Skip to main content
Top
Published in: Molecular Cancer 1/2019

Open Access 01-12-2019 | Pancreatic Cancer | Review

Role of the microbiome in occurrence, development and treatment of pancreatic cancer

Authors: Yicheng Wang, Gang Yang, Lei You, Jinshou Yang, Mengyu Feng, Jiangdong Qiu, Fangyu Zhao, Yueze Liu, Zhe Cao, Lianfang Zheng, Taiping Zhang, Yupei Zhao

Published in: Molecular Cancer | Issue 1/2019

Login to get access

Abstract

Pancreatic cancer is one of the most lethal malignancies. Recent studies indicated that development of pancreatic cancer may be intimately connected with the microbiome. In this review, we discuss the mechanisms through which microbiomes affect the development of pancreatic cancer, including inflammation and immunomodulation. Potential therapeutic and diagnostic applications of microbiomes are also discussed. For example, microbiomes may serve as diagnostic markers for pancreatic cancer, and may also play an important role in determining the efficacies of treatments such as chemo- and immunotherapies. Future studies will provide additional insights into the various roles of microbiomes in pancreatic cancer.
Literature
1.
4.
go back to reference Pushalkar S, et al. The pancreatic Cancer microbiome promotes Oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8(4):403–16.PubMedPubMedCentralCrossRef Pushalkar S, et al. The pancreatic Cancer microbiome promotes Oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8(4):403–16.PubMedPubMedCentralCrossRef
5.
go back to reference Panebianco C, et al. Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice. Cancer Chemother Pharmacol. 2018;81(4):773–82.PubMedCrossRef Panebianco C, et al. Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice. Cancer Chemother Pharmacol. 2018;81(4):773–82.PubMedCrossRef
6.
go back to reference Armstrong, H., et al., The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers (Basel), 2018. 10(3).PubMedCentralCrossRef Armstrong, H., et al., The Complex Interplay between Chronic Inflammation, the Microbiome, and Cancer: Understanding Disease Progression and What We Can Do to Prevent It. Cancers (Basel), 2018. 10(3).PubMedCentralCrossRef
8.
9.
go back to reference Olson SH, et al. The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes Control. 2017;28(9):959–69.PubMedPubMedCentralCrossRef Olson SH, et al. The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes Control. 2017;28(9):959–69.PubMedPubMedCentralCrossRef
11.
go back to reference Farrell JJ, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582–8.PubMedCrossRef Farrell JJ, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582–8.PubMedCrossRef
12.
go back to reference Mitsuhashi K, et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015;6(9):7209–20.PubMedPubMedCentralCrossRef Mitsuhashi K, et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015;6(9):7209–20.PubMedPubMedCentralCrossRef
13.
14.
go back to reference Memba R, et al. The potential role of gut microbiota in pancreatic disease: a systematic review. Pancreatology. 2017;17(6):867–74.PubMedCrossRef Memba R, et al. The potential role of gut microbiota in pancreatic disease: a systematic review. Pancreatology. 2017;17(6):867–74.PubMedCrossRef
16.
go back to reference Jia G, et al. The oral microbiota - a mechanistic role for systemic diseases. Br Dent J. 2018;224(6):447–55.PubMedCrossRef Jia G, et al. The oral microbiota - a mechanistic role for systemic diseases. Br Dent J. 2018;224(6):447–55.PubMedCrossRef
17.
go back to reference Cani, P.D. and B.F. Jordan, Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol, 2018. Cani, P.D. and B.F. Jordan, Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol, 2018.
18.
go back to reference Fan X, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67(1):120–7.PubMedCrossRef Fan X, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67(1):120–7.PubMedCrossRef
19.
go back to reference Ogrendik M. Periodontal pathogens in the etiology of pancreatic Cancer. Gastrointest Tumors. 2017;3(3–4):125–7.PubMed Ogrendik M. Periodontal pathogens in the etiology of pancreatic Cancer. Gastrointest Tumors. 2017;3(3–4):125–7.PubMed
20.
go back to reference Gaiser RA, et al. Enrichment of oral microbiota in early cystic precursors to invasive pancreatic cancer. Gut. 2019. Gaiser RA, et al. Enrichment of oral microbiota in early cystic precursors to invasive pancreatic cancer. Gut. 2019.
21.
go back to reference Sharif R, et al. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut. 2009;58(6):813–9.PubMedCrossRef Sharif R, et al. Impact of toll-like receptor 4 on the severity of acute pancreatitis and pancreatitis-associated lung injury in mice. Gut. 2009;58(6):813–9.PubMedCrossRef
22.
go back to reference Fraher MH, O'Toole PW, Quigley EM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9(6):312–22.PubMedCrossRef Fraher MH, O'Toole PW, Quigley EM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9(6):312–22.PubMedCrossRef
23.
go back to reference Mei QX, et al. Characterization of the duodenal bacterial microbiota in patients with pancreatic head cancer vs. healthy controls. Pancreatology. 2018;18(4):438–45.PubMedCrossRef Mei QX, et al. Characterization of the duodenal bacterial microbiota in patients with pancreatic head cancer vs. healthy controls. Pancreatology. 2018;18(4):438–45.PubMedCrossRef
24.
go back to reference Schulte A, et al. Association between helicobacter pylori and pancreatic cancer risk: a meta-analysis. Cancer Causes Control. 2015;26(7):1027–35.PubMedCrossRef Schulte A, et al. Association between helicobacter pylori and pancreatic cancer risk: a meta-analysis. Cancer Causes Control. 2015;26(7):1027–35.PubMedCrossRef
25.
go back to reference Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol. 2015;44(1):186–98.PubMedCrossRef Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol. 2015;44(1):186–98.PubMedCrossRef
26.
go back to reference Guo Y, Liu W, Wu J. Helicobacter pylori infection and pancreatic cancer risk: A meta-analysis. J Cancer Res Ther. 2016;12(Supplement):C229–c232.PubMed Guo Y, Liu W, Wu J. Helicobacter pylori infection and pancreatic cancer risk: A meta-analysis. J Cancer Res Ther. 2016;12(Supplement):C229–c232.PubMed
27.
go back to reference Yan AW, Schnabl B. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World J Hepatol. 2012;4(4):110–8.PubMedPubMedCentralCrossRef Yan AW, Schnabl B. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World J Hepatol. 2012;4(4):110–8.PubMedPubMedCentralCrossRef
28.
go back to reference Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol. 2010;6(5):851–62.PubMedCrossRef Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol. 2010;6(5):851–62.PubMedCrossRef
29.
go back to reference de Martel C, et al. Helicobacter pylori infection and development of pancreatic cancer. Cancer Epidemiol Biomark Prev. 2008;17(5):1188–94.CrossRef de Martel C, et al. Helicobacter pylori infection and development of pancreatic cancer. Cancer Epidemiol Biomark Prev. 2008;17(5):1188–94.CrossRef
31.
go back to reference Del Castillo E, et al. The microbiomes of pancreatic and duodenum tissue overlap and are highly subject specific but differ between pancreatic Cancer and noncancer subjects. Cancer Epidemiol Biomark Prev. 2019;28(2):370–83.CrossRef Del Castillo E, et al. The microbiomes of pancreatic and duodenum tissue overlap and are highly subject specific but differ between pancreatic Cancer and noncancer subjects. Cancer Epidemiol Biomark Prev. 2019;28(2):370–83.CrossRef
32.
go back to reference Garcia-Castillo V, et al. Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol. 2016;65(12):1347–62.PubMedCrossRef Garcia-Castillo V, et al. Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol. 2016;65(12):1347–62.PubMedCrossRef
33.
go back to reference Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Ann Oncol. 2017;28(5):985–95.PubMed Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Ann Oncol. 2017;28(5):985–95.PubMed
34.
35.
go back to reference Michaud DS, et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut. 2013;62(12):1764–70.PubMedCrossRef Michaud DS, et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut. 2013;62(12):1764–70.PubMedCrossRef
36.
go back to reference Lu H, et al. Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls. J Oral Microbiol. 2019;11(1):1563409.PubMedPubMedCentralCrossRef Lu H, et al. Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls. J Oral Microbiol. 2019;11(1):1563409.PubMedPubMedCentralCrossRef
39.
go back to reference Raderer M, et al. Association between helicobacter pylori infection and pancreatic cancer. Oncology. 1998;55(1):16–9.PubMedCrossRef Raderer M, et al. Association between helicobacter pylori infection and pancreatic cancer. Oncology. 1998;55(1):16–9.PubMedCrossRef
40.
go back to reference Stolzenberg-Solomon RZ, et al. Helicobacter pylori seropositivity as a risk factor for pancreatic cancer. J Natl Cancer Inst. 2001;93(12):937–41.PubMedCrossRef Stolzenberg-Solomon RZ, et al. Helicobacter pylori seropositivity as a risk factor for pancreatic cancer. J Natl Cancer Inst. 2001;93(12):937–41.PubMedCrossRef
41.
go back to reference Risch HA, et al. ABO blood group, helicobacter pylori seropositivity, and risk of pancreatic cancer: a case-control study. J Natl Cancer Inst. 2010;102(7):502–5.PubMedPubMedCentralCrossRef Risch HA, et al. ABO blood group, helicobacter pylori seropositivity, and risk of pancreatic cancer: a case-control study. J Natl Cancer Inst. 2010;102(7):502–5.PubMedPubMedCentralCrossRef
42.
go back to reference Yu G, et al. Seropositivity to helicobacter pylori and risk of pancreatic cancer. Cancer Epidemiol Biomark Prev. 2013;22(12):2416–9.CrossRef Yu G, et al. Seropositivity to helicobacter pylori and risk of pancreatic cancer. Cancer Epidemiol Biomark Prev. 2013;22(12):2416–9.CrossRef
43.
go back to reference Trikudanathan G, et al. Association between helicobacter pylori infection and pancreatic cancer. A cumulative meta-analysis. Jop. 2011;12(1):26–31.PubMed Trikudanathan G, et al. Association between helicobacter pylori infection and pancreatic cancer. A cumulative meta-analysis. Jop. 2011;12(1):26–31.PubMed
44.
go back to reference Xiao M, Wang Y, Gao Y. Association between helicobacter pylori infection and pancreatic cancer development: a meta-analysis. PLoS One. 2013;8(9):e75559.PubMedPubMedCentralCrossRef Xiao M, Wang Y, Gao Y. Association between helicobacter pylori infection and pancreatic cancer development: a meta-analysis. PLoS One. 2013;8(9):e75559.PubMedPubMedCentralCrossRef
45.
go back to reference Yan AW, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011;53(1):96–105.PubMedCrossRef Yan AW, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011;53(1):96–105.PubMedCrossRef
47.
go back to reference Liu H, et al. Helicobacter pylori infection, atrophic gastritis, and pancreatic cancer risk: a meta-analysis of prospective epidemiologic studies. Medicine (Baltimore). 2017;96(33):e7811.CrossRef Liu H, et al. Helicobacter pylori infection, atrophic gastritis, and pancreatic cancer risk: a meta-analysis of prospective epidemiologic studies. Medicine (Baltimore). 2017;96(33):e7811.CrossRef
48.
go back to reference Kalaf EA, et al. Study of the cytoxin-associated gene a (CagA gene) in helicobacter pylori using gastric biopsies of Iraqi patients. Saudi J Gastroenterol. 2013;19(2):69–74.PubMedPubMedCentralCrossRef Kalaf EA, et al. Study of the cytoxin-associated gene a (CagA gene) in helicobacter pylori using gastric biopsies of Iraqi patients. Saudi J Gastroenterol. 2013;19(2):69–74.PubMedPubMedCentralCrossRef
49.
go back to reference Chen S, et al. Helicobacter pylori cytotoxin-associated gene a protein upregulates alpha-enolase expression via Src/MEK/ERK pathway: implication for progression of gastric cancer. Int J Oncol. 2014;45(2):764–70.PubMedCrossRef Chen S, et al. Helicobacter pylori cytotoxin-associated gene a protein upregulates alpha-enolase expression via Src/MEK/ERK pathway: implication for progression of gastric cancer. Int J Oncol. 2014;45(2):764–70.PubMedCrossRef
50.
go back to reference Ertz-Archambault N, Keim P, Von Hoff D. Microbiome and pancreatic cancer: a comprehensive topic review of literature. World J Gastroenterol. 2017;23(10):1899–908.PubMedPubMedCentralCrossRef Ertz-Archambault N, Keim P, Von Hoff D. Microbiome and pancreatic cancer: a comprehensive topic review of literature. World J Gastroenterol. 2017;23(10):1899–908.PubMedPubMedCentralCrossRef
51.
go back to reference Risch HA, et al. Helicobacter pylori seropositivities and risk of pancreatic carcinoma. Cancer Epidemiol Biomark Prev. 2014;23(1):172–8.CrossRef Risch HA, et al. Helicobacter pylori seropositivities and risk of pancreatic carcinoma. Cancer Epidemiol Biomark Prev. 2014;23(1):172–8.CrossRef
52.
go back to reference Risch HA. Etiology of pancreatic cancer, with a hypothesis concerning the role of N-nitroso compounds and excess gastric acidity. J Natl Cancer Inst. 2003;95(13):948–60.PubMedCrossRef Risch HA. Etiology of pancreatic cancer, with a hypothesis concerning the role of N-nitroso compounds and excess gastric acidity. J Natl Cancer Inst. 2003;95(13):948–60.PubMedCrossRef
53.
go back to reference Blaser MJ. Hypotheses on the pathogenesis and natural history of helicobacter pylori-induced inflammation. Gastroenterology. 1992;102(2):720–7.PubMedCrossRef Blaser MJ. Hypotheses on the pathogenesis and natural history of helicobacter pylori-induced inflammation. Gastroenterology. 1992;102(2):720–7.PubMedCrossRef
55.
go back to reference Huang J, et al. A prospective cohort study on poor oral hygiene and pancreatic cancer risk. Int J Cancer. 2016;138(2):340–7.PubMedCrossRef Huang J, et al. A prospective cohort study on poor oral hygiene and pancreatic cancer risk. Int J Cancer. 2016;138(2):340–7.PubMedCrossRef
58.
go back to reference Jin Y, et al. Identification and impact of hepatitis B virus DNA and antigens in pancreatic cancer tissues and adjacent non-cancerous tissues. Cancer Lett. 2013;335(2):447–54.PubMedCrossRef Jin Y, et al. Identification and impact of hepatitis B virus DNA and antigens in pancreatic cancer tissues and adjacent non-cancerous tissues. Cancer Lett. 2013;335(2):447–54.PubMedCrossRef
60.
go back to reference Shacter E, Weitzman SA. Chronic inflammation and cancer. Oncology (Williston Park). 2002;16(2):217–26 229; discussion 230-2. Shacter E, Weitzman SA. Chronic inflammation and cancer. Oncology (Williston Park). 2002;16(2):217–26 229; discussion 230-2.
61.
go back to reference Rubin DC, Shaker A, Levin MS. Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol. 2012;3:107.PubMedPubMedCentralCrossRef Rubin DC, Shaker A, Levin MS. Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol. 2012;3:107.PubMedPubMedCentralCrossRef
63.
go back to reference Dejea CM, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–7.PubMedPubMedCentralCrossRef Dejea CM, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–7.PubMedPubMedCentralCrossRef
64.
65.
go back to reference Bartsch DK, Gress TM, Langer P. Familial pancreatic cancer--current knowledge. Nat Rev Gastroenterol Hepatol. 2012;9(8):445–53.PubMedCrossRef Bartsch DK, Gress TM, Langer P. Familial pancreatic cancer--current knowledge. Nat Rev Gastroenterol Hepatol. 2012;9(8):445–53.PubMedCrossRef
66.
go back to reference Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144(6):1252–61.PubMedCrossRef Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144(6):1252–61.PubMedCrossRef
67.
go back to reference Sadr-Azodi O, et al. Pancreatic Cancer following acute pancreatitis: a population-based matched cohort study. Am J Gastroenterol. 2018;113(11):1711–9.PubMedCrossRef Sadr-Azodi O, et al. Pancreatic Cancer following acute pancreatitis: a population-based matched cohort study. Am J Gastroenterol. 2018;113(11):1711–9.PubMedCrossRef
68.
go back to reference Kirkegard J, et al. Acute pancreatitis and pancreatic Cancer risk: a Nationwide matched-cohort study in Denmark. Gastroenterology. 2018;154(6):1729–36.PubMedCrossRef Kirkegard J, et al. Acute pancreatitis and pancreatic Cancer risk: a Nationwide matched-cohort study in Denmark. Gastroenterology. 2018;154(6):1729–36.PubMedCrossRef
69.
go back to reference Chung SD, et al. More than 9-times increased risk for pancreatic cancer among patients with acute pancreatitis in Chinese population. Pancreas. 2012;41(1):142–6.PubMedCrossRef Chung SD, et al. More than 9-times increased risk for pancreatic cancer among patients with acute pancreatitis in Chinese population. Pancreas. 2012;41(1):142–6.PubMedCrossRef
71.
go back to reference Redelman-Sidi G, et al. The canonical Wnt pathway drives macropinocytosis in Cancer. Cancer Res. 2018. Redelman-Sidi G, et al. The canonical Wnt pathway drives macropinocytosis in Cancer. Cancer Res. 2018.
72.
go back to reference Francis CL, et al. Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature. 1993;364(6438):639–42.PubMedCrossRef Francis CL, et al. Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature. 1993;364(6438):639–42.PubMedCrossRef
73.
go back to reference Redelman-Sidi G, et al. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 2013;73(3):1156–67.PubMedPubMedCentralCrossRef Redelman-Sidi G, et al. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 2013;73(3):1156–67.PubMedPubMedCentralCrossRef
74.
go back to reference Schmid SC, et al. Wntless promotes bladder cancer growth and acts synergistically as a molecular target in combination with cisplatin. Urol Oncol. 2017;35(9):544.e1–544.e10.CrossRef Schmid SC, et al. Wntless promotes bladder cancer growth and acts synergistically as a molecular target in combination with cisplatin. Urol Oncol. 2017;35(9):544.e1–544.e10.CrossRef
75.
go back to reference Terebiznik MR, et al. Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol. 2002;4(10):766–73.PubMedCrossRef Terebiznik MR, et al. Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol. 2002;4(10):766–73.PubMedCrossRef
76.
78.
go back to reference Mai CW, Kang YB, Pichika MR. Should a toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers. Onco Targets Ther. 2013;6:1573–87.PubMedPubMedCentral Mai CW, Kang YB, Pichika MR. Should a toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers. Onco Targets Ther. 2013;6:1573–87.PubMedPubMedCentral
79.
go back to reference Noureldein MH, Eid AA. Gut microbiota and mTOR signaling: insight on a new pathophysiological interaction. Microb Pathog. 2018;118:98–104.PubMedCrossRef Noureldein MH, Eid AA. Gut microbiota and mTOR signaling: insight on a new pathophysiological interaction. Microb Pathog. 2018;118:98–104.PubMedCrossRef
80.
go back to reference Tanti JF, et al. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol (Lausanne). 2012;3:181. Tanti JF, et al. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol (Lausanne). 2012;3:181.
82.
go back to reference Kisfalvi K, et al. Insulin potentiates Ca2+ signaling and phosphatidylinositol 4,5-bisphosphate hydrolysis induced by Gq protein-coupled receptor agonists through an mTOR-dependent pathway. Endocrinology. 2007;148(7):3246–57.PubMedCrossRef Kisfalvi K, et al. Insulin potentiates Ca2+ signaling and phosphatidylinositol 4,5-bisphosphate hydrolysis induced by Gq protein-coupled receptor agonists through an mTOR-dependent pathway. Endocrinology. 2007;148(7):3246–57.PubMedCrossRef
83.
go back to reference Liauchonak I, et al. Int J Mol Sci. 2018;19(2). Liauchonak I, et al. Int J Mol Sci. 2018;19(2).
84.
go back to reference Panebianco C, et al. Engineered Resistant-Starch (ERS) Diet Shapes Colon Microbiota Profile in Parallel with the Retardation of Tumor Growth in In Vitro and In Vivo Pancreatic Cancer Models. Nutrients. 2017;9(4).PubMedCentralCrossRef Panebianco C, et al. Engineered Resistant-Starch (ERS) Diet Shapes Colon Microbiota Profile in Parallel with the Retardation of Tumor Growth in In Vitro and In Vivo Pancreatic Cancer Models. Nutrients. 2017;9(4).PubMedCentralCrossRef
85.
go back to reference Takayama S, et al. Effects of helicobacter pylori infection on human pancreatic cancer cell line. Hepatogastroenterology. 2007;54(80):2387–91.PubMed Takayama S, et al. Effects of helicobacter pylori infection on human pancreatic cancer cell line. Hepatogastroenterology. 2007;54(80):2387–91.PubMed
86.
go back to reference Pothuraju R, et al. Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. J Exp Clin Cancer Res. 2018;37(1):319.PubMedPubMedCentralCrossRef Pothuraju R, et al. Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. J Exp Clin Cancer Res. 2018;37(1):319.PubMedPubMedCentralCrossRef
87.
go back to reference Beller M, et al. Lipid droplets: a dynamic organelle moves into focus. FEBS Lett. 2010;584(11):2176–82.PubMedCrossRef Beller M, et al. Lipid droplets: a dynamic organelle moves into focus. FEBS Lett. 2010;584(11):2176–82.PubMedCrossRef
88.
go back to reference Gaida MM, et al. Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget. 2016;7(11):12623–32.PubMedPubMedCentralCrossRef Gaida MM, et al. Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget. 2016;7(11):12623–32.PubMedPubMedCentralCrossRef
89.
go back to reference Kahle NA, et al. Bacterial quorum sensing molecule induces chemotaxis of human neutrophils via induction of p38 and leukocyte specific protein 1 (LSP1). Immunobiology. 2013;218(2):145–51.PubMedCrossRef Kahle NA, et al. Bacterial quorum sensing molecule induces chemotaxis of human neutrophils via induction of p38 and leukocyte specific protein 1 (LSP1). Immunobiology. 2013;218(2):145–51.PubMedCrossRef
90.
go back to reference Wu SV, et al. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci U S A. 2002;99(4):2392–7.PubMedPubMedCentralCrossRef Wu SV, et al. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci U S A. 2002;99(4):2392–7.PubMedPubMedCentralCrossRef
91.
go back to reference Huang H, et al. Oncogenic K-Ras requires activation for enhanced activity. Oncogene. 2014;33(4):532–5.PubMedCrossRef Huang H, et al. Oncogenic K-Ras requires activation for enhanced activity. Oncogene. 2014;33(4):532–5.PubMedCrossRef
92.
go back to reference Daniluk J, et al. An NF-kappaB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J Clin Invest. 2012;122(4):1519–28.PubMedPubMedCentralCrossRef Daniluk J, et al. An NF-kappaB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J Clin Invest. 2012;122(4):1519–28.PubMedPubMedCentralCrossRef
95.
go back to reference Sethi V, et al. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterol. 2019;156(7):2097–2115.e2.CrossRef Sethi V, et al. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterol. 2019;156(7):2097–2115.e2.CrossRef
96.
97.
98.
go back to reference Mao K, et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature. 2018;554(7691):255–9.PubMedCrossRef Mao K, et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature. 2018;554(7691):255–9.PubMedCrossRef
100.
101.
go back to reference Mazmanian SK, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.PubMedCrossRef Mazmanian SK, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.PubMedCrossRef
102.
go back to reference Routy B, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.CrossRefPubMed Routy B, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.CrossRefPubMed
103.
go back to reference Gopalakrishnan V, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103.CrossRefPubMed Gopalakrishnan V, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103.CrossRefPubMed
104.
105.
go back to reference Ma C, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360(6391). Ma C, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360(6391).
106.
go back to reference Sethi V, et al. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterol. 2018. Sethi V, et al. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterol. 2018.
107.
go back to reference Thomas RM, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinog. 2018. Thomas RM, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinog. 2018.
108.
go back to reference Clark CE, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67(19):9518–27.PubMedCrossRef Clark CE, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67(19):9518–27.PubMedCrossRef
109.
go back to reference Zheng L, et al. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterol. 2013;144(6):1230–40.CrossRef Zheng L, et al. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterol. 2013;144(6):1230–40.CrossRef
110.
go back to reference Fukunaga A, et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas. 2004;28(1):e26–31.PubMedCrossRef Fukunaga A, et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas. 2004;28(1):e26–31.PubMedCrossRef
111.
go back to reference Ochi A, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 2012;209(9):1671–87.PubMedPubMedCentralCrossRef Ochi A, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 2012;209(9):1671–87.PubMedPubMedCentralCrossRef
112.
go back to reference De Monte L, et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 2011;208(3):469–78.PubMedPubMedCentralCrossRef De Monte L, et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 2011;208(3):469–78.PubMedPubMedCentralCrossRef
113.
go back to reference Hiraoka N, et al. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12(18):5423–34.PubMedCrossRef Hiraoka N, et al. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12(18):5423–34.PubMedCrossRef
117.
go back to reference Thomas S, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res. 2017;77(8):1783–812.PubMedPubMedCentralCrossRef Thomas S, et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res. 2017;77(8):1783–812.PubMedPubMedCentralCrossRef
118.
119.
go back to reference Chakraborty S, et al. Current status of molecular markers for early detection of sporadic pancreatic cancer. Biochim Biophys Acta. 2011;1815(1):44–64.PubMed Chakraborty S, et al. Current status of molecular markers for early detection of sporadic pancreatic cancer. Biochim Biophys Acta. 2011;1815(1):44–64.PubMed
120.
go back to reference Momi N, et al. Interplay between smoking-induced genotoxicity and altered signaling in pancreatic carcinogenesis. Carcinogenesis. 2012;33(9):1617–28.PubMedPubMedCentralCrossRef Momi N, et al. Interplay between smoking-induced genotoxicity and altered signaling in pancreatic carcinogenesis. Carcinogenesis. 2012;33(9):1617–28.PubMedPubMedCentralCrossRef
121.
122.
go back to reference Michaud DS, et al. Physical activity, obesity, height, and the risk of pancreatic cancer. Jama. 2001;286(8):921–9.PubMedCrossRef Michaud DS, et al. Physical activity, obesity, height, and the risk of pancreatic cancer. Jama. 2001;286(8):921–9.PubMedCrossRef
124.
go back to reference Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer. 2011;11(12):886–95.PubMedCrossRef Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer. 2011;11(12):886–95.PubMedCrossRef
125.
go back to reference Huang B, et al. Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1alpha signaling. Oncotarget. 2014;5(13):4732–45.PubMedPubMedCentralCrossRef Huang B, et al. Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1alpha signaling. Oncotarget. 2014;5(13):4732–45.PubMedPubMedCentralCrossRef
126.
go back to reference Yang JP, et al. Association analysis of genetic variants of adiponectin gene and risk of pancreatic cancer. Int J Clin Exp Med. 2015;8(5):8094–100.PubMedPubMedCentral Yang JP, et al. Association analysis of genetic variants of adiponectin gene and risk of pancreatic cancer. Int J Clin Exp Med. 2015;8(5):8094–100.PubMedPubMedCentral
127.
go back to reference Bao Y, et al. A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. J Natl Cancer Inst. 2013;105(2):95–103.PubMedCrossRef Bao Y, et al. A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. J Natl Cancer Inst. 2013;105(2):95–103.PubMedCrossRef
128.
go back to reference Yoshimoto S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101.PubMedCrossRef Yoshimoto S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101.PubMedCrossRef
129.
130.
go back to reference Parekh PJ, Balart LA, Johnson DA. The influence of the gut microbiome on obesity. Metabolic Syndrome and Gastrointestinal Disease Clin Transl Gastroenterol. 2015;6:e91.PubMedCrossRef Parekh PJ, Balart LA, Johnson DA. The influence of the gut microbiome on obesity. Metabolic Syndrome and Gastrointestinal Disease Clin Transl Gastroenterol. 2015;6:e91.PubMedCrossRef
131.
go back to reference Thomas LV, Ockhuizen T, Suzuki K. Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr. 2014;112(Suppl 1):S1–18.PubMedPubMedCentralCrossRef Thomas LV, Ockhuizen T, Suzuki K. Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr. 2014;112(Suppl 1):S1–18.PubMedPubMedCentralCrossRef
132.
go back to reference Pagliari D, et al. Gut microbiota-immune system crosstalk and pancreatic disorders. Mediat Inflamm. 2018;2018:7946431.CrossRef Pagliari D, et al. Gut microbiota-immune system crosstalk and pancreatic disorders. Mediat Inflamm. 2018;2018:7946431.CrossRef
133.
135.
go back to reference Devaraj S, Hemarajata P, Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem. 2013;59(4):617–28.PubMedPubMedCentralCrossRef Devaraj S, Hemarajata P, Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem. 2013;59(4):617–28.PubMedPubMedCentralCrossRef
136.
go back to reference van Olden C, Groen AK, Nieuwdorp M. Role of intestinal microbiome in lipid and glucose metabolism in diabetes mellitus. Clin Ther. 2015;37(6):1172–7.PubMedCrossRef van Olden C, Groen AK, Nieuwdorp M. Role of intestinal microbiome in lipid and glucose metabolism in diabetes mellitus. Clin Ther. 2015;37(6):1172–7.PubMedCrossRef
137.
138.
139.
go back to reference Fabryova H, Celec P. On the origin and diagnostic use of salivary RNA. Oral Dis. 2014;20(2):146–52.PubMedCrossRef Fabryova H, Celec P. On the origin and diagnostic use of salivary RNA. Oral Dis. 2014;20(2):146–52.PubMedCrossRef
140.
go back to reference Sturque, J., et al., Interest of studying the saliva metabolome, transcriptome and microbiome in screening for pancreatic cancer. J Stomatol Oral Maxillofac Surg, 2019.CrossRef Sturque, J., et al., Interest of studying the saliva metabolome, transcriptome and microbiome in screening for pancreatic cancer. J Stomatol Oral Maxillofac Surg, 2019.CrossRef
141.
go back to reference Li X, et al. The expression and significance of feces cyclooxygensae-2 mRNA in colorectal cancer and colorectal adenomas. Saudi J Gastroenterol. 2017;23(1):28–33.PubMedPubMedCentralCrossRef Li X, et al. The expression and significance of feces cyclooxygensae-2 mRNA in colorectal cancer and colorectal adenomas. Saudi J Gastroenterol. 2017;23(1):28–33.PubMedPubMedCentralCrossRef
142.
go back to reference Gourd E. TERT mutations in urine could predict bladder cancer recurrence. Lancet Oncol. 2017;18(8):e443.PubMedCrossRef Gourd E. TERT mutations in urine could predict bladder cancer recurrence. Lancet Oncol. 2017;18(8):e443.PubMedCrossRef
144.
go back to reference Geller LT, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357(6356):1156–60.PubMedPubMedCentralCrossRef Geller LT, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357(6356):1156–60.PubMedPubMedCentralCrossRef
145.
go back to reference Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3(5):431–8.PubMedCrossRef Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3(5):431–8.PubMedCrossRef
146.
go back to reference Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016;12(1):31–40.PubMedCrossRef Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016;12(1):31–40.PubMedCrossRef
147.
go back to reference Choy ATF, et al. The microbiome of pancreatic cancer: from molecular diagnostics to new therapeutic approaches to overcome chemoresistance caused by metabolic inactivation of gemcitabine. Expert Rev Mol Diagn. 2018:1–5. Choy ATF, et al. The microbiome of pancreatic cancer: from molecular diagnostics to new therapeutic approaches to overcome chemoresistance caused by metabolic inactivation of gemcitabine. Expert Rev Mol Diagn. 2018:1–5.
148.
go back to reference Geller LT, Straussman R. Intratumoral bacteria may elicit chemoresistance by metabolizing anticancer agents. Mol Cell Oncol. 2018;5(1):e1405139.PubMedCrossRef Geller LT, Straussman R. Intratumoral bacteria may elicit chemoresistance by metabolizing anticancer agents. Mol Cell Oncol. 2018;5(1):e1405139.PubMedCrossRef
149.
go back to reference Vande Voorde J, et al. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem. 2014;289(19):13054–65.PubMedPubMedCentralCrossRef Vande Voorde J, et al. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem. 2014;289(19):13054–65.PubMedPubMedCentralCrossRef
151.
go back to reference Olarerin-George AO, Hogenesch JB. Assessing the prevalence of mycoplasma contamination in cell culture via a survey of NCBI's RNA-seq archive. Nucleic Acids Res. 2015;43(5):2535–42.PubMedPubMedCentralCrossRef Olarerin-George AO, Hogenesch JB. Assessing the prevalence of mycoplasma contamination in cell culture via a survey of NCBI's RNA-seq archive. Nucleic Acids Res. 2015;43(5):2535–42.PubMedPubMedCentralCrossRef
153.
go back to reference Paci A, et al. Review of therapeutic drug monitoring of anticancer drugs part 1--cytotoxics. Eur J Cancer. 2014;50(12):2010–9.PubMedCrossRef Paci A, et al. Review of therapeutic drug monitoring of anticancer drugs part 1--cytotoxics. Eur J Cancer. 2014;50(12):2010–9.PubMedCrossRef
154.
go back to reference Zwielehner J, et al. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS One. 2011;6(12):e28654.PubMedPubMedCentralCrossRef Zwielehner J, et al. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLoS One. 2011;6(12):e28654.PubMedPubMedCentralCrossRef
155.
go back to reference Bien J, Palagani V, Bozko P. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Ther Adv Gastroenterol. 2013;6(1):53–68.CrossRef Bien J, Palagani V, Bozko P. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Ther Adv Gastroenterol. 2013;6(1):53–68.CrossRef
157.
go back to reference Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.PubMedCrossRef Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.PubMedCrossRef
159.
go back to reference Ganesh BP, et al. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One. 2013;8(9):e74963.PubMedPubMedCentralCrossRef Ganesh BP, et al. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One. 2013;8(9):e74963.PubMedPubMedCentralCrossRef
160.
go back to reference Montrose DC, et al. Celecoxib alters the intestinal microbiota and Metabolome in association with reducing polyp burden. Cancer Prev Res (Phila). 2016;9(9):721–31.CrossRef Montrose DC, et al. Celecoxib alters the intestinal microbiota and Metabolome in association with reducing polyp burden. Cancer Prev Res (Phila). 2016;9(9):721–31.CrossRef
161.
go back to reference Forsgard RA, et al. Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague-Dawley rats. Cancer Chemother Pharmacol. 2017;80(2):317–32.PubMedPubMedCentralCrossRef Forsgard RA, et al. Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague-Dawley rats. Cancer Chemother Pharmacol. 2017;80(2):317–32.PubMedPubMedCentralCrossRef
162.
go back to reference Daliri EB, et al. The human microbiome and metabolomics: current concepts and applications. Crit Rev Food Sci Nutr. 2017;57(16):3565–76.PubMedCrossRef Daliri EB, et al. The human microbiome and metabolomics: current concepts and applications. Crit Rev Food Sci Nutr. 2017;57(16):3565–76.PubMedCrossRef
163.
go back to reference da Rocha Lapa F, et al. Anti-inflammatory effects of purine nucleosides, adenosine and inosine, in a mouse model of pleurisy: evidence for the role of adenosine A2 receptors. Purinergic Signal. 2012;8(4):693–704.PubMedPubMedCentralCrossRef da Rocha Lapa F, et al. Anti-inflammatory effects of purine nucleosides, adenosine and inosine, in a mouse model of pleurisy: evidence for the role of adenosine A2 receptors. Purinergic Signal. 2012;8(4):693–704.PubMedPubMedCentralCrossRef
164.
go back to reference Gomez G, Sitkovsky MV. Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood. 2003;102(13):4472–8.PubMedCrossRef Gomez G, Sitkovsky MV. Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood. 2003;102(13):4472–8.PubMedCrossRef
165.
go back to reference Alexander JL, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65.PubMedCrossRef Alexander JL, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–65.PubMedCrossRef
171.
go back to reference Velicer CM, et al. Antibiotic use in relation to the risk of breast cancer. Jama. 2004;291(7):827–35.PubMedCrossRef Velicer CM, et al. Antibiotic use in relation to the risk of breast cancer. Jama. 2004;291(7):827–35.PubMedCrossRef
172.
go back to reference Boursi B, et al. Recurrent antibiotic exposure may promote cancer formation--another step in understanding the role of the human microbiota? Eur J Cancer. 2015;51(17):2655–64.PubMedCrossRef Boursi B, et al. Recurrent antibiotic exposure may promote cancer formation--another step in understanding the role of the human microbiota? Eur J Cancer. 2015;51(17):2655–64.PubMedCrossRef
Metadata
Title
Role of the microbiome in occurrence, development and treatment of pancreatic cancer
Authors
Yicheng Wang
Gang Yang
Lei You
Jinshou Yang
Mengyu Feng
Jiangdong Qiu
Fangyu Zhao
Yueze Liu
Zhe Cao
Lianfang Zheng
Taiping Zhang
Yupei Zhao
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2019
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-019-1103-2

Other articles of this Issue 1/2019

Molecular Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine