Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Pancreatic Cancer | Research

Comprehensive prognostic and immune analysis of a glycosylation related risk model in pancreatic cancer

Authors: XueAng Liu, Jian Shi, Lei Tian, Bin Xiao, Kai Zhang, Yan Zhu, YuFeng Zhang, KuiRong Jiang, Yi Zhu, Hao Yuan

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Pancreatic cancer (PC) is a malignant tumor with extremely poor prognosis, exhibiting resistance to chemotherapy and immunotherapy. Nowadays, it is ranked as the third leading cause of cancer-related mortality. Glycation is a common epigenetic modification that occurs during the tumor transformation. Many studies have demonstrated a strong correlation between glycation modification and tumor progression. However, the expression status of glycosylation-related genes (GRGs) in PC and their potential roles in PC microenvironment have not been extensively investigated.

Method

We systematically integrated RNA sequencing data and clinicopathological parameters of PC patients from TCGA and GTEx databases. A GRGs risk model based on glycosylation related genes was constructed and validated in 60 patients from Pancreatic biobank via RT-PCR. R packages were used to analyze the relationships between GRGs risk scores and overall survival (OS), tumor microenvironment, immune checkpoint, chemotherapy drug sensitivity and tumor mutational load in PC patients. Panoramic analysis was performed on PC tissues. The function of B3GNT8 in PC was detected via in vitro experiments.

Results

In this study, we found close correlations between GRGs risk model and PC patients’ overall survival and tumor microenvironment. Multifaceted predictions demonstrated the low-risk cohort exhibits superior OS compared to high-risk counterparts. Meanwhile, the low-risk group was characterized by high immune infiltration and may be more sensitive to immunotherapy or chemotherapy. Panoramic analysis was further confirmed a significant relationship between the GRGs risk score and both the distribution of PC tumor cells as well as CD8 + T cell infiltration. In addition, we also identified a unique glycosylation gene B3GNT8, which could suppress PC progression in vitro and in vivo.

Conclusion

We established a GRGs risk model, which could predict prognosis and immune infiltration in PC patients. This risk model may provide a new tool for PC precision treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.CrossRefPubMed Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.CrossRefPubMed
2.
go back to reference Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: advances and challenges. Cell. 2023;186(8):1729–54.CrossRefPubMed Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: advances and challenges. Cell. 2023;186(8):1729–54.CrossRefPubMed
3.
go back to reference Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15(9):540–55.CrossRefPubMed Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15(9):540–55.CrossRefPubMed
5.
go back to reference Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH. Cell surface protein glycosylation in cancer. Proteomics. 2014;14(4–5):525–46.CrossRefPubMed Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH. Cell surface protein glycosylation in cancer. Proteomics. 2014;14(4–5):525–46.CrossRefPubMed
6.
7.
go back to reference Zhang Z, Zhao Y, Jiang L, Miao X, Zhou H, Jia L. Glycomic alterations are associated with multidrug resistance in human Leukemia. Int J Biochem Cell Biol. 2012;44(8):1244–53.CrossRefPubMed Zhang Z, Zhao Y, Jiang L, Miao X, Zhou H, Jia L. Glycomic alterations are associated with multidrug resistance in human Leukemia. Int J Biochem Cell Biol. 2012;44(8):1244–53.CrossRefPubMed
8.
go back to reference Pucci M, Duca M, Malagolini N, Dall’Olio F. Glycosyltransferases in Cancer: prognostic biomarkers of survival in patient cohorts and impact on malignancy in experimental models. Cancers (Basel). 2022;14(9):2128.CrossRefPubMedPubMedCentral Pucci M, Duca M, Malagolini N, Dall’Olio F. Glycosyltransferases in Cancer: prognostic biomarkers of survival in patient cohorts and impact on malignancy in experimental models. Cancers (Basel). 2022;14(9):2128.CrossRefPubMedPubMedCentral
9.
go back to reference Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas Pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.CrossRef Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas Pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.CrossRef
10.
go back to reference Consortium GT. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.CrossRef Consortium GT. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.CrossRef
11.
go back to reference Narimatsu H. Construction of a human glycogene library and comprehensive functional analysis. Glycoconj J. 2004;21(1–2):17–24.CrossRefPubMed Narimatsu H. Construction of a human glycogene library and comprehensive functional analysis. Glycoconj J. 2004;21(1–2):17–24.CrossRefPubMed
12.
go back to reference Xu D-L, He Y-Q, Xiao B, Si Y, Shi J, Liu X-A, et al. A novel Sushi-IL15-PD1 CAR-NK92 cell line with enhanced and PD-L1 targeted cytotoxicity against Pancreatic Cancer cells. Front Oncol. 2022;12:726985.CrossRefPubMedPubMedCentral Xu D-L, He Y-Q, Xiao B, Si Y, Shi J, Liu X-A, et al. A novel Sushi-IL15-PD1 CAR-NK92 cell line with enhanced and PD-L1 targeted cytotoxicity against Pancreatic Cancer cells. Front Oncol. 2022;12:726985.CrossRefPubMedPubMedCentral
13.
go back to reference Zhu Y, Zhang JJ, Xie KL, Tang J, Liang WB, Zhu R, et al. Specific-detection of clinical samples, systematic functional investigations, and transcriptome analysis reveals that splice variant MUC4/Y contributes to the malignant progression of Pancreatic cancer by triggering malignancy-related positive feedback loops signaling. J Transl Med. 2014;12:309.CrossRefPubMedPubMedCentral Zhu Y, Zhang JJ, Xie KL, Tang J, Liang WB, Zhu R, et al. Specific-detection of clinical samples, systematic functional investigations, and transcriptome analysis reveals that splice variant MUC4/Y contributes to the malignant progression of Pancreatic cancer by triggering malignancy-related positive feedback loops signaling. J Transl Med. 2014;12:309.CrossRefPubMedPubMedCentral
14.
go back to reference Boutron I, Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7). Boutron I, Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7).
15.
go back to reference Erber R, Spoerl S, Mamilos A, Krupar R, Hartmann A, Ruebner M, et al. Impact of spatially heterogeneous Trop-2 expression on prognosis in oral squamous cell carcinoma. Int J Mol Sci. 2021;23(1):87.CrossRefPubMedPubMedCentral Erber R, Spoerl S, Mamilos A, Krupar R, Hartmann A, Ruebner M, et al. Impact of spatially heterogeneous Trop-2 expression on prognosis in oral squamous cell carcinoma. Int J Mol Sci. 2021;23(1):87.CrossRefPubMedPubMedCentral
18.
go back to reference Nagl S, Haas M, Lahmer G, Buttner-Herold M, Grabenbauer GG, Fietkau R, et al. Cell-to-cell distances between tumor-infiltrating inflammatory cells have the potential to distinguish functionally active from suppressed inflammatory cells. Oncoimmunology. 2016;5(5):e1127494.CrossRefPubMedPubMedCentral Nagl S, Haas M, Lahmer G, Buttner-Herold M, Grabenbauer GG, Fietkau R, et al. Cell-to-cell distances between tumor-infiltrating inflammatory cells have the potential to distinguish functionally active from suppressed inflammatory cells. Oncoimmunology. 2016;5(5):e1127494.CrossRefPubMedPubMedCentral
19.
go back to reference Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic Cancer: Pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022;163(2):386–402.CrossRefPubMed Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic Cancer: Pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022;163(2):386–402.CrossRefPubMed
20.
go back to reference Yang J, Xu R, Wang C, Qiu J, Ren B, You L. Early screening and diagnosis strategies of Pancreatic cancer: a comprehensive review. Cancer Commun (Lond). 2021;41(12):1257–74.CrossRefPubMed Yang J, Xu R, Wang C, Qiu J, Ren B, You L. Early screening and diagnosis strategies of Pancreatic cancer: a comprehensive review. Cancer Commun (Lond). 2021;41(12):1257–74.CrossRefPubMed
21.
go back to reference Bosetti C, Bertuccio P, Negri E, La Vecchia C, Zeegers MP, Boffetta P. Pancreatic cancer: overview of descriptive epidemiology. Mol Carcinog. 2012;51(1):3–13.CrossRefPubMed Bosetti C, Bertuccio P, Negri E, La Vecchia C, Zeegers MP, Boffetta P. Pancreatic cancer: overview of descriptive epidemiology. Mol Carcinog. 2012;51(1):3–13.CrossRefPubMed
23.
go back to reference Pathak GA, Polimanti R, Silzer TK, Wendt FR, Chakraborty R, Phillips NR. Genetically-regulated transcriptomics & copy number variation of proctitis points to altered mitochondrial and DNA repair mechanisms in individuals of European ancestry. BMC Cancer. 2020;20(1):954.CrossRefPubMedPubMedCentral Pathak GA, Polimanti R, Silzer TK, Wendt FR, Chakraborty R, Phillips NR. Genetically-regulated transcriptomics & copy number variation of proctitis points to altered mitochondrial and DNA repair mechanisms in individuals of European ancestry. BMC Cancer. 2020;20(1):954.CrossRefPubMedPubMedCentral
24.
25.
go back to reference Mereiter S, Balmana M, Campos D, Gomes J, Reis CA. Glycosylation in the era of Cancer-targeted therapy: where are we heading? Cancer Cell. 2019;36(1):6–16.CrossRefPubMed Mereiter S, Balmana M, Campos D, Gomes J, Reis CA. Glycosylation in the era of Cancer-targeted therapy: where are we heading? Cancer Cell. 2019;36(1):6–16.CrossRefPubMed
26.
go back to reference Okazaki M, Mogushi K, Denda-Nagai K, Fujihira H, Noji M, Ishii-Schrade K, et al. Biological and Clinicopathological implications of Beta-3-N-acetylglucosaminyltransferase 8 in Triple-negative Breast Cancer. Anticancer Res. 2021;41(2):845–58.CrossRefPubMed Okazaki M, Mogushi K, Denda-Nagai K, Fujihira H, Noji M, Ishii-Schrade K, et al. Biological and Clinicopathological implications of Beta-3-N-acetylglucosaminyltransferase 8 in Triple-negative Breast Cancer. Anticancer Res. 2021;41(2):845–58.CrossRefPubMed
27.
go back to reference Xu X, Wu Y, Jia G, Zhu Q, Li D, Xie K. A signature based on glycosyltransferase genes provides a promising tool for the prediction of prognosis and immunotherapy responsiveness in Ovarian cancer. J Ovarian Res. 2023;16(1):5.CrossRefPubMedPubMedCentral Xu X, Wu Y, Jia G, Zhu Q, Li D, Xie K. A signature based on glycosyltransferase genes provides a promising tool for the prediction of prognosis and immunotherapy responsiveness in Ovarian cancer. J Ovarian Res. 2023;16(1):5.CrossRefPubMedPubMedCentral
28.
go back to reference Han Y, Li Z, Wu Q, Liu H, Sun Z, Wu Y, et al. B4GALT5 high expression associated with poor prognosis of hepatocellular carcinoma. BMC Cancer. 2022;22(1):392.CrossRefPubMedPubMedCentral Han Y, Li Z, Wu Q, Liu H, Sun Z, Wu Y, et al. B4GALT5 high expression associated with poor prognosis of hepatocellular carcinoma. BMC Cancer. 2022;22(1):392.CrossRefPubMedPubMedCentral
29.
go back to reference Danolic D, Heffer M, Wagner J, Skrlec I, Alvir I, Mamic I, et al. Role of ganglioside biosynthesis genetic polymorphism in Cervical cancer development. J Obstet Gynaecol. 2020;40(8):1127–32.CrossRefPubMed Danolic D, Heffer M, Wagner J, Skrlec I, Alvir I, Mamic I, et al. Role of ganglioside biosynthesis genetic polymorphism in Cervical cancer development. J Obstet Gynaecol. 2020;40(8):1127–32.CrossRefPubMed
30.
go back to reference Yang J, Ren B, Yang G, Wang H, Chen G, You L, et al. The enhancement of glycolysis regulates Pancreatic cancer Metastasis. Cell Mol Life Sci. 2020;77(2):305–21.CrossRefPubMed Yang J, Ren B, Yang G, Wang H, Chen G, You L, et al. The enhancement of glycolysis regulates Pancreatic cancer Metastasis. Cell Mol Life Sci. 2020;77(2):305–21.CrossRefPubMed
31.
go back to reference Dai S, Peng Y, Zhu Y, Xu D, Zhu F, Xu W, et al. Glycolysis promotes the progression of Pancreatic cancer and reduces cancer cell sensitivity to gemcitabine. Biomed Pharmacother. 2020;121:109521.CrossRefPubMed Dai S, Peng Y, Zhu Y, Xu D, Zhu F, Xu W, et al. Glycolysis promotes the progression of Pancreatic cancer and reduces cancer cell sensitivity to gemcitabine. Biomed Pharmacother. 2020;121:109521.CrossRefPubMed
33.
go back to reference Gupta R, Leon F, Thompson CM, Nimmakayala R, Karmakar S, Nallasamy P, et al. Global analysis of human glycosyltransferases reveals novel targets for Pancreatic cancer pathogenesis. Br J Cancer. 2020;122(11):1661–72.CrossRefPubMedPubMedCentral Gupta R, Leon F, Thompson CM, Nimmakayala R, Karmakar S, Nallasamy P, et al. Global analysis of human glycosyltransferases reveals novel targets for Pancreatic cancer pathogenesis. Br J Cancer. 2020;122(11):1661–72.CrossRefPubMedPubMedCentral
34.
go back to reference Mohamed Abd-El-Halim Y, El Kaoutari A, Silvy F, Rubis M, Bigonnet M, Roques J, et al. A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. EBioMedicine. 2021;71: 103541.CrossRefPubMedPubMedCentral Mohamed Abd-El-Halim Y, El Kaoutari A, Silvy F, Rubis M, Bigonnet M, Roques J, et al. A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. EBioMedicine. 2021;71: 103541.CrossRefPubMedPubMedCentral
35.
go back to reference Huang C, Zhou J, Wu S, Shan Y, Teng S, Yu L. Cloning and tissue distribution of the human B3GALT7 gene, a member of the beta1,3-Glycosyltransferase family. Glycoconj J. 2004;21(5):267–73.CrossRefPubMed Huang C, Zhou J, Wu S, Shan Y, Teng S, Yu L. Cloning and tissue distribution of the human B3GALT7 gene, a member of the beta1,3-Glycosyltransferase family. Glycoconj J. 2004;21(5):267–73.CrossRefPubMed
36.
go back to reference Seko A, Yamashita K. Characterization of a novel galactose beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T8): the complex formation of beta3Gn-T2 and beta3Gn-T8 enhances enzymatic activity. Glycobiology. 2005;15(10):943–51.CrossRefPubMed Seko A, Yamashita K. Characterization of a novel galactose beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T8): the complex formation of beta3Gn-T2 and beta3Gn-T8 enhances enzymatic activity. Glycobiology. 2005;15(10):943–51.CrossRefPubMed
37.
go back to reference Shen L, Liu Z, Tu Y, Xu L, Sun X, Wu S. Regulation of MMP-2 expression and activity by beta-1,3-N-acetylglucosaminyltransferase-8 in AGS gastric cancer cells. Mol Biol Rep. 2011;38(3):1541–50.CrossRefPubMed Shen L, Liu Z, Tu Y, Xu L, Sun X, Wu S. Regulation of MMP-2 expression and activity by beta-1,3-N-acetylglucosaminyltransferase-8 in AGS gastric cancer cells. Mol Biol Rep. 2011;38(3):1541–50.CrossRefPubMed
38.
go back to reference Wang S, Li Y, Xing C, Ding C, Zhang H, Chen L, et al. Tumor microenvironment in chemoresistance, Metastasis and immunotherapy of Pancreatic cancer. Am J Cancer Res. 2020;10(7):1937–53.PubMedPubMedCentral Wang S, Li Y, Xing C, Ding C, Zhang H, Chen L, et al. Tumor microenvironment in chemoresistance, Metastasis and immunotherapy of Pancreatic cancer. Am J Cancer Res. 2020;10(7):1937–53.PubMedPubMedCentral
39.
go back to reference Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the Tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.CrossRefPubMedPubMedCentral Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the Tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.CrossRefPubMedPubMedCentral
Metadata
Title
Comprehensive prognostic and immune analysis of a glycosylation related risk model in pancreatic cancer
Authors
XueAng Liu
Jian Shi
Lei Tian
Bin Xiao
Kai Zhang
Yan Zhu
YuFeng Zhang
KuiRong Jiang
Yi Zhu
Hao Yuan
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11725-1

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine