Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Ovarian Cancer | Research

Ovarian cancer cells regulate their mitochondrial content and high mitochondrial content is associated with a poor prognosis

Authors: Jil Weigelt, Mariam Petrosyan, Leticia Oliveira-Ferrer, Barbara Schmalfeldt, Catharina Bartmann, Johannes Dietl, Christine Stürken, Udo Schumacher

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Most cancer patients ultimately die from the consequences of distant metastases. As metastasis formation consumes energy mitochondria play an important role during this process as they are the most important cellular organelle to synthesise the energy rich substrate ATP, which provides the necessary energy to enable distant metastasis formation. However, mitochondria are also important for the execution of apoptosis, a process which limits metastasis formation. We therefore wanted to investigate the mitochondrial content in ovarian cancer cells and link its presence to the patient’s prognosis in order to analyse which of the two opposing functions of mitochondria dominates during the malignant progression of ovarian cancer. Monoclonal antibodies directed against different mitochondrial specific proteins, namely heat shock proteins 60 (HSP60), fumarase and succinic dehydrogenase, were used in immunohistochemistry in preliminary experiments to identify the antibody most suited to detect mitochondria in ovarian cancer cells in clinical tissue samples. The clearest staining pattern, which even delineated individual mitochondria, was seen with the anti-HSP60 antibody, which was used for the subsequent clinical study staining primary ovarian cancers (n = 155), borderline tumours (n = 24) and recurrent ovarian cancers (n = 26). The staining results were semi-quantitatively scored into three groups according to their mitochondrial content: low (n = 26), intermediate (n = 50) and high (n = 84). Survival analysis showed that high mitochondrial content correlated with a statistically significant overall reduced survival rate In addition to the clinical tissue samples, mitochondrial content was analysed in ovarian cancer cells grown in vitro (cell lines: OVCAR8, SKOV3, OVCAR3 and COV644) and in vivo in severe combined immunodeficiency (SCID) mice.
In in vivo grown SKOV3 and OVCAR8 cells, the number of mitochondria positive cells was markedly down-regulated compared to the in vitro grown cells indicating that mitochondrial number is subject to regulatory processes. As high mitochondrial content is associated with a poor prognosis, the provision of high energy substrates by the mitochondria seems to be more important for metastasis formation than the inhibition of apoptotic cell death, which is also mediated by mitochondria. In vivo and in vitro grown human ovarian cancer cells showed that the mitochondrial content is highly adaptable to the growth condition of the cancer cells.
Literature
4.
go back to reference Colombo N, Sessa C, du Bois A, Ledermann J, McCluggage WG, McNeish I, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease†. Ann Oncol. 2019;30(5):672–705.PubMedCrossRef Colombo N, Sessa C, du Bois A, Ledermann J, McCluggage WG, McNeish I, et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease†. Ann Oncol. 2019;30(5):672–705.PubMedCrossRef
5.
go back to reference Abdel Mageed H, Van Der Speeten K, Sugarbaker P. The many faces of intraperitoneal chemotherapy. Surg Oncol. 2021;40:101676.PubMedCrossRef Abdel Mageed H, Van Der Speeten K, Sugarbaker P. The many faces of intraperitoneal chemotherapy. Surg Oncol. 2021;40:101676.PubMedCrossRef
6.
go back to reference Ahmed N, Escalona R, Leung D, Chan E, Kannourakis G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin Cancer Biol. 2018;53:265–81.PubMedCrossRef Ahmed N, Escalona R, Leung D, Chan E, Kannourakis G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin Cancer Biol. 2018;53:265–81.PubMedCrossRef
7.
go back to reference Chowanadisai W, Messerli SM, Miller DH, Medina JE, Hamilton JW, Messerli MA, et al. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors. PLoS One. 2016;11(3):e0151089.PubMedPubMedCentralCrossRef Chowanadisai W, Messerli SM, Miller DH, Medina JE, Hamilton JW, Messerli MA, et al. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors. PLoS One. 2016;11(3):e0151089.PubMedPubMedCentralCrossRef
8.
go back to reference Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12(1):91.PubMedPubMedCentralCrossRef Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12(1):91.PubMedPubMedCentralCrossRef
10.
go back to reference Dong LF, Neuzil J. Chapter eight - mitochondria in cancer: why mitochondria are a good target for cancer therapy. In: Osiewacz HD, editor. Progress in molecular biology and translational science, vol. 127. Academic Press; Queensland, Australia; 2014. p. 211–27. Dong LF, Neuzil J. Chapter eight - mitochondria in cancer: why mitochondria are a good target for cancer therapy. In: Osiewacz HD, editor. Progress in molecular biology and translational science, vol. 127. Academic Press; Queensland, Australia; 2014. p. 211–27.
11.
go back to reference Huang M, Myers CR, Wang Y, You M. Mitochondria as a novel target for cancer chemoprevention: emergence of mitochondrial-targeting agents. Cancer Prev Res (Phila). 2021;14(3):285–306.PubMedCrossRef Huang M, Myers CR, Wang Y, You M. Mitochondria as a novel target for cancer chemoprevention: emergence of mitochondrial-targeting agents. Cancer Prev Res (Phila). 2021;14(3):285–306.PubMedCrossRef
12.
go back to reference Kalyanaraman B, Cheng G, Hardy M, You M. OXPHOS-targeting drugs in oncology: new perspectives. Expert Opin Ther Targets.;2023;27(10):1–14. Kalyanaraman B, Cheng G, Hardy M, You M. OXPHOS-targeting drugs in oncology: new perspectives. Expert Opin Ther Targets.;2023;27(10):1–14.
16.
go back to reference Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg effect 97 years after its discovery. Cancers (Basel). 2020;12(10):2819.PubMedCrossRef Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg effect 97 years after its discovery. Cancers (Basel). 2020;12(10):2819.PubMedCrossRef
17.
go back to reference Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163.PubMedCrossRef Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163.PubMedCrossRef
18.
go back to reference Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, et al. No death without life: vital functions of apoptotic effectors. Cell Death Differ. 2008;15(7):1113–23.PubMedCrossRef Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, et al. No death without life: vital functions of apoptotic effectors. Cell Death Differ. 2008;15(7):1113–23.PubMedCrossRef
19.
go back to reference Ding Y, Labitzky V, Legler K, Qi M, Schumacher U, Schmalfeldt B, et al. Molecular characteristics and tumorigenicity of ascites-derived tumor cells: mitochondrial oxidative phosphorylation as a novel therapy target in ovarian cancer. Mol Oncol. 2021;15(12):3578–95.PubMedPubMedCentralCrossRef Ding Y, Labitzky V, Legler K, Qi M, Schumacher U, Schmalfeldt B, et al. Molecular characteristics and tumorigenicity of ascites-derived tumor cells: mitochondrial oxidative phosphorylation as a novel therapy target in ovarian cancer. Mol Oncol. 2021;15(12):3578–95.PubMedPubMedCentralCrossRef
20.
go back to reference Oliveira-Ferrer L, Schmalfeldt B, Dietl J, Bartmann C, Schumacher U, Stürken C. Ovarian cancer-cell pericellular hyaluronan deposition negatively impacts prognosis of ovarian cancer patients. Biomedicines. 2022;10(11):2944.PubMedPubMedCentralCrossRef Oliveira-Ferrer L, Schmalfeldt B, Dietl J, Bartmann C, Schumacher U, Stürken C. Ovarian cancer-cell pericellular hyaluronan deposition negatively impacts prognosis of ovarian cancer patients. Biomedicines. 2022;10(11):2944.PubMedPubMedCentralCrossRef
21.
go back to reference Ghulam J, Stuerken C, Wicklein D, Pries R, Wollenberg B, Schumacher U. Immunohistochemical analysis of transcription factors and markers of epithelial-mesenchymal transition (EMT) in human tumors. Anticancer Res. 2019;39(10):5437–48.PubMedCrossRef Ghulam J, Stuerken C, Wicklein D, Pries R, Wollenberg B, Schumacher U. Immunohistochemical analysis of transcription factors and markers of epithelial-mesenchymal transition (EMT) in human tumors. Anticancer Res. 2019;39(10):5437–48.PubMedCrossRef
22.
go back to reference Metzen M, Bruns M, Deppert W, Schumacher U. Infiltration of immune competent cells into primary tumors and their surrounding connective tissues in xenograft and syngeneic mouse models. Int J Mol Sci. 2021;22(8):4213.PubMedPubMedCentralCrossRef Metzen M, Bruns M, Deppert W, Schumacher U. Infiltration of immune competent cells into primary tumors and their surrounding connective tissues in xenograft and syngeneic mouse models. Int J Mol Sci. 2021;22(8):4213.PubMedPubMedCentralCrossRef
23.
go back to reference Lüders N, Schumacher U. Sphingosine-1-phosphate-receptor 1 as a marker for endothelial cells in mouse xenograft models of human cancer. Anticancer Res. 2017;37(7):3607–14.PubMed Lüders N, Schumacher U. Sphingosine-1-phosphate-receptor 1 as a marker for endothelial cells in mouse xenograft models of human cancer. Anticancer Res. 2017;37(7):3607–14.PubMed
24.
go back to reference Schumacher U, Adam E, Flavell DJ, Boehm D, Brooks SA, Leathem AJ. Glycosylation patterns of the human colon cancer cell line HT-29 detected by Helix pomatia agglutinin and other lectins in culture, in primary tumours and in metastases in SCID mice. Clin Exp Metastasis. 1994;12(6):398–404.PubMedCrossRef Schumacher U, Adam E, Flavell DJ, Boehm D, Brooks SA, Leathem AJ. Glycosylation patterns of the human colon cancer cell line HT-29 detected by Helix pomatia agglutinin and other lectins in culture, in primary tumours and in metastases in SCID mice. Clin Exp Metastasis. 1994;12(6):398–404.PubMedCrossRef
25.
go back to reference Hjerpe E, Egyhazi S, Carlson J, Stolt MF, Schedvins K, Johansson H, et al. HSP60 predicts survival in advanced serous ovarian cancer. Int J Gynecol Cancer. 2013;23(3):448–55.PubMedCrossRef Hjerpe E, Egyhazi S, Carlson J, Stolt MF, Schedvins K, Johansson H, et al. HSP60 predicts survival in advanced serous ovarian cancer. Int J Gynecol Cancer. 2013;23(3):448–55.PubMedCrossRef
26.
go back to reference Guo J, Li X, Zhang W, Chen Y, Zhu S, Chen L, et al. HSP60-regulated mitochondrial proteostasis and protein translation promote tumor growth of ovarian cancer. Sci Rep. 2019;9(1):12628.PubMedPubMedCentralCrossRef Guo J, Li X, Zhang W, Chen Y, Zhu S, Chen L, et al. HSP60-regulated mitochondrial proteostasis and protein translation promote tumor growth of ovarian cancer. Sci Rep. 2019;9(1):12628.PubMedPubMedCentralCrossRef
27.
go back to reference Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9(6):447–64.PubMedCrossRef Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discov. 2010;9(6):447–64.PubMedCrossRef
28.
go back to reference Bockelmann L, Starzonek C, Niehoff AC, Karst U, Thomale J, Schluter H, et al. Detection of doxorubicin, cisplatin and therapeutic antibodies in formalin-fixed paraffin-embedded human cancer cells. Histochem Cell Biol. 2020;153(5):367–77.PubMedPubMedCentralCrossRef Bockelmann L, Starzonek C, Niehoff AC, Karst U, Thomale J, Schluter H, et al. Detection of doxorubicin, cisplatin and therapeutic antibodies in formalin-fixed paraffin-embedded human cancer cells. Histochem Cell Biol. 2020;153(5):367–77.PubMedPubMedCentralCrossRef
29.
go back to reference Bockelmann LC, Schumacher U. Targeting tumor interstitial fluid pressure: will it yield novel successful therapies for solid tumors? Expert Opin Ther Targets. 2019;23(12):1005–14.PubMedCrossRef Bockelmann LC, Schumacher U. Targeting tumor interstitial fluid pressure: will it yield novel successful therapies for solid tumors? Expert Opin Ther Targets. 2019;23(12):1005–14.PubMedCrossRef
31.
go back to reference Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. Febs j. 2007;274(6):1393–418.PubMedCrossRef Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. Febs j. 2007;274(6):1393–418.PubMedCrossRef
32.
go back to reference Kubo Y, Tanaka K, Masuike Y, Takahashi T, Yamashita K, Makino T, et al. Low mitochondrial DNA copy number induces chemotherapy resistance via epithelial-mesenchymal transition by DNA methylation in esophageal squamous cancer cells. J Transl Med. 2022;20(1):383.PubMedPubMedCentralCrossRef Kubo Y, Tanaka K, Masuike Y, Takahashi T, Yamashita K, Makino T, et al. Low mitochondrial DNA copy number induces chemotherapy resistance via epithelial-mesenchymal transition by DNA methylation in esophageal squamous cancer cells. J Transl Med. 2022;20(1):383.PubMedPubMedCentralCrossRef
33.
34.
go back to reference Moukarzel LA, Ferrando L, Dopeso H, Stylianou A, Basili T, Pareja F, et al. Hyperthermic intraperitoneal chemotherapy (HIPEC) with carboplatin induces distinct transcriptomic changes in ovarian tumor and normal tissues. Gynecol Oncol. 2022;165(2):239–47.PubMedPubMedCentralCrossRef Moukarzel LA, Ferrando L, Dopeso H, Stylianou A, Basili T, Pareja F, et al. Hyperthermic intraperitoneal chemotherapy (HIPEC) with carboplatin induces distinct transcriptomic changes in ovarian tumor and normal tissues. Gynecol Oncol. 2022;165(2):239–47.PubMedPubMedCentralCrossRef
35.
go back to reference DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.PubMedCrossRef DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.PubMedCrossRef
36.
go back to reference Dar S, Chhina J, Mert I, Chitale D, Buekers T, Kaur H, et al. Bioenergetic Adaptations in Chemoresistant Ovarian Cancer Cells. Sci Rep. 2017;7(1):8760.PubMedPubMedCentralCrossRef Dar S, Chhina J, Mert I, Chitale D, Buekers T, Kaur H, et al. Bioenergetic Adaptations in Chemoresistant Ovarian Cancer Cells. Sci Rep. 2017;7(1):8760.PubMedPubMedCentralCrossRef
37.
go back to reference Wang Y, Liu VW, Xue WC, Cheung AN, Ngan HY. Association of decreased mitochondrial DNA content with ovarian cancer progression. Br J Cancer. 2006;95(8):1087–91.PubMedPubMedCentralCrossRef Wang Y, Liu VW, Xue WC, Cheung AN, Ngan HY. Association of decreased mitochondrial DNA content with ovarian cancer progression. Br J Cancer. 2006;95(8):1087–91.PubMedPubMedCentralCrossRef
38.
go back to reference Lim HY, Ho QS, Low J, Choolani M, Wong KP. Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion. 2011;11(3):437–43.PubMedCrossRef Lim HY, Ho QS, Low J, Choolani M, Wong KP. Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion. 2011;11(3):437–43.PubMedCrossRef
39.
go back to reference Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 2013;23(3):287–301.PubMedPubMedCentralCrossRef Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K, et al. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell. 2013;23(3):287–301.PubMedPubMedCentralCrossRef
40.
go back to reference Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23(10):1234–40.PubMedPubMedCentralCrossRef Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23(10):1234–40.PubMedPubMedCentralCrossRef
41.
go back to reference Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41(16):2502–12.PubMedCrossRef Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41(16):2502–12.PubMedCrossRef
42.
go back to reference Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, Procaccini C, et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54.PubMedPubMedCentralCrossRef Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, Procaccini C, et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54.PubMedPubMedCentralCrossRef
44.
go back to reference Anderson AS, Roberts PC, Frisard MI, Hulver MW, Schmelz EM. Ovarian tumor-initiating cells display a flexible metabolism. Exp Cell Res. 2014;328(1):44–57.PubMedPubMedCentralCrossRef Anderson AS, Roberts PC, Frisard MI, Hulver MW, Schmelz EM. Ovarian tumor-initiating cells display a flexible metabolism. Exp Cell Res. 2014;328(1):44–57.PubMedPubMedCentralCrossRef
Metadata
Title
Ovarian cancer cells regulate their mitochondrial content and high mitochondrial content is associated with a poor prognosis
Authors
Jil Weigelt
Mariam Petrosyan
Leticia Oliveira-Ferrer
Barbara Schmalfeldt
Catharina Bartmann
Johannes Dietl
Christine Stürken
Udo Schumacher
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11667-8

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine