Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 3/2021

01-03-2021 | Pancreatic Cancer | Original Article

Antitumor activity and mechanism of resistance of the novel HDAC and PI3K dual inhibitor CUDC-907 in pancreatic cancer

Authors: Shuang Liu, Shoujing Zhao, Yang Dong, Tingting Wang, Xiaojia Niu, Lijing Zhao, Guan Wang

Published in: Cancer Chemotherapy and Pharmacology | Issue 3/2021

Login to get access

Abstract

Purpose

Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. The benefit of chemotherapy treatment for pancreatic cancer is very limited. Therefore, new therapeutic targets and approaches are urgently needed for this deadly disease. Multi-target therapy is a potential and feasible treatment strategy. Given the important roles that histone deacetylases (HDACs) and phosphoinositide-3-kinase (PI3K) play in pancreatic cancer, we investigated the antitumor activity and mechanism of novel HDAC and PI3K dual inhibitor CUDC-907 in pancreatic cancer.

Methods and results

MTT assay and flow cytometric analysis were used to examine the in vitro antitumor activity of CUDC-907. A BxPC-3-derived xenograft mouse model was used to determine CUDC-907 in vivo efficacy. The TUNEL assay as used to determine apoptosis in tumors in vivo post CUDC-907 treatment. Western blots were used to determine the effect of CUDC-907 on protein levels. Our results show that CUDC-907 decreased viable cells and induced cell death in a concentration-dependent manner. Furthermore, CUDC-907 showed promising in vivo antitumor activity in the BxPC-3-derived xenograft mouse model while exhibiting tolerable toxicity. Furthermore, long-term treatment with CUDC-907 induced phosphorylation of AKT, S6 (ribosomal protein S6), and ERK (extracellular regulated protein kinase), and inhibition of PI3K (phosphatidylinositol 3-kinase), mTOR (mammalian target of rapamycin), or ERK significantly enhanced CUDC-907-induced cell death in pancreatic cell lines.

Conclusion

Taken together, these findings support the clinical development of CUDC-907 for the treatment of pancreatic cancer and identify compensatory activation of mTOR and MEK/ERK as a possible mechanism of resistance to CUDC-907.
Literature
9.
go back to reference Baer R, Cintas C, Dufresne M, Cassant-Sourdy S, Schönhuber N, Planque L, Lulka H, Couderc B, Bousquet C, Garmy-Susini B, Vanhaesebroeck B, Pyronnet S, Saur D, Guillermet-Guibert J (2014) Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110α. Genes Dev 28(23):2621–2635. https://doi.org/10.1101/gad.249409.114CrossRefPubMedPubMedCentral Baer R, Cintas C, Dufresne M, Cassant-Sourdy S, Schönhuber N, Planque L, Lulka H, Couderc B, Bousquet C, Garmy-Susini B, Vanhaesebroeck B, Pyronnet S, Saur D, Guillermet-Guibert J (2014) Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110α. Genes Dev 28(23):2621–2635. https://​doi.​org/​10.​1101/​gad.​249409.​114CrossRefPubMedPubMedCentral
10.
go back to reference Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, Atoyan R, Qu H, Yin L, Samson M, Zifcak B, Ma AW, DellaRocca S, Borek M, Zhai HX, Cai X, Voi M (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res: An Off J The Am Assoc Cancer Res 18(15):4104–4113. https://doi.org/10.1158/1078-0432.ccr-12-0055CrossRef Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, Atoyan R, Qu H, Yin L, Samson M, Zifcak B, Ma AW, DellaRocca S, Borek M, Zhai HX, Cai X, Voi M (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clin Cancer Res: An Off J The Am Assoc Cancer Res 18(15):4104–4113. https://​doi.​org/​10.​1158/​1078-0432.​ccr-12-0055CrossRef
12.
go back to reference Younes A, Berdeja JG, Patel MR, Flinn I, Gerecitano JF, Neelapu SS, Kelly KR, Copeland AR, Akins A, Clancy MS, Gong L, Wang J, Ma A, Viner JL, Oki Y (2016) Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol 17(5):622–631. https://doi.org/10.1016/s1470-2045(15)00584-7CrossRefPubMedPubMedCentral Younes A, Berdeja JG, Patel MR, Flinn I, Gerecitano JF, Neelapu SS, Kelly KR, Copeland AR, Akins A, Clancy MS, Gong L, Wang J, Ma A, Viner JL, Oki Y (2016) Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol 17(5):622–631. https://​doi.​org/​10.​1016/​s1470-2045(15)00584-7CrossRefPubMedPubMedCentral
13.
go back to reference Fu XH, Zhang X, Yang H, Xu XW, Hu ZL, Yan J, Zheng XL, Wei RR, Zhang ZQ, Tang SR, Geng MY, Huang X (2019) CUDC-907 displays potent antitumor activity against human pancreatic adenocarcinoma in vitro and in vivo through inhibition of HDAC6 to downregulate c-Myc expression. Acta Pharmacol Sin 40(5):677–688. https://doi.org/10.1038/s41401-018-0108-5CrossRefPubMed Fu XH, Zhang X, Yang H, Xu XW, Hu ZL, Yan J, Zheng XL, Wei RR, Zhang ZQ, Tang SR, Geng MY, Huang X (2019) CUDC-907 displays potent antitumor activity against human pancreatic adenocarcinoma in vitro and in vivo through inhibition of HDAC6 to downregulate c-Myc expression. Acta Pharmacol Sin 40(5):677–688. https://​doi.​org/​10.​1038/​s41401-018-0108-5CrossRefPubMed
17.
go back to reference Hart S, Novotny-Diermayr V, Goh KC, Williams M, Tan YC, Ong LC, Cheong A, Ng BK, Amalini C, Madan B, Nagaraj H, Jayaraman R, Pasha KM, Ethirajulu K, Chng WJ, Mustafa N, Goh BC, Benes C, McDermott U, Garnett M, Dymock B, Wood JM (2013) VS-5584, a novel and highly selective PI3K/mTOR kinase inhibitor for the treatment of cancer. Mol Cancer Ther 12(2):151–161. https://doi.org/10.1158/1535-7163.mct-12-0466CrossRefPubMed Hart S, Novotny-Diermayr V, Goh KC, Williams M, Tan YC, Ong LC, Cheong A, Ng BK, Amalini C, Madan B, Nagaraj H, Jayaraman R, Pasha KM, Ethirajulu K, Chng WJ, Mustafa N, Goh BC, Benes C, McDermott U, Garnett M, Dymock B, Wood JM (2013) VS-5584, a novel and highly selective PI3K/mTOR kinase inhibitor for the treatment of cancer. Mol Cancer Ther 12(2):151–161. https://​doi.​org/​10.​1158/​1535-7163.​mct-12-0466CrossRefPubMed
18.
go back to reference Morris EJ, Jha S, Restaino CR, Dayananth P, Zhu H, Cooper A, Carr D, Deng Y, Jin W, Black S, Long B, Liu J, Dinunzio E, Windsor W, Zhang R, Zhao S, Angagaw MH, Pinheiro EM, Desai J, Xiao L, Shipps G, Hruza A, Wang J, Kelly J, Paliwal S, Gao X, Babu BS, Zhu L, Daublain P, Zhang L, Lutterbach BA, Pelletier MR, Philippar U, Siliphaivanh P, Witter D, Kirschmeier P, Bishop WR, Hicklin D, Gilliland DG, Jayaraman L, Zawel L, Fawell S, Samatar AA (2013) Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3(7):742–750. https://doi.org/10.1158/2159-8290.cd-13-0070CrossRefPubMed Morris EJ, Jha S, Restaino CR, Dayananth P, Zhu H, Cooper A, Carr D, Deng Y, Jin W, Black S, Long B, Liu J, Dinunzio E, Windsor W, Zhang R, Zhao S, Angagaw MH, Pinheiro EM, Desai J, Xiao L, Shipps G, Hruza A, Wang J, Kelly J, Paliwal S, Gao X, Babu BS, Zhu L, Daublain P, Zhang L, Lutterbach BA, Pelletier MR, Philippar U, Siliphaivanh P, Witter D, Kirschmeier P, Bishop WR, Hicklin D, Gilliland DG, Jayaraman L, Zawel L, Fawell S, Samatar AA (2013) Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3(7):742–750. https://​doi.​org/​10.​1158/​2159-8290.​cd-13-0070CrossRefPubMed
20.
25.
go back to reference Schwartz S, Wongvipat J, Trigwell CB, Hancox U, Carver BS, Rodrik-Outmezguine V, Will M, Yellen P, de Stanchina E, Baselga J, Scher HI, Barry ST, Sawyers CL, Chandarlapaty S, Rosen N (2015) Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ. Cancer Cell 27(1):109–122. https://doi.org/10.1016/j.ccell.2014.11.008CrossRefPubMed Schwartz S, Wongvipat J, Trigwell CB, Hancox U, Carver BS, Rodrik-Outmezguine V, Will M, Yellen P, de Stanchina E, Baselga J, Scher HI, Barry ST, Sawyers CL, Chandarlapaty S, Rosen N (2015) Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ. Cancer Cell 27(1):109–122. https://​doi.​org/​10.​1016/​j.​ccell.​2014.​11.​008CrossRefPubMed
Metadata
Title
Antitumor activity and mechanism of resistance of the novel HDAC and PI3K dual inhibitor CUDC-907 in pancreatic cancer
Authors
Shuang Liu
Shoujing Zhao
Yang Dong
Tingting Wang
Xiaojia Niu
Lijing Zhao
Guan Wang
Publication date
01-03-2021
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 3/2021
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-020-04210-0

Other articles of this Issue 3/2021

Cancer Chemotherapy and Pharmacology 3/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine