated both MSA and PD from controls (p < 0.05) and 10 biomarkers differentiated MSA from controls, of which two proteins, i.e. beta nerve growth factor (β-NGF) and Delta and Notch like epidermal growth factor-related receptor (DNER), were also present at lower levels in MSA compared to PD (both p = 0.032). Two biomarkers (MCP-1 and MMP-10) positively correlated with PD progression (rho > 0.650; p < 0.01).

Conclusions

PEA technique identified potential new CSF biomarkers to help to predict the prognosis of PD. Also, we identified new candidate biomarkers to distinguish MSA from PD.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ross GW, Petrovitch H, Abbott RD, Nelson J, Markesbery W, Davis D, et al. Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol. 2004;56(4):532–9.PubMedCrossRef Ross GW, Petrovitch H, Abbott RD, Nelson J, Markesbery W, Davis D, et al. Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol. 2004;56(4):532–9.PubMedCrossRef
3.
go back to reference Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24(2):197–211.PubMedCrossRef Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24(2):197–211.PubMedCrossRef
4.
go back to reference Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease. Lancet Neurol. 2006;5(1):75–86.PubMedCrossRef Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease. Lancet Neurol. 2006;5(1):75–86.PubMedCrossRef
5.
go back to reference Hoglinger GU, Kassubek J, Csoti I, Ehret R, Herbst H, Wellach I, et al. Differentiation of atypical Parkinson syndromes. J Neural Transm (Vienna). 2017;124(8):997–1004.CrossRef Hoglinger GU, Kassubek J, Csoti I, Ehret R, Herbst H, Wellach I, et al. Differentiation of atypical Parkinson syndromes. J Neural Transm (Vienna). 2017;124(8):997–1004.CrossRef
6.
go back to reference Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, et al. Colonic inflammation in Parkinson's disease. Neurobiol Dis. 2013;50:42–8.PubMedCrossRef Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, et al. Colonic inflammation in Parkinson's disease. Neurobiol Dis. 2013;50:42–8.PubMedCrossRef
7.
go back to reference Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in Parkinson's disease. Cold Spring Harb Perspect Med. 2012;2(1):a009381.PubMedPubMedCentralCrossRef Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in Parkinson's disease. Cold Spring Harb Perspect Med. 2012;2(1):a009381.PubMedPubMedCentralCrossRef
8.
go back to reference Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. Adv Protein Chem Struct Biol. 2012;88:69–132.PubMedCrossRef Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. Adv Protein Chem Struct Biol. 2012;88:69–132.PubMedCrossRef
10.
go back to reference van Dijk KD, Teunissen CE, Drukarch B, Jimenez CR, Groenewegen HJ, Berendse HW, et al. Diagnostic cerebrospinal fluid biomarkers for Parkinson's disease: a pathogenetically based approach. Neurobiol Dis. 2010;39(3):229–41.PubMedCrossRefPubMedCentral van Dijk KD, Teunissen CE, Drukarch B, Jimenez CR, Groenewegen HJ, Berendse HW, et al. Diagnostic cerebrospinal fluid biomarkers for Parkinson's disease: a pathogenetically based approach. Neurobiol Dis. 2010;39(3):229–41.PubMedCrossRefPubMedCentral
11.
go back to reference Jabbari E, Woodside J, Guo T, Magdalinou NK, Chelban V, Athauda D, et al. Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2019;0:1-6. Jabbari E, Woodside J, Guo T, Magdalinou NK, Chelban V, Athauda D, et al. Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2019;0:1-6.
12.
go back to reference Aerts MB, Esselink RA, Abdo WF, Meijer FJ, Drost G, Norgren N, et al. Ancillary investigations to diagnose parkinsonism: a prospective clinical study. J Neurol. 2015;262(2):346–56.PubMedCrossRef Aerts MB, Esselink RA, Abdo WF, Meijer FJ, Drost G, Norgren N, et al. Ancillary investigations to diagnose parkinsonism: a prospective clinical study. J Neurol. 2015;262(2):346–56.PubMedCrossRef
13.
go back to reference Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30(12):1591–601.PubMedCrossRef Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30(12):1591–601.PubMedCrossRef
14.
go back to reference Postuma RB, Berg D, Adler CH, Bloem BR, Chan P, Deuschl G, et al. The new definition and diagnostic criteria of Parkinson's disease. Lancet Neurol. 2016;15(6):546–8.PubMedCrossRef Postuma RB, Berg D, Adler CH, Bloem BR, Chan P, Deuschl G, et al. The new definition and diagnostic criteria of Parkinson's disease. Lancet Neurol. 2016;15(6):546–8.PubMedCrossRef
15.
go back to reference Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32(6):853–64.PubMedPubMedCentralCrossRef Hoglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32(6):853–64.PubMedPubMedCentralCrossRef
16.
go back to reference Rektor I, Bohnen NI, Korczyn AD, Gryb V, Kumar H, Kramberger MG, et al. An updated diagnostic approach to subtype definition of vascular parkinsonism - recommendations from an expert working group. Parkinsonism Relat Disord. 2018;49:9–16.PubMedCrossRef Rektor I, Bohnen NI, Korczyn AD, Gryb V, Kumar H, Kramberger MG, et al. An updated diagnostic approach to subtype definition of vascular parkinsonism - recommendations from an expert working group. Parkinsonism Relat Disord. 2018;49:9–16.PubMedCrossRef
17.
go back to reference Zijlmans JC, Daniel SE, Hughes AJ, Revesz T, Lees AJ. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov Disord. 2004;19(6):630–40.PubMedCrossRef Zijlmans JC, Daniel SE, Hughes AJ, Revesz T, Lees AJ. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov Disord. 2004;19(6):630–40.PubMedCrossRef
18.
go back to reference Abdo WF, Bloem BR, Van Geel WJ, Esselink RAJ, Verbeek MM. CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson's disease. Neurobiol Aging. 2007;28(5):742–7.PubMedCrossRef Abdo WF, Bloem BR, Van Geel WJ, Esselink RAJ, Verbeek MM. CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson's disease. Neurobiol Aging. 2007;28(5):742–7.PubMedCrossRef
19.
go back to reference Herbert MK, Aerts MB, Beenes M, Norgren N, Esselink RAJ, Bloem BR, et al. CSF Neurofilament Light Chain but not FLT3 Ligand Discriminates Parkinsonian Disorders. Front Neurol. 2015;6:91.PubMedPubMedCentralCrossRef Herbert MK, Aerts MB, Beenes M, Norgren N, Esselink RAJ, Bloem BR, et al. CSF Neurofilament Light Chain but not FLT3 Ligand Discriminates Parkinsonian Disorders. Front Neurol. 2015;6:91.PubMedPubMedCentralCrossRef
20.
go back to reference Herbert MK, Eeftens JM, Aerts MB, Esselink RA, Bloem BR, Kuiperij HB, et al. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat Disord. 2014;20(1):112–5.PubMedCrossRef Herbert MK, Eeftens JM, Aerts MB, Esselink RA, Bloem BR, Kuiperij HB, et al. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat Disord. 2014;20(1):112–5.PubMedCrossRef
21.
go back to reference Müller M, Kuiperij HB, Claassen JA, Küsters B, Verbeek MM. MicroRNAs in Alzheimer's disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging. 2014;35(1):152–8.PubMedCrossRef Müller M, Kuiperij HB, Claassen JA, Küsters B, Verbeek MM. MicroRNAs in Alzheimer's disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging. 2014;35(1):152–8.PubMedCrossRef
22.
go back to reference Schwenkenbecher P, Janssen T, Wurster U, Konen FF, Neyazi A, Ahlbrecht J, et al. The influence of blood contamination on cerebrospinal fluid diagnostics. Front Neurol. 2019;10(584):1-9. Schwenkenbecher P, Janssen T, Wurster U, Konen FF, Neyazi A, Ahlbrecht J, et al. The influence of blood contamination on cerebrospinal fluid diagnostics. Front Neurol. 2019;10(584):1-9.
23.
go back to reference Lee H, James WS, Cowley SA. LRRK2 in peripheral and central nervous system innate immunity: its link to Parkinson's disease. Biochem Soc Trans. 2017;45(1):131–9.PubMedPubMedCentralCrossRef Lee H, James WS, Cowley SA. LRRK2 in peripheral and central nervous system innate immunity: its link to Parkinson's disease. Biochem Soc Trans. 2017;45(1):131–9.PubMedPubMedCentralCrossRef
24.
go back to reference Fardell C, Zettergren A, Ran C, Carmine Belin A, Ekman A, Sydow O, et al. S100B polymorphisms are associated with age of onset of Parkinson's disease. BMC Med Genet. 2018;19(1):42.PubMedPubMedCentralCrossRef Fardell C, Zettergren A, Ran C, Carmine Belin A, Ekman A, Sydow O, et al. S100B polymorphisms are associated with age of onset of Parkinson's disease. BMC Med Genet. 2018;19(1):42.PubMedPubMedCentralCrossRef
25.
go back to reference Grimes DA, Han F, Panisset M, Racacho L, Xiao F, Zou R, et al. Translated mutation in the Nurr1 gene as a cause for Parkinson's disease. Mov Disord. 2006;21(7):906–9.PubMedCrossRef Grimes DA, Han F, Panisset M, Racacho L, Xiao F, Zou R, et al. Translated mutation in the Nurr1 gene as a cause for Parkinson's disease. Mov Disord. 2006;21(7):906–9.PubMedCrossRef
26.
go back to reference Chen L, Mo M, Li G, Cen L, Wei L, Xiao Y, et al. The biomarkers of immune dysregulation and inflammation response in Parkinson disease. Transl Neurodegeneration. 2016;5(16):1-6. Chen L, Mo M, Li G, Cen L, Wei L, Xiao Y, et al. The biomarkers of immune dysregulation and inflammation response in Parkinson disease. Transl Neurodegeneration. 2016;5(16):1-6.
27.
28.
go back to reference Liu JX, Cao X, Liu Y, Tang FR. CCL28 in the mouse hippocampal CA1 area and the dentate gyrus during and after pilocarpine-induced status epilepticus. Neurochem Int. 2012;61(7):1094–101.PubMedCrossRef Liu JX, Cao X, Liu Y, Tang FR. CCL28 in the mouse hippocampal CA1 area and the dentate gyrus during and after pilocarpine-induced status epilepticus. Neurochem Int. 2012;61(7):1094–101.PubMedCrossRef
29.
go back to reference Walker DG, Lue L-F, Serrano G, Adler CH, Caviness JN, Sue LI, et al. Altered Expression Patterns of Inflammation-Associated and Trophic Molecules in Substantia Nigra and Striatum Brain Samples from Parkinson's Disease, Incidental Lewy Body Disease and Normal Control Cases. Front Neurosci. 2016;9:507.PubMedPubMedCentralCrossRef Walker DG, Lue L-F, Serrano G, Adler CH, Caviness JN, Sue LI, et al. Altered Expression Patterns of Inflammation-Associated and Trophic Molecules in Substantia Nigra and Striatum Brain Samples from Parkinson's Disease, Incidental Lewy Body Disease and Normal Control Cases. Front Neurosci. 2016;9:507.PubMedPubMedCentralCrossRef
30.
go back to reference Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016;167(6):1469–80.e12.PubMedPubMedCentralCrossRef Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016;167(6):1469–80.e12.PubMedPubMedCentralCrossRef
31.
go back to reference Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB, et al. Analysis of gut microbiota in patients with Parkinson's disease. Bull Exp Biol Med. 2017;162(6):734–7.PubMedCrossRef Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB, et al. Analysis of gut microbiota in patients with Parkinson's disease. Bull Exp Biol Med. 2017;162(6):734–7.PubMedCrossRef
32.
33.
go back to reference Yoon JH, Ann EJ, Kim MY, Ahn JS, Jo EH, Lee HJ, et al. Parkin mediates neuroprotection through activation of Notch1 signaling. Neuroreport. 2017;28(4):181–6.CrossRefPubMed Yoon JH, Ann EJ, Kim MY, Ahn JS, Jo EH, Lee HJ, et al. Parkin mediates neuroprotection through activation of Notch1 signaling. Neuroreport. 2017;28(4):181–6.CrossRefPubMed
34.
go back to reference Yamamoto S, Schulze KL, Bellen HJ. Introduction to notch signaling. Methods Mol Biol. 2014;1187:1–14.PubMedCrossRef Yamamoto S, Schulze KL, Bellen HJ. Introduction to notch signaling. Methods Mol Biol. 2014;1187:1–14.PubMedCrossRef
35.
go back to reference Wang TH, Feng ZT, Wei P, Li H, Shi ZJ, Li LY. Effects of pcDNA3-beta-NGF gene-modified BMSC on the rat model of Parkinson's disease. J Mol Neurosci. 2008;35(2):161–9.PubMedCrossRef Wang TH, Feng ZT, Wei P, Li H, Shi ZJ, Li LY. Effects of pcDNA3-beta-NGF gene-modified BMSC on the rat model of Parkinson's disease. J Mol Neurosci. 2008;35(2):161–9.PubMedCrossRef
36.
go back to reference Silani V, Pizzuti A, Falini A, Borsani G, Rugarli EI, Melo CA, et al. Beta-nerve growth factor (beta-NGF) mRNA expression in the parkinsonian adrenal gland. Exp Neurol. 1991;113(2):166–70.PubMedCrossRef Silani V, Pizzuti A, Falini A, Borsani G, Rugarli EI, Melo CA, et al. Beta-nerve growth factor (beta-NGF) mRNA expression in the parkinsonian adrenal gland. Exp Neurol. 1991;113(2):166–70.PubMedCrossRef
37.
go back to reference Allen SJ, MacGowan SH, Treanor JJ, Feeney R, Wilcock GK, Dawbarn D. Normal beta-NGF content in Alzheimer's disease cerebral cortex and hippocampus. Neurosci Lett. 1991;131(1):135–9.PubMedCrossRef Allen SJ, MacGowan SH, Treanor JJ, Feeney R, Wilcock GK, Dawbarn D. Normal beta-NGF content in Alzheimer's disease cerebral cortex and hippocampus. Neurosci Lett. 1991;131(1):135–9.PubMedCrossRef
38.
go back to reference Magdalinou NK, Paterson RW, Schott JM, Fox NC, Mummery C, Blennow K, et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2015;86(11):1240–7.PubMedCrossRef Magdalinou NK, Paterson RW, Schott JM, Fox NC, Mummery C, Blennow K, et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2015;86(11):1240–7.PubMedCrossRef
39.
go back to reference Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–75.PubMedPubMedCentralCrossRef Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–75.PubMedPubMedCentralCrossRef
40.
go back to reference Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586.PubMedPubMedCentralCrossRef Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586.PubMedPubMedCentralCrossRef
41.
go back to reference Lee W-J, Liao Y-C, Wang Y-F, Lin IF, Wang S-J, Fuh J-L. Plasma MCP-1 and cognitive decline in patients with Alzheimer’s disease and mild cognitive impairment: a two-year follow-up study. Sci Rep. 2018;8(1):1280.PubMedPubMedCentralCrossRef Lee W-J, Liao Y-C, Wang Y-F, Lin IF, Wang S-J, Fuh J-L. Plasma MCP-1 and cognitive decline in patients with Alzheimer’s disease and mild cognitive impairment: a two-year follow-up study. Sci Rep. 2018;8(1):1280.PubMedPubMedCentralCrossRef
42.
go back to reference Sawyer AJ, Tian W, Saucier-Sawyer JK, Rizk PJ, Saltzman WM, Bellamkonda RV, et al. The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials. 2014;35(25):6698–706.PubMedPubMedCentralCrossRef Sawyer AJ, Tian W, Saucier-Sawyer JK, Rizk PJ, Saltzman WM, Bellamkonda RV, et al. The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials. 2014;35(25):6698–706.PubMedPubMedCentralCrossRef
43.
go back to reference Liu W, Gao Y, Chang N. Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 expression in both in vivo and in vitro Parkinson's disease models. Biochem Biophys Res Commun. 2017;482(4):1312–9.PubMedCrossRef Liu W, Gao Y, Chang N. Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 expression in both in vivo and in vitro Parkinson's disease models. Biochem Biophys Res Commun. 2017;482(4):1312–9.PubMedCrossRef
44.
go back to reference Vandivort TC, Birkland TP, Domiciano TP, Mitra S, Kavanagh TJ, Parks WC. Stromelysin-2 (MMP-10) facilitates clearance and moderates inflammation and cell death following lung exposure to long multiwalled carbon nanotubes. Int J Nanomedicine. 2017;12:1019–31.PubMedPubMedCentralCrossRef Vandivort TC, Birkland TP, Domiciano TP, Mitra S, Kavanagh TJ, Parks WC. Stromelysin-2 (MMP-10) facilitates clearance and moderates inflammation and cell death following lung exposure to long multiwalled carbon nanotubes. Int J Nanomedicine. 2017;12:1019–31.PubMedPubMedCentralCrossRef
Metadata
Title
Inflammation biomarker discovery in Parkinson’s disease and atypical parkinsonisms
Authors
Anna Santaella
H. Bea Kuiperij
Anouke van Rumund
Rianne A. J. Esselink
Alain J. van Gool
Bastiaan R. Bloem
Marcel M. Verbeek
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2020
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-020-1608-8

Other articles of this Issue 1/2020

BMC Neurology 1/2020 Go to the issue