Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2024

Open Access 01-12-2024 | Research

Two-step spatiotemporal anomaly detection corrected for lag reporting time with application to real-time dengue surveillance in Thailand

Authors: Chawarat Rotejanaprasert, Darin Areechokchai, Richard J. Maude

Published in: BMC Medical Research Methodology | Issue 1/2024

Login to get access

Abstract

Background

Dengue infection ranges from asymptomatic to severe and life-threatening, with no specific treatment available. Vector control is crucial for interrupting its transmission cycle. Accurate estimation of outbreak timing and location is essential for efficient resource allocation. Timely and reliable notification systems are necessary to monitor dengue incidence, including spatial and temporal distributions, to detect outbreaks promptly and implement effective control measures.

Methods

We proposed an integrated two-step methodology for real-time spatiotemporal cluster detection, accounting for reporting delays. In the first step, we employed space-time nowcasting modeling to compensate for lags in the reporting system. Subsequently, anomaly detection methods were applied to assess adverse risks. To illustrate the effectiveness of these detection methods, we conducted a case study using weekly dengue surveillance data from Thailand.

Results

The developed methodology demonstrated robust surveillance effectiveness. By combining space-time nowcasting modeling and anomaly detection, we achieved enhanced detection capabilities, accounting for reporting delays and identifying clusters of elevated risk in real-time. The case study in Thailand showcased the practical application of our methodology, enabling timely initiation of disease control activities.

Conclusion

Our integrated two-step methodology provides a valuable approach for real-time spatiotemporal cluster detection in dengue surveillance. By addressing reporting delays and incorporating anomaly detection, it complements existing surveillance systems and forecasting efforts. Implementing this methodology can facilitate the timely initiation of disease control activities, contributing to more effective prevention and control strategies for dengue in Thailand and potentially other regions facing similar challenges.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Thawillarp S, Castillo-Salgado C, Lehmann HP. Evaluation of early aberration reporting system for Dengue Outbreak Detection in Thailand. OSIR J. 2018;11(4):1–6.CrossRef Thawillarp S, Castillo-Salgado C, Lehmann HP. Evaluation of early aberration reporting system for Dengue Outbreak Detection in Thailand. OSIR J. 2018;11(4):1–6.CrossRef
4.
go back to reference Clark DV, Mammen MP Jr, Nisalak A, Puthimethee V, Endy TP. Economic impact of dengue fever/dengue hemorrhagic fever in Thailand at the family and population levels. Am J Trop Med Hyg. 2005;72(6):786–91.CrossRefPubMed Clark DV, Mammen MP Jr, Nisalak A, Puthimethee V, Endy TP. Economic impact of dengue fever/dengue hemorrhagic fever in Thailand at the family and population levels. Am J Trop Med Hyg. 2005;72(6):786–91.CrossRefPubMed
5.
go back to reference Raafat N, Blacksell SD, Maude RJ. A review of dengue diagnostics and implications for surveillance and control. Trans R Soc Trop Med Hyg. 2019;113(11):653–60.CrossRefPubMedPubMedCentral Raafat N, Blacksell SD, Maude RJ. A review of dengue diagnostics and implications for surveillance and control. Trans R Soc Trop Med Hyg. 2019;113(11):653–60.CrossRefPubMedPubMedCentral
6.
go back to reference Bastos LS, Economou T, Gomes MFC, Villela DAM, Coelho FC, Cruz OG, et al. A modelling approach for correcting reporting delays in disease surveillance data. Stat Med. 2019;38(22):4363–77.CrossRefPubMedPubMedCentral Bastos LS, Economou T, Gomes MFC, Villela DAM, Coelho FC, Cruz OG, et al. A modelling approach for correcting reporting delays in disease surveillance data. Stat Med. 2019;38(22):4363–77.CrossRefPubMedPubMedCentral
7.
go back to reference Lin H, Yip PS, Huggins RM. A double-nonparametric procedure for estimating the number of delay‐reported cases. Stat Med. 2008;27(17):3325–39.CrossRefPubMed Lin H, Yip PS, Huggins RM. A double-nonparametric procedure for estimating the number of delay‐reported cases. Stat Med. 2008;27(17):3325–39.CrossRefPubMed
8.
go back to reference Stoner O, Economou T. Multivariate hierarchical frameworks for modeling delayed reporting in count data. Biometrics. 2019. Stoner O, Economou T. Multivariate hierarchical frameworks for modeling delayed reporting in count data. Biometrics. 2019.
9.
go back to reference Salmon M, Schumacher D, Stark K, Höhle M. Bayesian outbreak detection in the presence of reporting delays. Biom J. 2015;57(6):1051–67.CrossRefPubMed Salmon M, Schumacher D, Stark K, Höhle M. Bayesian outbreak detection in the presence of reporting delays. Biom J. 2015;57(6):1051–67.CrossRefPubMed
10.
go back to reference McGough SF, Johansson MA, Lipsitch M, Menzies NA. Nowcasting by bayesian smoothing: a flexible, generalizable model for real-time epidemic tracking. PLoS Comput Biol. 2020;16(4):e1007735.CrossRefPubMedPubMedCentral McGough SF, Johansson MA, Lipsitch M, Menzies NA. Nowcasting by bayesian smoothing: a flexible, generalizable model for real-time epidemic tracking. PLoS Comput Biol. 2020;16(4):e1007735.CrossRefPubMedPubMedCentral
11.
go back to reference Rotejanaprasert C, Ekapirat N, Areechokchai D, Maude RJ. Bayesian spatiotemporal modeling with sliding windows to correct reporting delays for real-time dengue surveillance in Thailand. Int J Health Geogr. 2020;19(1):1–13.CrossRef Rotejanaprasert C, Ekapirat N, Areechokchai D, Maude RJ. Bayesian spatiotemporal modeling with sliding windows to correct reporting delays for real-time dengue surveillance in Thailand. Int J Health Geogr. 2020;19(1):1–13.CrossRef
12.
go back to reference Osterholm MT, Hedberg CW. 13 - epidemiologic principles. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of Infectious diseases (Eighth Edition). Philadelphia: W.B. Saunders; 2015. 146 – 57.e2. Osterholm MT, Hedberg CW. 13 - epidemiologic principles. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of Infectious diseases (Eighth Edition). Philadelphia: W.B. Saunders; 2015. 146 – 57.e2.
13.
go back to reference Rotejanaprasert C, Lawson A. Bayesian prospective detection of small area health anomalies using kullback–leibler divergence. Stat Methods Med Res. 2018;27(4):1076–87.CrossRefPubMed Rotejanaprasert C, Lawson A. Bayesian prospective detection of small area health anomalies using kullback–leibler divergence. Stat Methods Med Res. 2018;27(4):1076–87.CrossRefPubMed
14.
go back to reference Rotejanaprasert C, Lawson AB. A bayesian quantile modeling for spatiotemporal relative risk: an application to adverse risk detection of respiratory diseases in South Carolina, USA. Int J Environ Res Public Health. 2018;15(9):2042.CrossRefPubMedPubMedCentral Rotejanaprasert C, Lawson AB. A bayesian quantile modeling for spatiotemporal relative risk: an application to adverse risk detection of respiratory diseases in South Carolina, USA. Int J Environ Res Public Health. 2018;15(9):2042.CrossRefPubMedPubMedCentral
15.
go back to reference Lawson AB, Banerjee S, Haining RP, Ugarte MD. Handbook of spatial epidemiology. CRC Press; 2016. Lawson AB, Banerjee S, Haining RP, Ugarte MD. Handbook of spatial epidemiology. CRC Press; 2016.
16.
go back to reference Aswi A, Cramb S, Moraga P, Mengersen K. Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review. Epidemiol Infect. 2019;147. Aswi A, Cramb S, Moraga P, Mengersen K. Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review. Epidemiol Infect. 2019;147.
17.
go back to reference Rotejanaprasert C, Lawpoolsri S, Pan-Ngum W, Maude RJ. Preliminary estimation of temporal and spatiotemporal dynamic measures of COVID-19 transmission in Thailand. PLoS ONE. 2020;15(9):e0239645.CrossRefPubMedPubMedCentral Rotejanaprasert C, Lawpoolsri S, Pan-Ngum W, Maude RJ. Preliminary estimation of temporal and spatiotemporal dynamic measures of COVID-19 transmission in Thailand. PLoS ONE. 2020;15(9):e0239645.CrossRefPubMedPubMedCentral
18.
go back to reference Rotejanaprasert C, Lawson AB, Iamsirithaworn S. Spatiotemporal multi-disease transmission dynamic measure for emerging diseases: an application to dengue and zika integrated surveillance in Thailand. BMC Med Res Methodol. 2019;19(1):1–11.CrossRef Rotejanaprasert C, Lawson AB, Iamsirithaworn S. Spatiotemporal multi-disease transmission dynamic measure for emerging diseases: an application to dengue and zika integrated surveillance in Thailand. BMC Med Res Methodol. 2019;19(1):1–11.CrossRef
19.
go back to reference Besag J, York J, Mollié A. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math. 1991;43(1):1–20.CrossRef Besag J, York J, Mollié A. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math. 1991;43(1):1–20.CrossRef
20.
go back to reference Ver Hoef JM, Boveng PL. Quasi-poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology. 2007;88(11):2766–72.CrossRefPubMed Ver Hoef JM, Boveng PL. Quasi-poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology. 2007;88(11):2766–72.CrossRefPubMed
21.
go back to reference Joe H, Zhu R. Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution. Biometrical Journal: Journal of Mathematical Methods in Biosciences. 2005;47(2):219–29.CrossRef Joe H, Zhu R. Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution. Biometrical Journal: Journal of Mathematical Methods in Biosciences. 2005;47(2):219–29.CrossRef
22.
go back to reference Harris T, Yang Z, Hardin JW. Modeling underdispersed count data with generalized Poisson regression. Stata J. 2012;12(4):736–47.CrossRef Harris T, Yang Z, Hardin JW. Modeling underdispersed count data with generalized Poisson regression. Stata J. 2012;12(4):736–47.CrossRef
23.
go back to reference Consul PC, Jain GC. A generalization of the Poisson distribution. Technometrics. 1973;15(4):791–9.CrossRef Consul PC, Jain GC. A generalization of the Poisson distribution. Technometrics. 1973;15(4):791–9.CrossRef
24.
go back to reference Zamani H, Ismail N. Functional form for the generalized Poisson regression model. Commun Statistics-Theory Methods. 2012;41(20):3666–75.CrossRef Zamani H, Ismail N. Functional form for the generalized Poisson regression model. Commun Statistics-Theory Methods. 2012;41(20):3666–75.CrossRef
25.
go back to reference Besag J, Newell J. The detection of clusters in rare diseases. J Royal Stat Society: Ser (Statistics Society). 1991;154(1):143–55.CrossRef Besag J, Newell J. The detection of clusters in rare diseases. J Royal Stat Society: Ser (Statistics Society). 1991;154(1):143–55.CrossRef
26.
go back to reference Kulldorff M. A spatial scan statistic. Commun Statistics-Theory Methods. 1997;26(6):1481–96.CrossRef Kulldorff M. A spatial scan statistic. Commun Statistics-Theory Methods. 1997;26(6):1481–96.CrossRef
27.
go back to reference Kulldorff M. Spatial scan statistics: models, calculations, and applications. Scan statistics and applications: Springer; 1999. pp. 303–22.CrossRef Kulldorff M. Spatial scan statistics: models, calculations, and applications. Scan statistics and applications: Springer; 1999. pp. 303–22.CrossRef
28.
go back to reference Kulldorff M. SaTScan (TM) v7. 0: Software for the spatial and space-time scan statistics. Information Management Services, Inc) Available at http://satscan org [Verified 5 October 2009]. 2006. Kulldorff M. SaTScan (TM) v7. 0: Software for the spatial and space-time scan statistics. Information Management Services, Inc) Available at http://​satscan org [Verified 5 October 2009]. 2006.
29.
go back to reference Kim A, Wakefield J. A bayesian method for cluster detection with application to five cancer sites in Puget Sound. Epidemiol (Cambridge Mass). 2016;27(3):347.CrossRef Kim A, Wakefield J. A bayesian method for cluster detection with application to five cancer sites in Puget Sound. Epidemiol (Cambridge Mass). 2016;27(3):347.CrossRef
30.
go back to reference Lawson AB. Disease Cluster detection: a critique and a bayesian proposal. Stat Med. 2006;25(5):897–916.CrossRefPubMed Lawson AB. Disease Cluster detection: a critique and a bayesian proposal. Stat Med. 2006;25(5):897–916.CrossRefPubMed
31.
go back to reference Lawson AB, Rotejanaprasert C. Childhood brain cancer in Florida: a bayesian clustering approach. Stat Public Policy. 2014;1(1):99–107.CrossRef Lawson AB, Rotejanaprasert C. Childhood brain cancer in Florida: a bayesian clustering approach. Stat Public Policy. 2014;1(1):99–107.CrossRef
32.
go back to reference Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. J Royal Stat Society: Ser b (Statistical Methodology). 2002;64(4):583–639.CrossRef Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. J Royal Stat Society: Ser b (Statistical Methodology). 2002;64(4):583–639.CrossRef
33.
go back to reference Watanabe S, Opper M. Asymptotic equivalence of Bayes Cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res. 2010;11(12). Watanabe S, Opper M. Asymptotic equivalence of Bayes Cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res. 2010;11(12).
34.
go back to reference Vehtari A, Gelman A, Gabry J. Practical bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput. 2017;27(5):1413–32.CrossRef Vehtari A, Gelman A, Gabry J. Practical bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput. 2017;27(5):1413–32.CrossRef
35.
go back to reference Rotejanaprasert C, Lawson A, Bolick-Aldrich S, Hurley D. Spatial bayesian surveillance for small area case event data. Stat Methods Med Res. 2016;25(4):1101–17.CrossRefPubMedPubMedCentral Rotejanaprasert C, Lawson A, Bolick-Aldrich S, Hurley D. Spatial bayesian surveillance for small area case event data. Stat Methods Med Res. 2016;25(4):1101–17.CrossRefPubMedPubMedCentral
36.
go back to reference Wheeler DC, Hickson DA, Waller LA. Assessing local model adequacy in bayesian hierarchical models using the partitioned deviance information criterion. Comput Stat Data Anal. 2010;54(6):1657–71.CrossRefPubMedPubMedCentral Wheeler DC, Hickson DA, Waller LA. Assessing local model adequacy in bayesian hierarchical models using the partitioned deviance information criterion. Comput Stat Data Anal. 2010;54(6):1657–71.CrossRefPubMedPubMedCentral
37.
go back to reference Carroll R, Lawson AB, Faes C, Kirby RS, Aregay M, Watjou K. Spatially-dependent bayesian model selection for disease mapping. Stat Methods Med Res. 2018;27(1):250–68.CrossRefPubMed Carroll R, Lawson AB, Faes C, Kirby RS, Aregay M, Watjou K. Spatially-dependent bayesian model selection for disease mapping. Stat Methods Med Res. 2018;27(1):250–68.CrossRefPubMed
38.
go back to reference Pettit L. The conditional predictive ordinate for the normal distribution. J Roy Stat Soc: Ser B (Methodol). 1990;52(1):175–84. Pettit L. The conditional predictive ordinate for the normal distribution. J Roy Stat Soc: Ser B (Methodol). 1990;52(1):175–84.
39.
go back to reference Dawid AP. Present position and potential developments: some personal views statistical theory the prequential approach. J Royal Stat Society: Ser (General). 1984;147(2):278–90.CrossRef Dawid AP. Present position and potential developments: some personal views statistical theory the prequential approach. J Royal Stat Society: Ser (General). 1984;147(2):278–90.CrossRef
40.
go back to reference Adrion C, Mansmann U. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: an example from a vertigo phase III study with longitudinal count data as primary endpoint. BMC Med Res Methodol. 2012;12(1):1–22.CrossRef Adrion C, Mansmann U. Bayesian model selection techniques as decision support for shaping a statistical analysis plan of a clinical trial: an example from a vertigo phase III study with longitudinal count data as primary endpoint. BMC Med Res Methodol. 2012;12(1):1–22.CrossRef
41.
go back to reference Rue H, Martino S, Chopin N. Approximate bayesian inference for latent gaussian models by using integrated nested Laplace approximations. J Royal Stat Society: Ser b (Statistical Methodology). 2009;71(2):319–92.CrossRef Rue H, Martino S, Chopin N. Approximate bayesian inference for latent gaussian models by using integrated nested Laplace approximations. J Royal Stat Society: Ser b (Statistical Methodology). 2009;71(2):319–92.CrossRef
Metadata
Title
Two-step spatiotemporal anomaly detection corrected for lag reporting time with application to real-time dengue surveillance in Thailand
Authors
Chawarat Rotejanaprasert
Darin Areechokchai
Richard J. Maude
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2024
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-024-02141-5

Other articles of this Issue 1/2024

BMC Medical Research Methodology 1/2024 Go to the issue