Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 4/2018

01-04-2018 | Original Article

Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice

Authors: Concetta Panebianco, Kaarel Adamberg, Madis Jaagura, Massimiliano Copetti, Andrea Fontana, Signe Adamberg, Kaia Kolk, Raivo Vilu, Angelo Andriulli, Valerio Pazienza

Published in: Cancer Chemotherapy and Pharmacology | Issue 4/2018

Login to get access

Abstract

Background and aims

Pancreatic ductal adenocarcinoma (PDAC) represents the fourth cause of cancer-related death. We aimed to evaluate whether gemcitabine treatment shapes the gut microbiota in a model of PDAC xenografted mice.

Materials and methods

Pancreatic cancer xenograft mice were subjected to gemcitabine injection once per week for 3 weeks to assess the tumor volume as compared to control mice injected with normal saline solution. The composition of fecal microbiota, the activation of NF-kB pathway in cancer tissues and the serum metabolomics were further analyzed.

Results

Gemcitabine considerably decreases the proportion of Gram- positive Firmicutes (from about 39 to 17%) and the Gram- negative Bacteroidetes (from 38 to 17%) which are the two dominant phyla in the gut of tumor-bearing control mice. This downshift was replaced by an increase of Proteobacteria (Escherichia coli and Aeromonas hydrophila) from 15 up to 32% and Verrucomicrobia (Akkermansia muciniphila) from 5 to 33% in the gut of drug-receiving mice. An overall increase in inflammation-associated bacteria was observed upon gemcitabine. Consistently, activation of the NF-kB canonical pathway was found in cancer tissues from gemcitabine-treated mice. Serum metabolomics revealed a significant decrease of the purine compounds inosine and xanthine, and a decreasing trend for their metabolically-related molecule hypoxanthine.

Discussion

Understanding chemotherapy side effects may explain the lack of activity or the chemoresistant processes and it may help to set up strategies to improve the effectiveness of therapy.
Literature
2.
go back to reference Conroy T, Bachet JB, Ayav A, Huguet F, Lambert A, Caramella C, Marechal R, Van Laethem JL, Ducreux M (2016) Current standards and new innovative approaches for treatment of pancreatic cancer. Eur J Cancer 57:10–22CrossRefPubMed Conroy T, Bachet JB, Ayav A, Huguet F, Lambert A, Caramella C, Marechal R, Van Laethem JL, Ducreux M (2016) Current standards and new innovative approaches for treatment of pancreatic cancer. Eur J Cancer 57:10–22CrossRefPubMed
3.
go back to reference Siegel RL, Miller KD, Jemal A, Cancer statistics (2016) CA Cancer. J Clin 66(1):7–30 Siegel RL, Miller KD, Jemal A, Cancer statistics (2016) CA Cancer. J Clin 66(1):7–30
4.
go back to reference Cheema AR, O’Reilly EM (2016) Management of Metastatic Pancreatic Adenocarcinoma. Surg Clin North Am 96(6):1391–1414CrossRefPubMed Cheema AR, O’Reilly EM (2016) Management of Metastatic Pancreatic Adenocarcinoma. Surg Clin North Am 96(6):1391–1414CrossRefPubMed
5.
go back to reference D’Aronzo M, Vinciguerra M, Mazza T, Panebianco C, Saracino C, Pereira SP, Graziano P, Pazienza V (2015) Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget 6(21):18545–18557PubMedPubMedCentral D’Aronzo M, Vinciguerra M, Mazza T, Panebianco C, Saracino C, Pereira SP, Graziano P, Pazienza V (2015) Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget 6(21):18545–18557PubMedPubMedCentral
8.
go back to reference Stathis A, Moore MJ (2010) Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 7(3):163–172CrossRefPubMed Stathis A, Moore MJ (2010) Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 7(3):163–172CrossRefPubMed
9.
go back to reference Greer JB, Whitcomb DC (2009) Inflammation and pancreatic cancer: an evidence-based review. Curr Opin Pharmacol 9(4):411–418CrossRefPubMed Greer JB, Whitcomb DC (2009) Inflammation and pancreatic cancer: an evidence-based review. Curr Opin Pharmacol 9(4):411–418CrossRefPubMed
10.
go back to reference Steele CW, Kaur Gill NA, Jamieson NB, Carter CR (2016) Targeting inflammation in pancreatic cancer: clinical translation. World J Gastrointest Oncol 8(4):380–388CrossRefPubMedPubMedCentral Steele CW, Kaur Gill NA, Jamieson NB, Carter CR (2016) Targeting inflammation in pancreatic cancer: clinical translation. World J Gastrointest Oncol 8(4):380–388CrossRefPubMedPubMedCentral
12.
go back to reference Momi N, Kaur S, Krishn SR, Batra SK (2012) Discovering the route from inflammation to pancreatic cancer. Minerva Gastroenterol Dietol 58(4):283–297PubMedPubMedCentral Momi N, Kaur S, Krishn SR, Batra SK (2012) Discovering the route from inflammation to pancreatic cancer. Minerva Gastroenterol Dietol 58(4):283–297PubMedPubMedCentral
13.
go back to reference Uomo I, Miraglia S, Pastorello M (2010) Inflammation and pancreatic ductal adenocarcinoma: a potential scenario for novel drug targets. JOP 11(3):199–202PubMed Uomo I, Miraglia S, Pastorello M (2010) Inflammation and pancreatic ductal adenocarcinoma: a potential scenario for novel drug targets. JOP 11(3):199–202PubMed
17.
go back to reference Zitvogel L, Galluzzi L, Viaud S, Vetizou M, Daillere R, Merad M, Kroemer G (2015) Cancer and the gut microbiota: an unexpected link. Sci Transl Med 7(271):271ps271CrossRef Zitvogel L, Galluzzi L, Viaud S, Vetizou M, Daillere R, Merad M, Kroemer G (2015) Cancer and the gut microbiota: an unexpected link. Sci Transl Med 7(271):271ps271CrossRef
18.
go back to reference Panebianco C, Adamberg K, Adamberg S, Saracino C, Jaagura M, Kolk K, Di Chio AG, Graziano P, Vilu R, Pazienza V (2017) Engineered resistant-starch (ERS) diet shapes colon microbiota profile in parallel with the retardation of tumor growth in in vitro and in vivo pancreatic cancer models. Nutrients 9(4). https://doi.org/10.3390/nu9040331 Panebianco C, Adamberg K, Adamberg S, Saracino C, Jaagura M, Kolk K, Di Chio AG, Graziano P, Vilu R, Pazienza V (2017) Engineered resistant-starch (ERS) diet shapes colon microbiota profile in parallel with the retardation of tumor growth in in vitro and in vivo pancreatic cancer models. Nutrients 9(4). https://​doi.​org/​10.​3390/​nu9040331
19.
go back to reference Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K, Wong DT (2012) Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61(4):582–588CrossRefPubMed Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K, Wong DT (2012) Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61(4):582–588CrossRefPubMed
20.
go back to reference Michaud DS, Joshipura K, Giovannucci E, Fuchs CS (2007) A prospective study of periodontal disease and pancreatic cancer in US male health professionals. J Natl Cancer Inst 99(2):171–175CrossRefPubMed Michaud DS, Joshipura K, Giovannucci E, Fuchs CS (2007) A prospective study of periodontal disease and pancreatic cancer in US male health professionals. J Natl Cancer Inst 99(2):171–175CrossRefPubMed
21.
go back to reference Touchefeu Y, Montassier E, Nieman K, Gastinne T, Potel G, Bruley des Varannes S, Le Vacon F, de La Cochetiere MF (2014) Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment Pharmacol Ther 40(5):409–421PubMed Touchefeu Y, Montassier E, Nieman K, Gastinne T, Potel G, Bruley des Varannes S, Le Vacon F, de La Cochetiere MF (2014) Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment Pharmacol Ther 40(5):409–421PubMed
22.
go back to reference Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldorsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86(8):3985–3993CrossRefPubMedPubMedCentral Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldorsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86(8):3985–3993CrossRefPubMedPubMedCentral
23.
go back to reference Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638CrossRefPubMedPubMedCentral Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638CrossRefPubMedPubMedCentral
24.
go back to reference Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075CrossRefPubMedPubMedCentral Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075CrossRefPubMedPubMedCentral
25.
go back to reference Hausmann S, Kong B, Michalski C, Erkan M, Friess H (2014) The role of inflammation in pancreatic cancer. Adv Exp Med Biol 816:129–151CrossRefPubMed Hausmann S, Kong B, Michalski C, Erkan M, Friess H (2014) The role of inflammation in pancreatic cancer. Adv Exp Med Biol 816:129–151CrossRefPubMed
26.
go back to reference Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13(11):460–469CrossRefPubMed Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13(11):460–469CrossRefPubMed
28.
30.
go back to reference Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6(4):295–308CrossRef Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6(4):295–308CrossRef
31.
go back to reference Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031CrossRefPubMed Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031CrossRefPubMed
32.
go back to reference Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338(6103):120–123CrossRefPubMedPubMedCentral Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338(6103):120–123CrossRefPubMedPubMedCentral
33.
go back to reference Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503CrossRefPubMed Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33(9):496–503CrossRefPubMed
34.
go back to reference Lavelle A, Lennon G, O’Sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE, Doherty G, O’Donoghue D, Hyland J, Ross RP, Coffey JC, Sheahan K, Cotter PD, Shanahan F, Winter DC et al (2015) Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 64(10):1553–1561CrossRefPubMedPubMedCentral Lavelle A, Lennon G, O’Sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE, Doherty G, O’Donoghue D, Hyland J, Ross RP, Coffey JC, Sheahan K, Cotter PD, Shanahan F, Winter DC et al (2015) Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 64(10):1553–1561CrossRefPubMedPubMedCentral
35.
go back to reference Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37(1):47–55CrossRefPubMed Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37(1):47–55CrossRefPubMed
36.
go back to reference Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79CrossRefPubMedPubMedCentral Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79CrossRefPubMedPubMedCentral
37.
go back to reference Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785CrossRefPubMedPubMedCentral Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104(34):13780–13785CrossRefPubMedPubMedCentral
38.
go back to reference Ganesh BP, Klopfleisch R, Loh G, Blaut M (2013) Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One 8(9):e74963CrossRefPubMedPubMedCentral Ganesh BP, Klopfleisch R, Loh G, Blaut M (2013) Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One 8(9):e74963CrossRefPubMedPubMedCentral
39.
go back to reference Berry D, Schwab C, Milinovich G, Reichert J, Ben Mahfoudh K, Decker T, Engel M, Hai B, Hainzl E, Heider S, Kenner L, Muller M, Rauch I, Strobl B, Wagner M, Schleper C et al (2012) Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J 6(11):2091–2106CrossRefPubMedPubMedCentral Berry D, Schwab C, Milinovich G, Reichert J, Ben Mahfoudh K, Decker T, Engel M, Hai B, Hainzl E, Heider S, Kenner L, Muller M, Rauch I, Strobl B, Wagner M, Schleper C et al (2012) Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J 6(11):2091–2106CrossRefPubMedPubMedCentral
41.
go back to reference Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119CrossRefPubMed Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119CrossRefPubMed
42.
go back to reference Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17(12):1519–1528CrossRefPubMedPubMedCentral Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17(12):1519–1528CrossRefPubMedPubMedCentral
43.
go back to reference Chopin V, Toillon RA, Jouy N, Le Bourhis X (2002) Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br J Pharmacol 135(1):79–86CrossRefPubMedPubMedCentral Chopin V, Toillon RA, Jouy N, Le Bourhis X (2002) Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br J Pharmacol 135(1):79–86CrossRefPubMedPubMedCentral
44.
go back to reference Gaschott T, Maassen CU, Stein J (2001) Tributyrin, a butyrate precursor, impairs growth and induces apoptosis and differentiation in pancreatic cancer cells. Anticancer Res 21(4A):2815–2819PubMed Gaschott T, Maassen CU, Stein J (2001) Tributyrin, a butyrate precursor, impairs growth and induces apoptosis and differentiation in pancreatic cancer cells. Anticancer Res 21(4A):2815–2819PubMed
45.
go back to reference Scheppach W, Weiler F (2004) The butyrate story: old wine in new bottles? Curr Opin Clin Nutr Metab Care 7(5):563–567CrossRefPubMed Scheppach W, Weiler F (2004) The butyrate story: old wine in new bottles? Curr Opin Clin Nutr Metab Care 7(5):563–567CrossRefPubMed
46.
go back to reference Natoni F, Diolordi L, Santoni C, Gilardini Montani MS (2005) Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim Biophys Acta 1745(3):318–329CrossRefPubMed Natoni F, Diolordi L, Santoni C, Gilardini Montani MS (2005) Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim Biophys Acta 1745(3):318–329CrossRefPubMed
47.
go back to reference Blank-Porat D, Gruss-Fischer T, Tarasenko N, Malik Z, Nudelman A, Rephaeli A (2007) The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. Cancer Lett 256(1):39–48CrossRefPubMed Blank-Porat D, Gruss-Fischer T, Tarasenko N, Malik Z, Nudelman A, Rephaeli A (2007) The anticancer prodrugs of butyric acid AN-7 and AN-9, possess antiangiogenic properties. Cancer Lett 256(1):39–48CrossRefPubMed
48.
go back to reference Ogawa H, Rafiee P, Fisher PJ, Johnson NA, Otterson MF, Binion DG (2003) Sodium butyrate inhibits angiogenesis of human intestinal microvascular endothelial cells through COX-2 inhibition. FEBS Lett 554(1–2):88–94CrossRefPubMed Ogawa H, Rafiee P, Fisher PJ, Johnson NA, Otterson MF, Binion DG (2003) Sodium butyrate inhibits angiogenesis of human intestinal microvascular endothelial cells through COX-2 inhibition. FEBS Lett 554(1–2):88–94CrossRefPubMed
49.
go back to reference Zgouras D, Wachtershauser A, Frings D, Stein J (2003) Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1alpha nuclear translocation. Biochem Biophys Res Commun 300(4):832–838CrossRefPubMed Zgouras D, Wachtershauser A, Frings D, Stein J (2003) Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1alpha nuclear translocation. Biochem Biophys Res Commun 300(4):832–838CrossRefPubMed
50.
go back to reference Farrow B, Rychahou P, O’Connor KL, Evers BM (2003) Butyrate inhibits pancreatic cancer invasion. J Gastrointest Surg 7(7):864–870CrossRefPubMed Farrow B, Rychahou P, O’Connor KL, Evers BM (2003) Butyrate inhibits pancreatic cancer invasion. J Gastrointest Surg 7(7):864–870CrossRefPubMed
51.
go back to reference van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ (2010) The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog 6(5):e1000879CrossRefPubMedPubMedCentral van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ (2010) The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog 6(5):e1000879CrossRefPubMedPubMedCentral
52.
go back to reference Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15(10):2631–2641PubMedPubMedCentral Yutin N, Galperin MY (2013) A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15(10):2631–2641PubMedPubMedCentral
53.
go back to reference Bien J, Palagani V, Bozko P (2013) The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Therap Adv Gastroenterol 6(1):53–68CrossRefPubMedPubMedCentral Bien J, Palagani V, Bozko P (2013) The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Therap Adv Gastroenterol 6(1):53–68CrossRefPubMedPubMedCentral
54.
go back to reference Anand A, Glatt AE (1993) Clostridium difficile infection associated with antineoplastic chemotherapy: a review. Clin Infect Dis 17(1):109–113CrossRefPubMed Anand A, Glatt AE (1993) Clostridium difficile infection associated with antineoplastic chemotherapy: a review. Clin Infect Dis 17(1):109–113CrossRefPubMed
55.
go back to reference Masciullo V, Mainenti S, Lorusso D, Margariti PA, Scambia G (2010) Lethal clostridium difficile colitis associated with paclitaxel and carboplatin chemotherapy in ovarian carcinoma: case report and review of the literature. Obstet Gynecol Int 2010:749789PubMedPubMedCentral Masciullo V, Mainenti S, Lorusso D, Margariti PA, Scambia G (2010) Lethal clostridium difficile colitis associated with paclitaxel and carboplatin chemotherapy in ovarian carcinoma: case report and review of the literature. Obstet Gynecol Int 2010:749789PubMedPubMedCentral
56.
go back to reference Raza S, Baig MA, Russell H, Gourdet Y, Berger BJ (2010) Clostridium difficile infection following chemotherapy. Recent Pat Antiinfect Drug Discov 5(1):1–9CrossRefPubMed Raza S, Baig MA, Russell H, Gourdet Y, Berger BJ (2010) Clostridium difficile infection following chemotherapy. Recent Pat Antiinfect Drug Discov 5(1):1–9CrossRefPubMed
57.
go back to reference Lin XB, Dieleman LA, Ketabi A, Bibova I, Sawyer MB, Xue H, Field CJ, Baracos VE, Ganzle MG (2012) Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS One 7(7):e39764CrossRefPubMedPubMedCentral Lin XB, Dieleman LA, Ketabi A, Bibova I, Sawyer MB, Xue H, Field CJ, Baracos VE, Ganzle MG (2012) Irinotecan (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS One 7(7):e39764CrossRefPubMedPubMedCentral
58.
go back to reference Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J, Keefe DM (2009) Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med (Maywood) 234(4):430–441CrossRef Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Hamilton J, Keefe DM (2009) Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis. Exp Biol Med (Maywood) 234(4):430–441CrossRef
59.
go back to reference Montrose DC, Zhou XK, McNally EM, Sue E, Yantiss RK, Gross SS, Leve ND, Karoly ED, Suen CS, Ling L, Benezra R, Pamer EG, Dannenberg AJ (2016) Celecoxib alters the intestinal microbiota and metabolome in association with reducing polyp burden. Cancer Prev Res (Phila) 9(9):721–731CrossRef Montrose DC, Zhou XK, McNally EM, Sue E, Yantiss RK, Gross SS, Leve ND, Karoly ED, Suen CS, Ling L, Benezra R, Pamer EG, Dannenberg AJ (2016) Celecoxib alters the intestinal microbiota and metabolome in association with reducing polyp burden. Cancer Prev Res (Phila) 9(9):721–731CrossRef
60.
go back to reference Forsgard RA, Marrachelli VG, Korpela K, Frias R, Collado MC, Korpela R, Monleon D, Spillmann T, Osterlund P (2017) Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague–Dawley rats. Cancer Chemother Pharmacol 80(2):317–332CrossRefPubMedPubMedCentral Forsgard RA, Marrachelli VG, Korpela K, Frias R, Collado MC, Korpela R, Monleon D, Spillmann T, Osterlund P (2017) Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague–Dawley rats. Cancer Chemother Pharmacol 80(2):317–332CrossRefPubMedPubMedCentral
61.
go back to reference Daliri EB, Wei S, Oh DH, Lee BH (2017) The human microbiome and metabolomics: current concepts and applications. Crit Rev Food Sci Nutr 57(16):3565–3576CrossRefPubMed Daliri EB, Wei S, Oh DH, Lee BH (2017) The human microbiome and metabolomics: current concepts and applications. Crit Rev Food Sci Nutr 57(16):3565–3576CrossRefPubMed
62.
go back to reference He B, Hoang TK, Wang T, Ferris M, Taylor CM, Tian X, Luo M, Tran DQ, Zhou J, Tatevian N, Luo F, Molina JG, Blackburn MR, Gomez TH, Roos S, Rhoads JM et al (2016) Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J Exp Med 214(1):107–123CrossRefPubMed He B, Hoang TK, Wang T, Ferris M, Taylor CM, Tian X, Luo M, Tran DQ, Zhou J, Tatevian N, Luo F, Molina JG, Blackburn MR, Gomez TH, Roos S, Rhoads JM et al (2016) Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J Exp Med 214(1):107–123CrossRefPubMed
63.
go back to reference da Rocha Lapa F, da Silva MD, de Almeida Cabrini D, Santos AR (2012) Anti-inflammatory effects of purine nucleosides, adenosine and inosine, in a mouse model of pleurisy: evidence for the role of adenosine A2 receptors. Purinergic Signal 8(4):693–704CrossRefPubMedPubMedCentral da Rocha Lapa F, da Silva MD, de Almeida Cabrini D, Santos AR (2012) Anti-inflammatory effects of purine nucleosides, adenosine and inosine, in a mouse model of pleurisy: evidence for the role of adenosine A2 receptors. Purinergic Signal 8(4):693–704CrossRefPubMedPubMedCentral
64.
go back to reference Hasko G, Kuhel DG, Nemeth ZH, Mabley JG, Stachlewitz RF, Virag L, Lohinai Z, Southan GJ, Salzman AL, Szabo C (2000) Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J Immunol 164(2):1013–1019CrossRefPubMed Hasko G, Kuhel DG, Nemeth ZH, Mabley JG, Stachlewitz RF, Virag L, Lohinai Z, Southan GJ, Salzman AL, Szabo C (2000) Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J Immunol 164(2):1013–1019CrossRefPubMed
65.
go back to reference Gomez G, Sitkovsky MV (2003) Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102(13):4472–4478CrossRefPubMed Gomez G, Sitkovsky MV (2003) Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102(13):4472–4478CrossRefPubMed
66.
Metadata
Title
Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice
Authors
Concetta Panebianco
Kaarel Adamberg
Madis Jaagura
Massimiliano Copetti
Andrea Fontana
Signe Adamberg
Kaia Kolk
Raivo Vilu
Angelo Andriulli
Valerio Pazienza
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 4/2018
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-018-3549-0

Other articles of this Issue 4/2018

Cancer Chemotherapy and Pharmacology 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine