Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Panic Disorder | Research

Neural basis of implicit cognitive reappraisal in panic disorder: an event-related fMRI study

Authors: Hai-Yang Wang, Guo-Qing Xu, Ming-Fei Ni, Cui-Hong Zhang, Xue-Lin Li, Yi Chang, Xiao-Pei Sun, Bing-Wei Zhang

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Panic disorder (PD) is thought to be related with deficits in emotion regulation, especially in cognitive reappraisal. According to the cognitive model, PD patients’ intrinsic and unconscious misappraisal strategies are the cause of panic attacks. However, no studies have yet been performed to explore the underlying neuromechanism of cognitive reappraisal that occur on an unconscious level in PD patients.

Methods

Twenty-six patients with PD and 25 healthy controls (HC) performed a fully-verified event-block design emotional regulation task aimed at investigating responses of implicit cognitive reappraisal during an fMRI scan. Participants passively viewed negatively valanced pictures that were beforehand neutrally, positively, or adversely portrayed in the task.

Results

Whole-brain analysis of fMRI data showed that PD patients exhibited less activation in the right dorsolateral prefrontal cortex (dlPFC) and right dorsomedial prefrontal cortex (dmPFC) compared to HC, but presented greater activation in parietal cortex when negative pictures were preceded by positive/neutral vs negative descriptions. Simultaneously, interactive effects of Group × Condition were observed in the right amygdala across both groups. Furthermore, activation in dlPFC and dmPFC was is negatively correlated to severity of anxiety and panic in PD when negative images were preceded by non-negative vs negative descriptions.

Conclusions

Emotional dysregulation in PD is likely the result of deficient activation in dlPFC and dmPFC during implicit cognitive reappraisal, in line with impaired automatic top-down regulation. Correlations between severity of anxiety and panic attack and activation of right dlPFC and dmPFC suggest that the failure to engage prefrontal region during implicit cognitive reappraisal might be associated wtih the severity of anxiety and panic; such functional patterns might be the target of possible treatments.
Literature
2.
go back to reference Ding N, Yang J, Liu Y, Yuan J. Paying less but harvesting more: the effect of unconscious acceptance in regulating frustrating emotion. Sci China Life Sci. 2015;58(8):799–809.PubMedCrossRef Ding N, Yang J, Liu Y, Yuan J. Paying less but harvesting more: the effect of unconscious acceptance in regulating frustrating emotion. Sci China Life Sci. 2015;58(8):799–809.PubMedCrossRef
3.
go back to reference Gross JJ. Emotion Regulation: current status and future prospects. Psychol Inq. 2015;26(1):1–26.CrossRef Gross JJ. Emotion Regulation: current status and future prospects. Psychol Inq. 2015;26(1):1–26.CrossRef
4.
go back to reference Berking M, Wupperman P. Emotion regulation and mental health: recent findings, current challenges, and future directions. Curr Opin Psychiatry. 2012;25(2):128–34.PubMedCrossRef Berking M, Wupperman P. Emotion regulation and mental health: recent findings, current challenges, and future directions. Curr Opin Psychiatry. 2012;25(2):128–34.PubMedCrossRef
5.
go back to reference Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington: American Psychiatric Association Publishing; 2013.CrossRef Association AP. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington: American Psychiatric Association Publishing; 2013.CrossRef
6.
go back to reference Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. Neuroimage. 2017;151:105–16.PubMedCrossRef Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. Neuroimage. 2017;151:105–16.PubMedCrossRef
7.
go back to reference Wang HY, Zhang XX, Si CP, Xu Y, Liu Q, Bian HT, et al. Prefrontoparietal dysfunction during emotion regulation in anxiety disorder: a meta-analysis of functional magnetic resonance imaging studies. Neuropsychiatr Dis Treat. 2018;14:1183–98.PubMedPubMedCentralCrossRef Wang HY, Zhang XX, Si CP, Xu Y, Liu Q, Bian HT, et al. Prefrontoparietal dysfunction during emotion regulation in anxiety disorder: a meta-analysis of functional magnetic resonance imaging studies. Neuropsychiatr Dis Treat. 2018;14:1183–98.PubMedPubMedCentralCrossRef
8.
go back to reference Reinecke A, Filippini N, Berna C, Western DG, Hanson B, Cooper MJ, et al. Effective emotion regulation strategies improve fMRI and ECG markers of psychopathology in panic disorder: implications for psychological treatment action. Transl Psychiatry. 2015;5(11):e673.PubMedPubMedCentralCrossRef Reinecke A, Filippini N, Berna C, Western DG, Hanson B, Cooper MJ, et al. Effective emotion regulation strategies improve fMRI and ECG markers of psychopathology in panic disorder: implications for psychological treatment action. Transl Psychiatry. 2015;5(11):e673.PubMedPubMedCentralCrossRef
9.
go back to reference Ball TM, Ramsawh HJ, Campbell-Sills L, Paulus MP, Stein MB. Prefrontal dysfunction during emotion regulation in generalized anxiety and panic disorders. Psychol Med. 2013;43(7):1475–86.PubMedCrossRef Ball TM, Ramsawh HJ, Campbell-Sills L, Paulus MP, Stein MB. Prefrontal dysfunction during emotion regulation in generalized anxiety and panic disorders. Psychol Med. 2013;43(7):1475–86.PubMedCrossRef
10.
go back to reference Zhang BW, Xu J, Chang Y, Wang H, Yao H, Tang D. Impaired cognitive reappraisal in panic disorder revealed by the late positive potential. Neuroreport. 2016;27(2):99–103.PubMedCrossRef Zhang BW, Xu J, Chang Y, Wang H, Yao H, Tang D. Impaired cognitive reappraisal in panic disorder revealed by the late positive potential. Neuroreport. 2016;27(2):99–103.PubMedCrossRef
11.
go back to reference Gross JJ. Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. J Pers Soc Psychol. 1998;74(1):224–37.PubMedCrossRef Gross JJ. Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. J Pers Soc Psychol. 1998;74(1):224–37.PubMedCrossRef
12.
go back to reference Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex. 2014;24(11):2981–90.PubMedCrossRef Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex. 2014;24(11):2981–90.PubMedCrossRef
13.
go back to reference Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci. 2012;1251:E1-24.PubMedPubMedCentralCrossRef Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci. 2012;1251:E1-24.PubMedPubMedCentralCrossRef
14.
go back to reference Teachman BA, Smith-Janik SB, Saporito J. Information processing biases and panic disorder: relationships among cognitive and symptom measures. Behav Res Ther. 2007;45(8):1791–811.PubMedPubMedCentralCrossRef Teachman BA, Smith-Janik SB, Saporito J. Information processing biases and panic disorder: relationships among cognitive and symptom measures. Behav Res Ther. 2007;45(8):1791–811.PubMedPubMedCentralCrossRef
15.
17.
go back to reference Pilecki B, Arentoft A, McKay D. An evidence-based causal model of panic disorder. J Anxiety Disord. 2011;25(3):381–8.PubMedCrossRef Pilecki B, Arentoft A, McKay D. An evidence-based causal model of panic disorder. J Anxiety Disord. 2011;25(3):381–8.PubMedCrossRef
18.
go back to reference Zhang B, Jing X, Wang H, Yao H, Zhang L, Liu X. Cognitive emotion regulation strategies in subjects with panic disorder. Chin J Behav Med Brain Sci. 2014;23(6):484–6. Zhang B, Jing X, Wang H, Yao H, Zhang L, Liu X. Cognitive emotion regulation strategies in subjects with panic disorder. Chin J Behav Med Brain Sci. 2014;23(6):484–6.
19.
go back to reference Salkovskis PM, Clark DM, Hackmann A, Wells A, Gelder MG. An experimental investigation of the role of safety-seeking behaviours in the maintenance of panic disorder with agoraphobia. Behav Res Ther. 1999;37(6):559–74.PubMedCrossRef Salkovskis PM, Clark DM, Hackmann A, Wells A, Gelder MG. An experimental investigation of the role of safety-seeking behaviours in the maintenance of panic disorder with agoraphobia. Behav Res Ther. 1999;37(6):559–74.PubMedCrossRef
20.
go back to reference Baker R, Holloway J, Thomas PW, Thomas S, Owens M. Emotional processing and panic. Behav Res Ther. 2004;42(11):1271–87.PubMedCrossRef Baker R, Holloway J, Thomas PW, Thomas S, Owens M. Emotional processing and panic. Behav Res Ther. 2004;42(11):1271–87.PubMedCrossRef
21.
go back to reference Breuninger C, Sláma DM, Krämer M, Schmitz J, Tuschen-Caffier B. Psychophysiological reactivity, interoception and emotion regulation in patients with agoraphobia during virtual reality anxiety induction. Cogn Ther Res. 2017;41(2):193–205.CrossRef Breuninger C, Sláma DM, Krämer M, Schmitz J, Tuschen-Caffier B. Psychophysiological reactivity, interoception and emotion regulation in patients with agoraphobia during virtual reality anxiety induction. Cogn Ther Res. 2017;41(2):193–205.CrossRef
22.
go back to reference Yuan J, Ding N, Liu Y, Yang J. Unconscious emotion regulation: Nonconscious reappraisal decreases emotion-related physiological reactivity during frustration. Cogn Emot. 2015;29(6):1042–53.PubMedCrossRef Yuan J, Ding N, Liu Y, Yang J. Unconscious emotion regulation: Nonconscious reappraisal decreases emotion-related physiological reactivity during frustration. Cogn Emot. 2015;29(6):1042–53.PubMedCrossRef
23.
go back to reference Wang HY, Xu GQ, Ni MF, Zhang CH, Sun XP, Chang Y, et al. Neural mechanisms of implicit cognitive reappraisal: preceding descriptions alter emotional response to unpleasant images. Neuroscience. 2017;347:65–75.PubMedCrossRef Wang HY, Xu GQ, Ni MF, Zhang CH, Sun XP, Chang Y, et al. Neural mechanisms of implicit cognitive reappraisal: preceding descriptions alter emotional response to unpleasant images. Neuroscience. 2017;347:65–75.PubMedCrossRef
25.
go back to reference Etkin A, Prater KE, Hoeft F, Menon V, Schatzberg AF. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am J Psychiatry. 2010;167(5):545–54.PubMedPubMedCentralCrossRef Etkin A, Prater KE, Hoeft F, Menon V, Schatzberg AF. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am J Psychiatry. 2010;167(5):545–54.PubMedPubMedCentralCrossRef
26.
go back to reference Chang Y, Xu J, Pang X, Sun Y, Zheng Y, Liu Y. Mismatch negativity indices of enhanced preattentive automatic processing in panic disorder as measured by a multi-feature paradigm. Biol Psychol. 2015;105:77–82.PubMedCrossRef Chang Y, Xu J, Pang X, Sun Y, Zheng Y, Liu Y. Mismatch negativity indices of enhanced preattentive automatic processing in panic disorder as measured by a multi-feature paradigm. Biol Psychol. 2015;105:77–82.PubMedCrossRef
27.
go back to reference Tang D, Xu J, Chang Y, Zheng Y, Shi N, Pang X, et al. Visual mismatch negativity in the detection of facial emotions in patients with panic disorder. Neuroreport. 2013;24(5):207–11.PubMedCrossRef Tang D, Xu J, Chang Y, Zheng Y, Shi N, Pang X, et al. Visual mismatch negativity in the detection of facial emotions in patients with panic disorder. Neuroreport. 2013;24(5):207–11.PubMedCrossRef
28.
go back to reference Li XL, Wang HY. Unconscious cognitive dysfunction in emotion dysregulation and psychopathology of panic disorder: evidence from the late positive potential. Neuroreport. 2018;29(1):6–7.PubMedCrossRef Li XL, Wang HY. Unconscious cognitive dysfunction in emotion dysregulation and psychopathology of panic disorder: evidence from the late positive potential. Neuroreport. 2018;29(1):6–7.PubMedCrossRef
29.
go back to reference Powers JP, LaBar KS. Regulating emotion through distancing: a taxonomy, neurocognitive model, and supporting meta-analysis. Neurosci Biobehav Rev. 2019;96:155–73.PubMedCrossRef Powers JP, LaBar KS. Regulating emotion through distancing: a taxonomy, neurocognitive model, and supporting meta-analysis. Neurosci Biobehav Rev. 2019;96:155–73.PubMedCrossRef
30.
go back to reference Foti D, Hajcak G. Deconstructing reappraisal: descriptions preceding arousing pictures modulate the subsequent neural response. J Cogn Neurosci. 2008;20(6):977–88.PubMedCrossRef Foti D, Hajcak G. Deconstructing reappraisal: descriptions preceding arousing pictures modulate the subsequent neural response. J Cogn Neurosci. 2008;20(6):977–88.PubMedCrossRef
31.
go back to reference Burklund LJ, Creswell JD, Irwin MR, Lieberman MD. The common and distinct neural bases of affect labeling and reappraisal in healthy adults. Front Psychol. 2014;5:221.PubMedPubMedCentralCrossRef Burklund LJ, Creswell JD, Irwin MR, Lieberman MD. The common and distinct neural bases of affect labeling and reappraisal in healthy adults. Front Psychol. 2014;5:221.PubMedPubMedCentralCrossRef
32.
go back to reference Meyer ML, Berkman ET, Karremans JC, Lieberman MD. Incidental regulation of attraction: the neural basis of the derogation of attractive alternatives in romantic relationships. Cogn Emot. 2011;25(3):490–505.PubMedPubMedCentralCrossRef Meyer ML, Berkman ET, Karremans JC, Lieberman MD. Incidental regulation of attraction: the neural basis of the derogation of attractive alternatives in romantic relationships. Cogn Emot. 2011;25(3):490–505.PubMedPubMedCentralCrossRef
33.
34.
36.
go back to reference Argyle N, Deltito J, Allerup P, Maier W, Albus M, Nutzinger D, et al. The panic-associated symptom scale: measuring the severity of panic disorder. Acta Psychiatr Scand. 1991;83(1):20–6.PubMedCrossRef Argyle N, Deltito J, Allerup P, Maier W, Albus M, Nutzinger D, et al. The panic-associated symptom scale: measuring the severity of panic disorder. Acta Psychiatr Scand. 1991;83(1):20–6.PubMedCrossRef
37.
go back to reference Shear MK, Brown TA, Barlow DH, Money R, Sholomskas DE, Woods SW, et al. Multicenter collaborative panic disorder severity scale. Am J Psychiatry. 1997;154(11):1571–5.PubMedCrossRef Shear MK, Brown TA, Barlow DH, Money R, Sholomskas DE, Woods SW, et al. Multicenter collaborative panic disorder severity scale. Am J Psychiatry. 1997;154(11):1571–5.PubMedCrossRef
38.
go back to reference Garnefski N, Kraaij V. Cognitive emotion regulation questionnaire–development of a short 18-item version (CERQ-short). Pers Individ Dif. 2006;41(6):1045–53.CrossRef Garnefski N, Kraaij V. Cognitive emotion regulation questionnaire–development of a short 18-item version (CERQ-short). Pers Individ Dif. 2006;41(6):1045–53.CrossRef
39.
go back to reference Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):617–27.PubMedPubMedCentralCrossRef Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):617–27.PubMedPubMedCentralCrossRef
40.
go back to reference He YL, Zeng QZ, Wei J, Shi YX, Zhang HY, Wu WY, et al. Reliability and validity of the Chinese version of panic disorder severity scale and panic-associated symptom scale. Chin J Psychiatry. 2013;46(04):217–21. He YL, Zeng QZ, Wei J, Shi YX, Zhang HY, Wu WY, et al. Reliability and validity of the Chinese version of panic disorder severity scale and panic-associated symptom scale. Chin J Psychiatry. 2013;46(04):217–21.
41.
go back to reference Zhu X, Luo F, Yao S, Auerbach RP, Abela JRZ. The reliability and validity of the Chinese version of the cognitive emotion regulation questionnaire (CERQ-C). Chin J Clin Psychol. 2007;15(2):121–4. Zhu X, Luo F, Yao S, Auerbach RP, Abela JRZ. The reliability and validity of the Chinese version of the cognitive emotion regulation questionnaire (CERQ-C). Chin J Clin Psychol. 2007;15(2):121–4.
42.
go back to reference Lang P, Bradley M, Cuthbert BN. International Affective Picture System (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. Gainesville: University of Florida; 2008. Lang P, Bradley M, Cuthbert BN. International Affective Picture System (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. Gainesville: University of Florida; 2008.
43.
go back to reference Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73.PubMedCrossRef Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73.PubMedCrossRef
45.
go back to reference Taschereau-Dumouchel V, Cortese A, Chiba T, Knotts JD, Kawato M, Lau H. Towards an unconscious neural reinforcement intervention for common fears. Proc Natl Acad Sci USA. 2018;115(13):3470–5.PubMedPubMedCentralCrossRef Taschereau-Dumouchel V, Cortese A, Chiba T, Knotts JD, Kawato M, Lau H. Towards an unconscious neural reinforcement intervention for common fears. Proc Natl Acad Sci USA. 2018;115(13):3470–5.PubMedPubMedCentralCrossRef
46.
go back to reference Burnett S, Sebastian C, Cohen Kadosh K, Blakemore SJ. The social brain in adolescence: evidence from functional magnetic resonance imaging and behavioural studies. Neurosci Biobehav Rev. 2011;35(8):1654–64.PubMedCrossRef Burnett S, Sebastian C, Cohen Kadosh K, Blakemore SJ. The social brain in adolescence: evidence from functional magnetic resonance imaging and behavioural studies. Neurosci Biobehav Rev. 2011;35(8):1654–64.PubMedCrossRef
47.
go back to reference Mauss IB, Bunge SA, Gross JJ. Automatic emotion regulation. Soc Personal Psychol Compass. 2007;1(1):146–67.CrossRef Mauss IB, Bunge SA, Gross JJ. Automatic emotion regulation. Soc Personal Psychol Compass. 2007;1(1):146–67.CrossRef
49.
go back to reference Mocaiber I, Pereira MG, Erthal FS, Machado-Pinheiro W, David IA, Cagy M, et al. Fact or fiction? An event-related potential study of implicit emotion regulation. Neurosci Lett. 2010;476(2):84–8.PubMedCrossRef Mocaiber I, Pereira MG, Erthal FS, Machado-Pinheiro W, David IA, Cagy M, et al. Fact or fiction? An event-related potential study of implicit emotion regulation. Neurosci Lett. 2010;476(2):84–8.PubMedCrossRef
50.
go back to reference Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JD, et al. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage. 2004;23(2):483–99.PubMedCrossRef Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JD, et al. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage. 2004;23(2):483–99.PubMedCrossRef
51.
go back to reference Dörfel D, Lamke JP, Hummel F, Wagner U, Erk S, Walter H. Common and differential neural networks of emotion regulation by detachment, reinterpretation, distraction, and expressive suppression: a comparative fMRI investigation. Neuroimage. 2014;101:298–309.PubMedCrossRef Dörfel D, Lamke JP, Hummel F, Wagner U, Erk S, Walter H. Common and differential neural networks of emotion regulation by detachment, reinterpretation, distraction, and expressive suppression: a comparative fMRI investigation. Neuroimage. 2014;101:298–309.PubMedCrossRef
52.
go back to reference Braunstein LM, Gross JJ, Ochsner KN. Explicit and implicit emotion regulation: a multi-level framework. Soc Cogn Affect Neurosci. 2017;12(10):1545–57.PubMedPubMedCentralCrossRef Braunstein LM, Gross JJ, Ochsner KN. Explicit and implicit emotion regulation: a multi-level framework. Soc Cogn Affect Neurosci. 2017;12(10):1545–57.PubMedPubMedCentralCrossRef
53.
go back to reference Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U. Neural network of cognitive emotion regulation–an ALE meta-analysis and MACM analysis. Neuroimage. 2014;87:345–55.PubMedCrossRef Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U. Neural network of cognitive emotion regulation–an ALE meta-analysis and MACM analysis. Neuroimage. 2014;87:345–55.PubMedCrossRef
54.
go back to reference Woo YK, Song J, Jiang Y, Cho C, Bong M, Kim SI. Effects of informative and confirmatory feedback on brain activation during negative feedback processing. Front Hum Neurosci. 2015;9:378.PubMedPubMedCentralCrossRef Woo YK, Song J, Jiang Y, Cho C, Bong M, Kim SI. Effects of informative and confirmatory feedback on brain activation during negative feedback processing. Front Hum Neurosci. 2015;9:378.PubMedPubMedCentralCrossRef
55.
go back to reference Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhé HG. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2013;37((10 Pt 2)):2529–53.PubMedCrossRef Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhé HG. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2013;37((10 Pt 2)):2529–53.PubMedCrossRef
56.
go back to reference Warren SL, Zhang Y, Duberg K, Mistry P, Cai W, Qin S, et al. Anxiety and stress alter decision-making dynamics and causal amygdala-dorsolateral prefrontal cortex circuits during emotion regulation in children. Biol Psychiatry. 2020;88(7):576–86.PubMedCrossRefPubMedCentral Warren SL, Zhang Y, Duberg K, Mistry P, Cai W, Qin S, et al. Anxiety and stress alter decision-making dynamics and causal amygdala-dorsolateral prefrontal cortex circuits during emotion regulation in children. Biol Psychiatry. 2020;88(7):576–86.PubMedCrossRefPubMedCentral
57.
go back to reference Erk S, Mikschl A, Stier S, Ciaramidaro A, Gapp V, Weber B, et al. Acute and sustained effects of cognitive emotion regulation in major depression. J Neurosci. 2010;30(47):15726–34.PubMedPubMedCentralCrossRef Erk S, Mikschl A, Stier S, Ciaramidaro A, Gapp V, Weber B, et al. Acute and sustained effects of cognitive emotion regulation in major depression. J Neurosci. 2010;30(47):15726–34.PubMedPubMedCentralCrossRef
58.
go back to reference Townsend JD, Torrisi SJ, Lieberman MD, Sugar CA, Bookheimer SY, Altshuler LL. Frontal-amygdala connectivity alterations during emotion downregulation in bipolar I disorder. Biol Psychiatry. 2013;73(2):127–35.PubMedCrossRef Townsend JD, Torrisi SJ, Lieberman MD, Sugar CA, Bookheimer SY, Altshuler LL. Frontal-amygdala connectivity alterations during emotion downregulation in bipolar I disorder. Biol Psychiatry. 2013;73(2):127–35.PubMedCrossRef
59.
go back to reference Dodds CM, Morein-Zamir S, Robbins TW. Dissociating inhibition, attention, and response control in the frontoparietal network using functional magnetic resonance imaging. Cereb Cortex. 2011;21(5):1155–65.PubMedCrossRef Dodds CM, Morein-Zamir S, Robbins TW. Dissociating inhibition, attention, and response control in the frontoparietal network using functional magnetic resonance imaging. Cereb Cortex. 2011;21(5):1155–65.PubMedCrossRef
60.
go back to reference Suslow T, Kugel H, Lindner C, Dannlowski U, Egloff B. Brain response to masked and unmasked facial emotions as a function of implicit and explicit personality self-concept of extraversion. Neuroscience. 2017;340:464–76.PubMedCrossRef Suslow T, Kugel H, Lindner C, Dannlowski U, Egloff B. Brain response to masked and unmasked facial emotions as a function of implicit and explicit personality self-concept of extraversion. Neuroscience. 2017;340:464–76.PubMedCrossRef
61.
go back to reference Yan Z, Witthöft M, Bailer J, Diener C, Mier D. Scary symptoms? Functional magnetic resonance imaging evidence for symptom interpretation bias in pathological health anxiety. Eur Arch Psychiatry Clin Neurosci. 2019;269(2):195–207.PubMedCrossRef Yan Z, Witthöft M, Bailer J, Diener C, Mier D. Scary symptoms? Functional magnetic resonance imaging evidence for symptom interpretation bias in pathological health anxiety. Eur Arch Psychiatry Clin Neurosci. 2019;269(2):195–207.PubMedCrossRef
62.
go back to reference Beauregard M. Mind does really matter: evidence from neuroimaging studies of emotional self-regulation, psychotherapy, and placebo effect. Prog Neurobiol. 2007;81(4):218–36.PubMedCrossRef Beauregard M. Mind does really matter: evidence from neuroimaging studies of emotional self-regulation, psychotherapy, and placebo effect. Prog Neurobiol. 2007;81(4):218–36.PubMedCrossRef
63.
go back to reference Lai CH. Fear network model in panic disorder: the past and the future. Psychiatry Investig. 2019;16(1):16–26.PubMedCrossRef Lai CH. Fear network model in panic disorder: the past and the future. Psychiatry Investig. 2019;16(1):16–26.PubMedCrossRef
64.
go back to reference Wisco BE, Sloan DM, Marx BP. Cognitive emotion regulation and written exposure therapy for posttraumatic stress disorder. Clin Psychol Sci. 2013;1(4):435–42.PubMedPubMedCentralCrossRef Wisco BE, Sloan DM, Marx BP. Cognitive emotion regulation and written exposure therapy for posttraumatic stress disorder. Clin Psychol Sci. 2013;1(4):435–42.PubMedPubMedCentralCrossRef
65.
go back to reference Poletti S, Radaelli D, Cucchi M, Ricci L, Vai B, Smeraldi E, et al. Neural correlates of anxiety sensitivity in panic disorder: a functional magnetic resonance imaging study. Psychiatry Res. 2015;233(2):95–101.PubMedCrossRef Poletti S, Radaelli D, Cucchi M, Ricci L, Vai B, Smeraldi E, et al. Neural correlates of anxiety sensitivity in panic disorder: a functional magnetic resonance imaging study. Psychiatry Res. 2015;233(2):95–101.PubMedCrossRef
66.
go back to reference Garnefski N, Kraaij V, Spinhoven P. Negative life events, cognitive emotion regulation and emotional problems. Pers Individ Dif. 2001;30(8):1311–27.CrossRef Garnefski N, Kraaij V, Spinhoven P. Negative life events, cognitive emotion regulation and emotional problems. Pers Individ Dif. 2001;30(8):1311–27.CrossRef
67.
go back to reference Strauss AY, Kivity Y, Huppert JD. Emotion regulation strategies in cognitive behavioral therapy for panic disorder. Behav Ther. 2019;50(3):659–71.PubMedCrossRef Strauss AY, Kivity Y, Huppert JD. Emotion regulation strategies in cognitive behavioral therapy for panic disorder. Behav Ther. 2019;50(3):659–71.PubMedCrossRef
68.
go back to reference Koole SL, Webb TL, Sheeran PL. Implicit emotion regulation: feeling better without knowing why. Curr Opin Psychol. 2015;3:6–10.CrossRef Koole SL, Webb TL, Sheeran PL. Implicit emotion regulation: feeling better without knowing why. Curr Opin Psychol. 2015;3:6–10.CrossRef
69.
go back to reference Li H, Wang J, Li C, Xiao Z. (2014) Repetitive transcranial magnetic stimulation (rTMS) for panic disorder in adults. Cochrane Database Syst Rev. 2014;9:CD009083. Li H, Wang J, Li C, Xiao Z. (2014) Repetitive transcranial magnetic stimulation (rTMS) for panic disorder in adults. Cochrane Database Syst Rev. 2014;9:CD009083.
Metadata
Title
Neural basis of implicit cognitive reappraisal in panic disorder: an event-related fMRI study
Authors
Hai-Yang Wang
Guo-Qing Xu
Ming-Fei Ni
Cui-Hong Zhang
Xue-Lin Li
Yi Chang
Xiao-Pei Sun
Bing-Wei Zhang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02968-2

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.