Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2024

Open Access 01-12-2024 | Overweight | Research

The potential impact fraction of population weight reduction scenarios on non-communicable diseases in Belgium: application of the g-computation approach

Authors: Ingrid Pelgrims, Brecht Devleesschauwer, Stefanie Vandevijvere, Eva M. De Clercq, Johan Van der Heyden, Stijn Vansteelandt

Published in: BMC Medical Research Methodology | Issue 1/2024

Login to get access

Abstract

Background

Overweight is a major risk factor for non-communicable diseases (NCDs) in Europe, affecting almost 60% of all adults. Tackling obesity is therefore a key long-term health challenge and is vital to reduce premature mortality from NCDs. Methodological challenges remain however, to provide actionable evidence on the potential health benefits of population weight reduction interventions. This study aims to use a g-computation approach to assess the impact of hypothetical weight reduction scenarios on NCDs in Belgium in a multi-exposure context.

Methods

Belgian health interview survey data (2008/2013/2018, n = 27 536) were linked to environmental data at the residential address. A g-computation approach was used to evaluate the potential impact fraction (PIF) of population weight reduction scenarios on four NCDs: diabetes, hypertension, cardiovascular disease (CVD), and musculoskeletal (MSK) disease. Four scenarios were considered: 1) a distribution shift where, for each individual with overweight, a counterfactual weight was drawn from the distribution of individuals with a “normal” BMI 2) a one-unit reduction of the BMI of individuals with overweight, 3) a modification of the BMI of individuals with overweight based on a weight loss of 10%, 4) a reduction of the waist circumference (WC) to half of the height among all people with a WC:height ratio greater than 0.5. Regression models were adjusted for socio-demographic, lifestyle, and environmental factors.

Results

The first scenario resulted in preventing a proportion of cases ranging from 32.3% for diabetes to 6% for MSK diseases. The second scenario prevented a proportion of cases ranging from 4.5% for diabetes to 0.8% for MSK diseases. The third scenario prevented a proportion of cases, ranging from 13.6% for diabetes to 2.4% for MSK diseases and the fourth scenario prevented a proportion of cases ranging from 36.4% for diabetes to 7.1% for MSK diseases.

Conclusion

Implementing weight reduction scenarios among individuals with excess weight could lead to a substantial and statistically significant decrease in the prevalence of diabetes, hypertension, cardiovascular disease (CVD), and musculoskeletal (MSK) diseases in Belgium. The g-computation approach to assess PIF of interventions represents a straightforward approach for drawing causal inferences from observational data while providing useful information for policy makers.
Appendix
Available only for authorised users
Literature
2.
go back to reference Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.CrossRef Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.CrossRef
3.
go back to reference Drieskens S, Charafeddine R, Gisle L. Enquête de santé 2018 : Etat nutritionnel. Bruxelles, Belgique : Sciensano [Internet]. Report No.: D/2019/14.440/62. Available from: www.enquetesante.be. Cited 2024 Apr 8. Drieskens S, Charafeddine R, Gisle L. Enquête de santé 2018 : Etat nutritionnel. Bruxelles, Belgique : Sciensano [Internet]. Report No.: D/2019/14.440/62. Available from: www.​enquetesante.​be. Cited 2024 Apr 8.
5.
go back to reference Pang M, Kaufman JS, Platt RW. Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models. Stat Methods Med Res. 2016;25(5):1925–37.PubMedCrossRef Pang M, Kaufman JS, Platt RW. Studying noncollapsibility of the odds ratio with marginal structural and logistic regression models. Stat Methods Med Res. 2016;25(5):1925–37.PubMedCrossRef
6.
go back to reference Levin ML. The occurrence of lung cancer in man. Acta Unio Int Contra Cancrum. 1953;9(3):531–41.PubMed Levin ML. The occurrence of lung cancer in man. Acta Unio Int Contra Cancrum. 1953;9(3):531–41.PubMed
7.
go back to reference Mansournia MA, Altman DG. Population attributable fraction. BMJ. 2018;22(360):k757.CrossRef Mansournia MA, Altman DG. Population attributable fraction. BMJ. 2018;22(360):k757.CrossRef
8.
go back to reference Eide GE. Attributable fractions for partitioning risk and evaluating disease prevention: a practical guide. Clin Respir J. 2008;2(s1):92–103.PubMedCrossRef Eide GE. Attributable fractions for partitioning risk and evaluating disease prevention: a practical guide. Clin Respir J. 2008;2(s1):92–103.PubMedCrossRef
9.
go back to reference Nusselder WJ, Looman CWN. Decomposition of differences in health expectancy by cause. Demography. 2004;41(2):315–34.PubMedCrossRef Nusselder WJ, Looman CWN. Decomposition of differences in health expectancy by cause. Demography. 2004;41(2):315–34.PubMedCrossRef
10.
go back to reference Rückinger S, von Kries R, Toschke AM. An illustration of and programs estimating attributable fractions in large scale surveys considering multiple risk factors. BMC Med Res Methodol. 2009;23(9):7.CrossRef Rückinger S, von Kries R, Toschke AM. An illustration of and programs estimating attributable fractions in large scale surveys considering multiple risk factors. BMC Med Res Methodol. 2009;23(9):7.CrossRef
11.
go back to reference Rothman KJ, Greenland S. Causation and Causal Inference in Epidemiology. Am J Public Health. 2005;95(S1):S144–50.PubMedCrossRef Rothman KJ, Greenland S. Causation and Causal Inference in Epidemiology. Am J Public Health. 2005;95(S1):S144–50.PubMedCrossRef
12.
go back to reference Greenland S. Concepts and pitfalls in measuring and interpreting attributable fractions, prevented fractions, and causation probabilities. Ann Epidemiol. 2015;25(3):155–61.PubMedCrossRef Greenland S. Concepts and pitfalls in measuring and interpreting attributable fractions, prevented fractions, and causation probabilities. Ann Epidemiol. 2015;25(3):155–61.PubMedCrossRef
13.
go back to reference Greenland S, Robins JM. Conceptual problems in the definition and interpretation of attributable fractions. Am J Epidemiol. 1988;128(6):1185–97.PubMedCrossRef Greenland S, Robins JM. Conceptual problems in the definition and interpretation of attributable fractions. Am J Epidemiol. 1988;128(6):1185–97.PubMedCrossRef
14.
go back to reference Morgenstern H, Bursic ES. A method for using epidemiologic data to estimate the potential impact of an intervention on the health status of a target population. J Community Health. 1982;7(4):292–309.PubMedCrossRef Morgenstern H, Bursic ES. A method for using epidemiologic data to estimate the potential impact of an intervention on the health status of a target population. J Community Health. 1982;7(4):292–309.PubMedCrossRef
15.
go back to reference Saatchi M, Mansournia MA, Khalili D, Daroudi R, Yazdani K. Estimation of Generalized Impact Fraction and Population Attributable Fraction of Hypertension Based on JNC-IV and 2017 ACC/AHA Guidelines for Cardiovascular Diseases Using Parametric G-Formula: Tehran Lipid and Glucose Study (TLGS). Risk Manag Healthc Policy. 2020;5(13):1015–28.CrossRef Saatchi M, Mansournia MA, Khalili D, Daroudi R, Yazdani K. Estimation of Generalized Impact Fraction and Population Attributable Fraction of Hypertension Based on JNC-IV and 2017 ACC/AHA Guidelines for Cardiovascular Diseases Using Parametric G-Formula: Tehran Lipid and Glucose Study (TLGS). Risk Manag Healthc Policy. 2020;5(13):1015–28.CrossRef
16.
go back to reference Drescher K, Becher H. Estimating the generalized impact fraction from case-control data. Biometrics. 1997;53(3):1170–6.PubMedCrossRef Drescher K, Becher H. Estimating the generalized impact fraction from case-control data. Biometrics. 1997;53(3):1170–6.PubMedCrossRef
17.
go back to reference Khosravi A, Mansournia MA. Recommendation on unbiased estimation of population attributable fraction calculated in “prevalence and risk factors of active pulmonary tuberculosis among elderly people in China: a population based cross-sectional study.” Infect Dis Poverty. 2019;8(1):75.PubMedPubMedCentralCrossRef Khosravi A, Mansournia MA. Recommendation on unbiased estimation of population attributable fraction calculated in “prevalence and risk factors of active pulmonary tuberculosis among elderly people in China: a population based cross-sectional study.” Infect Dis Poverty. 2019;8(1):75.PubMedPubMedCentralCrossRef
19.
go back to reference Robins JM, Hernán MÁ, Brumback B. Marginal Structural Models and Causal Inference in Epidemiology. Epidemiology. 2000;11(5):550.PubMedCrossRef Robins JM, Hernán MÁ, Brumback B. Marginal Structural Models and Causal Inference in Epidemiology. Epidemiology. 2000;11(5):550.PubMedCrossRef
21.
go back to reference Breskin A, Edmonds A, Cole SR, Westreich D, Cocohoba J, Cohen MH, et al. G-computation for policy-relevant effects of interventions on time-to-event outcomes. Int J Epidemiol. 2020;49(6):2021–9.PubMedCentralCrossRef Breskin A, Edmonds A, Cole SR, Westreich D, Cocohoba J, Cohen MH, et al. G-computation for policy-relevant effects of interventions on time-to-event outcomes. Int J Epidemiol. 2020;49(6):2021–9.PubMedCentralCrossRef
23.
go back to reference Igelström E, Craig P, Lewsey J, Lynch J, Pearce A, Katikireddi SV. Causal inference and effect estimation using observational data. J Epidemiol Community Health. 2022;76(11):960–6.CrossRef Igelström E, Craig P, Lewsey J, Lynch J, Pearce A, Katikireddi SV. Causal inference and effect estimation using observational data. J Epidemiol Community Health. 2022;76(11):960–6.CrossRef
24.
go back to reference Palazzo C, Yokota RTC, Ferguson J, Tafforeau J, Ravaud JF, Van Oyen H, et al. Methods to assess the contribution of diseases to disability using cross-sectional studies: comparison of different versions of the attributable fraction and the attribution method. Int J Epidemiol. 2019;48(2):559–70.PubMedCrossRef Palazzo C, Yokota RTC, Ferguson J, Tafforeau J, Ravaud JF, Van Oyen H, et al. Methods to assess the contribution of diseases to disability using cross-sectional studies: comparison of different versions of the attributable fraction and the attribution method. Int J Epidemiol. 2019;48(2):559–70.PubMedCrossRef
25.
go back to reference Robins J. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Math Model. 1986;7(9):1393–512.CrossRef Robins J. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Math Model. 1986;7(9):1393–512.CrossRef
26.
go back to reference Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48.PubMedCrossRef Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48.PubMedCrossRef
27.
go back to reference Robins J, Hernan M. Estimation of the causal effects of time-varying exposure. In: Longitudinal data analysis. 2008. p. 553–99.CrossRef Robins J, Hernan M. Estimation of the causal effects of time-varying exposure. In: Longitudinal data analysis. 2008. p. 553–99.CrossRef
28.
go back to reference Ahern J, Hubbard A, Galea S. Estimating the effects of potential public health interventions on population disease burden: a step-by-step illustration of causal inference methods. Am J Epidemiol. 2009;169(9):1140–7.PubMedPubMedCentralCrossRef Ahern J, Hubbard A, Galea S. Estimating the effects of potential public health interventions on population disease burden: a step-by-step illustration of causal inference methods. Am J Epidemiol. 2009;169(9):1140–7.PubMedPubMedCentralCrossRef
29.
go back to reference Little RJ, Rubin DB. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annu Rev Public Health. 2000;21(1):121–45.PubMedCrossRef Little RJ, Rubin DB. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches. Annu Rev Public Health. 2000;21(1):121–45.PubMedCrossRef
30.
go back to reference Hubbard AE, Laan MJVD. Population intervention models in causal inference. Biometrika. 2008;95(1):35–47.PubMedCrossRef Hubbard AE, Laan MJVD. Population intervention models in causal inference. Biometrika. 2008;95(1):35–47.PubMedCrossRef
31.
go back to reference Snowden JM, Rose S, Mortimer KM. Implementation of G-Computation on a Simulated Data Set: Demonstration of a Causal Inference Technique. Am J Epidemiol. 2011;173(7):731–8.PubMedPubMedCentralCrossRef Snowden JM, Rose S, Mortimer KM. Implementation of G-Computation on a Simulated Data Set: Demonstration of a Causal Inference Technique. Am J Epidemiol. 2011;173(7):731–8.PubMedPubMedCentralCrossRef
32.
go back to reference Taubman SL, Robins JM, Mittleman MA, Hernán MA. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. Int J Epidemiol. 2009;38(6):1599–611.PubMedPubMedCentralCrossRef Taubman SL, Robins JM, Mittleman MA, Hernán MA. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. Int J Epidemiol. 2009;38(6):1599–611.PubMedPubMedCentralCrossRef
34.
go back to reference Garcia-Aymerich J, Varraso R, Danaei G, Camargo Carlos A, Hernán MA Jr. Incidence of Adult-onset Asthma After Hypothetical Interventions on Body Mass Index and Physical Activity: An Application of the Parametric G-Formula. Am J Epidemiol. 2014;179(1):20–6.PubMedCrossRef Garcia-Aymerich J, Varraso R, Danaei G, Camargo Carlos A, Hernán MA Jr. Incidence of Adult-onset Asthma After Hypothetical Interventions on Body Mass Index and Physical Activity: An Application of the Parametric G-Formula. Am J Epidemiol. 2014;179(1):20–6.PubMedCrossRef
35.
go back to reference Jurek AM, Maldonado G, Greenland S, Church TR. Exposure-measurement error is frequently ignored when interpreting epidemiologic study results. Eur J Epidemiol. 2006;21(12):871–6.PubMedCrossRef Jurek AM, Maldonado G, Greenland S, Church TR. Exposure-measurement error is frequently ignored when interpreting epidemiologic study results. Eur J Epidemiol. 2006;21(12):871–6.PubMedCrossRef
36.
go back to reference Shaw PA, Deffner V, Keogh RH, Tooze JA, Dodd KW, Küchenhoff H, et al. Epidemiologic analyses with error-prone exposures: review of current practice and recommendations. Ann Epidemiol. 2018;28(11):821–8.PubMedPubMedCentralCrossRef Shaw PA, Deffner V, Keogh RH, Tooze JA, Dodd KW, Küchenhoff H, et al. Epidemiologic analyses with error-prone exposures: review of current practice and recommendations. Ann Epidemiol. 2018;28(11):821–8.PubMedPubMedCentralCrossRef
37.
go back to reference Pelgrims I, Devleesschauwer B, Vandevijvere S, De Clercq EM, Vansteelandt S, Gorasso V, et al. Using random-forest multiple imputation to address bias of self-reported anthropometric measures, hypertension and hypercholesterolemia in the Belgian health interview survey. BMC Med Res Methodol. 2023;23(1):69.PubMedPubMedCentralCrossRef Pelgrims I, Devleesschauwer B, Vandevijvere S, De Clercq EM, Vansteelandt S, Gorasso V, et al. Using random-forest multiple imputation to address bias of self-reported anthropometric measures, hypertension and hypercholesterolemia in the Belgian health interview survey. BMC Med Res Methodol. 2023;23(1):69.PubMedPubMedCentralCrossRef
38.
go back to reference Demarest S, Van der Heyden J, Charafeddine R, Drieskens S, Gisle L, Tafforeau J. Methodological basics and evolution of the Belgian health interview survey 1997–2008. Arch Public Health. 2013;71(1):24.PubMedPubMedCentralCrossRef Demarest S, Van der Heyden J, Charafeddine R, Drieskens S, Gisle L, Tafforeau J. Methodological basics and evolution of the Belgian health interview survey 1997–2008. Arch Public Health. 2013;71(1):24.PubMedPubMedCentralCrossRef
40.
go back to reference Nguyen D, Hautekiet P, Berete F, Braekman E, Charafeddine R, Demarest S, et al. The Belgian health examination survey: objectives, design and methods. Arch Public Health. 2020;78(1):50.PubMedPubMedCentralCrossRef Nguyen D, Hautekiet P, Berete F, Braekman E, Charafeddine R, Demarest S, et al. The Belgian health examination survey: objectives, design and methods. Arch Public Health. 2020;78(1):50.PubMedPubMedCentralCrossRef
42.
go back to reference Janssen Nicole AH, Hoek G, Simic-Lawson M, Fischer P, van Bree L, Ten Brink H, et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ Health Perspect. 2011;119(12):1691–9.PubMedPubMedCentralCrossRef Janssen Nicole AH, Hoek G, Simic-Lawson M, Fischer P, van Bree L, Ten Brink H, et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ Health Perspect. 2011;119(12):1691–9.PubMedPubMedCentralCrossRef
43.
go back to reference Janssen S, Dumont G, Fierens F, Mensink C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos Environ. 2008;42(20):4884–903.CrossRef Janssen S, Dumont G, Fierens F, Mensink C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos Environ. 2008;42(20):4884–903.CrossRef
44.
go back to reference Lefebvre W, Vranckx S. Validation of the IFDM-model for use in urban applications. 2013. p. 208. Lefebvre W, Vranckx S. Validation of the IFDM-model for use in urban applications. 2013. p. 208.
47.
go back to reference Basner M, McGuire S. WHO Environmental Noise Guidelines for the European Region: a systematic review on environmental noise and effects on sleep. Int J Environ Res Public Health. 2018;15(3):519.PubMedPubMedCentralCrossRef Basner M, McGuire S. WHO Environmental Noise Guidelines for the European Region: a systematic review on environmental noise and effects on sleep. Int J Environ Res Public Health. 2018;15(3):519.PubMedPubMedCentralCrossRef
53.
go back to reference Wise J. Advise adults to keep waist size to less than half their height, says NICE. BMJ. 2022;8(377):o933.CrossRef Wise J. Advise adults to keep waist size to less than half their height, says NICE. BMJ. 2022;8(377):o933.CrossRef
54.
go back to reference Arif S, MacNeil MA. Predictive models aren’t for causal inference. Ecology Letters. 2022;25(8):1741–5. Arif S, MacNeil MA. Predictive models aren’t for causal inference. Ecology Letters. 2022;25(8):1741–5.
55.
go back to reference Campion WM, Rubin D. Multiple Imputation for Nonresponse in Surveys. 1989. Campion WM, Rubin D. Multiple Imputation for Nonresponse in Surveys. 1989.
56.
go back to reference Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman&Hall/CRC; 2020. Hernan MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman&Hall/CRC; 2020.
60.
go back to reference Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129(25 Suppl 2):S102-138.PubMed Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129(25 Suppl 2):S102-138.PubMed
61.
go back to reference Garvey WT. New tools for weight-loss therapy enable a more robust medical model for obesity treatment: rationale for a complications-centric approach. Endocr Pract. 2013;19(5):864–74.PubMedPubMedCentralCrossRef Garvey WT. New tools for weight-loss therapy enable a more robust medical model for obesity treatment: rationale for a complications-centric approach. Endocr Pract. 2013;19(5):864–74.PubMedPubMedCentralCrossRef
62.
go back to reference Wharton S, Lau DCW, Vallis M, Sharma AM, Biertho L, Campbell-Scherer D, et al. Obesity in adults: a clinical practice guideline. CMAJ. 2020;192(31):E875–91.PubMedPubMedCentralCrossRef Wharton S, Lau DCW, Vallis M, Sharma AM, Biertho L, Campbell-Scherer D, et al. Obesity in adults: a clinical practice guideline. CMAJ. 2020;192(31):E875–91.PubMedPubMedCentralCrossRef
63.
go back to reference Schwingshackl L, Dias S, Hoffmann G. Impact of long-term lifestyle programmes on weight loss and cardiovascular risk factors in overweight/obese participants: a systematic review and network meta-analysis. Syst Rev. 2014;3(1):130.PubMedPubMedCentralCrossRef Schwingshackl L, Dias S, Hoffmann G. Impact of long-term lifestyle programmes on weight loss and cardiovascular risk factors in overweight/obese participants: a systematic review and network meta-analysis. Syst Rev. 2014;3(1):130.PubMedPubMedCentralCrossRef
64.
go back to reference Von Cube M, Schumacher M, Timsit JF, Decruyenaere J, Steen J. The population-attributable fraction for time-to-event data. Int J Epidemiol. 2023;52(3):837–45.CrossRef Von Cube M, Schumacher M, Timsit JF, Decruyenaere J, Steen J. The population-attributable fraction for time-to-event data. Int J Epidemiol. 2023;52(3):837–45.CrossRef
65.
go back to reference Haase CL, Lopes S, Olsen AH, Satylganova A, Schnecke V, McEwan P. Weight loss and risk reduction of obesity-related outcomes in 0.5 million people: evidence from a UK primary care database. Int J Obes. 2021;45(6):1249–58.CrossRef Haase CL, Lopes S, Olsen AH, Satylganova A, Schnecke V, McEwan P. Weight loss and risk reduction of obesity-related outcomes in 0.5 million people: evidence from a UK primary care database. Int J Obes. 2021;45(6):1249–58.CrossRef
67.
go back to reference Cole SR, Frangakis CE. The Consistency Statement in Causal Inference: A Definition or an Assumption? Epidemiology. 2009;20(1):3.PubMedCrossRef Cole SR, Frangakis CE. The Consistency Statement in Causal Inference: A Definition or an Assumption? Epidemiology. 2009;20(1):3.PubMedCrossRef
68.
go back to reference Hernán MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions to answer causal questions. Int J Obes (Lond). 2008;32(Suppl 3):S8-14.PubMedCrossRef Hernán MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions to answer causal questions. Int J Obes (Lond). 2008;32(Suppl 3):S8-14.PubMedCrossRef
69.
go back to reference Bertoli S, Leone A, Krakauer NY, Bedogni G, Vanzulli A, Redaelli VI, et al. Association of Body Shape Index (ABSI) with cardio-metabolic risk factors: a cross-sectional study of 6081 Caucasian adults. PLoS One. 2017;12(9):e0185013.PubMedPubMedCentralCrossRef Bertoli S, Leone A, Krakauer NY, Bedogni G, Vanzulli A, Redaelli VI, et al. Association of Body Shape Index (ABSI) with cardio-metabolic risk factors: a cross-sectional study of 6081 Caucasian adults. PLoS One. 2017;12(9):e0185013.PubMedPubMedCentralCrossRef
70.
go back to reference Kueh MTW, Chew NWS, Al-Ozairi E, le Roux CW. The emergence of obesity in type 1 diabetes. Int J Obes (Lond). 2024;48(3):289–301.PubMedCrossRef Kueh MTW, Chew NWS, Al-Ozairi E, le Roux CW. The emergence of obesity in type 1 diabetes. Int J Obes (Lond). 2024;48(3):289–301.PubMedCrossRef
Metadata
Title
The potential impact fraction of population weight reduction scenarios on non-communicable diseases in Belgium: application of the g-computation approach
Authors
Ingrid Pelgrims
Brecht Devleesschauwer
Stefanie Vandevijvere
Eva M. De Clercq
Johan Van der Heyden
Stijn Vansteelandt
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Overweight
Published in
BMC Medical Research Methodology / Issue 1/2024
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-024-02212-7

Other articles of this Issue 1/2024

BMC Medical Research Methodology 1/2024 Go to the issue