Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Glioma | Research

Distinguishing IDH mutation status in gliomas using FTIR-ATR spectra of peripheral blood plasma indicating clear traces of protein amyloid aggregation

Authors: Saiko Kino, Masayuki Kanamori, Yoshiteru Shimoda, Kuniyasu Niizuma, Hidenori Endo, Yuji Matsuura

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Glioma is a primary brain tumor and the assessment of its molecular profile in a minimally invasive manner is important in determining treatment strategies. Among the molecular abnormalities of gliomas, mutations in the isocitrate dehydrogenase (IDH) gene are strong predictors of treatment sensitivity and prognosis. In this study, we attempted to non-invasively diagnose glioma development and the presence of IDH mutations using multivariate analysis of the plasma mid-infrared absorption spectra for a comprehensive and sensitive view of changes in blood components associated with the disease and genetic mutations. These component changes are discussed in terms of absorption wavenumbers that contribute to differentiation.

Methods

Plasma samples were collected at our institutes from 84 patients with glioma (13 oligodendrogliomas, 17 IDH-mutant astrocytoma, 7 IDH wild-type diffuse glioma, and 47 glioblastomas) before treatment initiation and 72 healthy participants. FTIR-ATR spectra were obtained for each plasma sample, and PLS discriminant analysis was performed using the absorbance of each wavenumber in the fingerprint region of biomolecules as the explanatory variable. This data was used to distinguish patients with glioma from healthy participants and diagnose the presence of IDH mutations.

Results

The derived classification algorithm distinguished the patients with glioma from healthy participants with 83% accuracy (area under the curve (AUC) in receiver operating characteristic (ROC) = 0.908) and diagnosed the presence of IDH mutation with 75% accuracy (AUC = 0.752 in ROC) in cross-validation using 30% of the total test data. The characteristic changes in the absorption spectra suggest an increase in the ratio of β-sheet structures in the conformational composition of blood proteins of patients with glioma. Furthermore, these changes were more pronounced in patients with IDH-mutant gliomas.

Conclusions

The plasma infrared absorption spectra could be used to diagnose gliomas and the presence of IDH mutations in gliomas with a high degree of accuracy. The spectral shape of the protein absorption band showed that the ratio of β-sheet structures in blood proteins was significantly higher in patients with glioma than in healthy participants, and protein aggregation was a distinct feature in patients with glioma with IDH mutations.
Literature
2.
go back to reference Alzial G, Renoult O, Paris F, Gratas C, Clavreul A, Pecqueur C. Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma. Oncogene. 2022;41:613–21.PubMedCrossRef Alzial G, Renoult O, Paris F, Gratas C, Clavreul A, Pecqueur C. Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma. Oncogene. 2022;41:613–21.PubMedCrossRef
3.
go back to reference Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer. 2020;122:1580–9.PubMedPubMedCentralCrossRef Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer. 2020;122:1580–9.PubMedPubMedCentralCrossRef
5.
go back to reference Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet. 2015;47(5):458–68.PubMedCrossRef Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet. 2015;47(5):458–68.PubMedCrossRef
6.
go back to reference Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, et al. Comprehensive, Integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98.CrossRef Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, et al. Comprehensive, Integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98.CrossRef
8.
go back to reference Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.PubMedPubMedCentralCrossRefADS Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.PubMedPubMedCentralCrossRefADS
9.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef
10.
go back to reference Kawaguchi T, Sonoda Y, Shibahara I, Saito R, Kanamori M, Kumabe T, et al. Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion. J Neurooncol. 2016;129(3):505–14.PubMedCrossRef Kawaguchi T, Sonoda Y, Shibahara I, Saito R, Kanamori M, Kumabe T, et al. Impact of gross total resection in patients with WHO grade III glioma harboring the IDH 1/2 mutation without the 1p/19q co-deletion. J Neurooncol. 2016;129(3):505–14.PubMedCrossRef
11.
go back to reference Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8.PubMedCrossRef Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8.PubMedCrossRef
12.
go back to reference Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–9.PubMedPubMedCentralCrossRef Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–9.PubMedPubMedCentralCrossRef
13.
go back to reference Bhandari AP, Liong R, Koppen J, Murthy SV, Lasocki A. Noninvasive determination of IDH and 1p19q status of lower-grade gliomas using MRI radiomics: A systematic review. AJNR Am J Neuroradiol. 2021;42(1):94–101.PubMedPubMedCentralCrossRef Bhandari AP, Liong R, Koppen J, Murthy SV, Lasocki A. Noninvasive determination of IDH and 1p19q status of lower-grade gliomas using MRI radiomics: A systematic review. AJNR Am J Neuroradiol. 2021;42(1):94–101.PubMedPubMedCentralCrossRef
14.
go back to reference Kanamori M, Maekawa M, Shibahara I, Saito R, Chonan M, Shimada M, et al. Rapid detection of mutation in isocitrate dehydrogenase 1 and 2 genes using mass spectrometry. Brain Tumor Pathol. 2018;35(2):90–6.PubMedCrossRef Kanamori M, Maekawa M, Shibahara I, Saito R, Chonan M, Shimada M, et al. Rapid detection of mutation in isocitrate dehydrogenase 1 and 2 genes using mass spectrometry. Brain Tumor Pathol. 2018;35(2):90–6.PubMedCrossRef
16.
go back to reference Ghorbani A, Avery LM, Sohaei D, Soosaipillai A, Richer M, Horbinski C, et al. Discovery of novel glioma serum biomarkers by proximity extension assay. Clin Proteom. 2023;20(1):12.CrossRef Ghorbani A, Avery LM, Sohaei D, Soosaipillai A, Richer M, Horbinski C, et al. Discovery of novel glioma serum biomarkers by proximity extension assay. Clin Proteom. 2023;20(1):12.CrossRef
17.
18.
19.
go back to reference Ali H, Harting R, de Vries R, Ali M, Wurdinger T, Best MG. Blood-based biomarkers for glioma in the context of gliomagenesis: A systematic review. Front Oncol. 2021;11:665235.PubMedPubMedCentralCrossRef Ali H, Harting R, de Vries R, Ali M, Wurdinger T, Best MG. Blood-based biomarkers for glioma in the context of gliomagenesis: A systematic review. Front Oncol. 2021;11:665235.PubMedPubMedCentralCrossRef
20.
go back to reference Cabezas-Camarero S, García-Barberán V, Pérez-Alfayate R, Casado-Fariñas I, Sloane H, Jones FS, et al. Detection of IDH1 mutations in plasma using BEAMing technology in patients with gliomas. Cancers (Basel). 2022;14(12):2891.PubMedCrossRef Cabezas-Camarero S, García-Barberán V, Pérez-Alfayate R, Casado-Fariñas I, Sloane H, Jones FS, et al. Detection of IDH1 mutations in plasma using BEAMing technology in patients with gliomas. Cancers (Basel). 2022;14(12):2891.PubMedCrossRef
21.
go back to reference Zhang S, Zhang J, Hu X, Yin S, Yuan Y, Xia L, et al. Noninvasive detection of brain gliomas using plasma cell-free DNA 5-hydroxymethylcytosine sequencing. Int J Cancer. 2023;152(8):1707–18.PubMedCrossRef Zhang S, Zhang J, Hu X, Yin S, Yuan Y, Xia L, et al. Noninvasive detection of brain gliomas using plasma cell-free DNA 5-hydroxymethylcytosine sequencing. Int J Cancer. 2023;152(8):1707–18.PubMedCrossRef
22.
go back to reference Voronina L, Leonardo C, Mueller-Reif JB, Geyer PE, Huber M, Trubetskov M, et al. Molecular origin of blood-based infrared spectroscopic ffingerprints*. Angew Chem Int Ed Engl. 2021;60(31):17060–9.PubMedPubMedCentralCrossRef Voronina L, Leonardo C, Mueller-Reif JB, Geyer PE, Huber M, Trubetskov M, et al. Molecular origin of blood-based infrared spectroscopic ffingerprints*. Angew Chem Int Ed Engl. 2021;60(31):17060–9.PubMedPubMedCentralCrossRef
23.
go back to reference Kochan K, Bedolla DE, Perez-Guaita D, Adegoke JA,Chakkumpulakkal Puthan Veettil T, Martin M, et al. Infrared spectroscopy of blood. Appl Spectrosc. 2021;75(6):611–46.PubMedCrossRefADS Kochan K, Bedolla DE, Perez-Guaita D, Adegoke JA,Chakkumpulakkal Puthan Veettil T, Martin M, et al. Infrared spectroscopy of blood. Appl Spectrosc. 2021;75(6):611–46.PubMedCrossRefADS
24.
go back to reference Huber M, Kepesidis KV, Voronina L, Fleischmann F, Fill E, Hermann J, et al. Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer. Elife. 2021;10:e68758.PubMedPubMedCentralCrossRef Huber M, Kepesidis KV, Voronina L, Fleischmann F, Fill E, Hermann J, et al. Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer. Elife. 2021;10:e68758.PubMedPubMedCentralCrossRef
25.
26.
go back to reference Roy S, Perez-Guaita D, Andrew DW, Richards JS, McNaughton D, Heraud P, et al. Simultaneous ATR-FTIR based determination of malaria parasitemia, glucose and urea in whole blood dried onto a glass slide. Anal Chem. 2017;89(10):5238–45.PubMedCrossRef Roy S, Perez-Guaita D, Andrew DW, Richards JS, McNaughton D, Heraud P, et al. Simultaneous ATR-FTIR based determination of malaria parasitemia, glucose and urea in whole blood dried onto a glass slide. Anal Chem. 2017;89(10):5238–45.PubMedCrossRef
27.
go back to reference Roy S, Perez-Guaita D, Bowden S, Heraud P, Wood BR. Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy. Clin Spectrosc. 2019;1:100001.CrossRef Roy S, Perez-Guaita D, Bowden S, Heraud P, Wood BR. Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy. Clin Spectrosc. 2019;1:100001.CrossRef
28.
go back to reference Sitole L, Steffens F, Krüger TP, Meyer D. Mid-ATR-FTIR spectroscopic profiling of HIV/AIDS sera for novel systems diagnostics in global health. OMICS. 2014;18(8):513–23.PubMedPubMedCentralCrossRef Sitole L, Steffens F, Krüger TP, Meyer D. Mid-ATR-FTIR spectroscopic profiling of HIV/AIDS sera for novel systems diagnostics in global health. OMICS. 2014;18(8):513–23.PubMedPubMedCentralCrossRef
29.
go back to reference Wang X, Shen X, Sheng D, Chen X, Liu X. FTIR spectroscopic comparison of serum from lung cancer patients and healthy persons. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:193–7.PubMedCrossRefADS Wang X, Shen X, Sheng D, Chen X, Liu X. FTIR spectroscopic comparison of serum from lung cancer patients and healthy persons. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:193–7.PubMedCrossRefADS
30.
go back to reference Theakstone AG, Brennan PM, Jenkinson MD, Goodacre R, Baker MJ. Investigating centrifugal filtration of serum-based FTIR spectroscopy for the stratification of brain tumours. PLoS ONE. 2023;18(2):e0279669.PubMedPubMedCentralCrossRef Theakstone AG, Brennan PM, Jenkinson MD, Goodacre R, Baker MJ. Investigating centrifugal filtration of serum-based FTIR spectroscopy for the stratification of brain tumours. PLoS ONE. 2023;18(2):e0279669.PubMedPubMedCentralCrossRef
31.
go back to reference Cameron JM, Brennan PM, Antoniou G, Butler HJ, Christie L, Conn JJA, et al. Clinical validation of a spectroscopic liquid biopsy for earlier detection of brain cancer. Neurooncol Adv. 2022;4(1):vdac024.PubMedPubMedCentral Cameron JM, Brennan PM, Antoniou G, Butler HJ, Christie L, Conn JJA, et al. Clinical validation of a spectroscopic liquid biopsy for earlier detection of brain cancer. Neurooncol Adv. 2022;4(1):vdac024.PubMedPubMedCentral
32.
go back to reference Theakstone AG, Brennan PM, Jenkinson MD, Mills SJ, Syed K, Rinaldi C, et al. Rapid spectroscopic liquid biopsy for the universal detection of brain tumours. Cancers. 2021;13(15):3851.PubMedPubMedCentralCrossRef Theakstone AG, Brennan PM, Jenkinson MD, Mills SJ, Syed K, Rinaldi C, et al. Rapid spectroscopic liquid biopsy for the universal detection of brain tumours. Cancers. 2021;13(15):3851.PubMedPubMedCentralCrossRef
33.
go back to reference Brennan PM, Butler HJ, Christie L, Hegarty MG, Jenkinson MD, Keerie C, et al. Early diagnosis of brain tumors using a novel spectroscopic liquid biopsy. Brain Commun. 2021;3(2):fcab056.PubMedPubMedCentralCrossRef Brennan PM, Butler HJ, Christie L, Hegarty MG, Jenkinson MD, Keerie C, et al. Early diagnosis of brain tumors using a novel spectroscopic liquid biopsy. Brain Commun. 2021;3(2):fcab056.PubMedPubMedCentralCrossRef
34.
go back to reference Cameron JM, Butler HJ, Smith BR, Hegarty MG, Jenkinson MD, Syed K, et al. Developing infrared spectroscopic detection for stratifying brain tumour patients: glioblastoma multiforme vs. lymphoma. Analyst. 2019;144(22):6736–50.PubMedCrossRefADS Cameron JM, Butler HJ, Smith BR, Hegarty MG, Jenkinson MD, Syed K, et al. Developing infrared spectroscopic detection for stratifying brain tumour patients: glioblastoma multiforme vs. lymphoma. Analyst. 2019;144(22):6736–50.PubMedCrossRefADS
35.
go back to reference Butler HJ, Brennan PM, Cameron JM, Finlayson D, Hegarty MG, Jenkinson MD, et al. Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer. Nat Commun. 2019;10(1):1–9.CrossRef Butler HJ, Brennan PM, Cameron JM, Finlayson D, Hegarty MG, Jenkinson MD, et al. Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer. Nat Commun. 2019;10(1):1–9.CrossRef
36.
go back to reference Hands JR, Clemens G, Stables R, Ashton K, Brodbelt A, Davis C, et al. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J Neurooncol. 2016;127:463–72.PubMedPubMedCentralCrossRef Hands JR, Clemens G, Stables R, Ashton K, Brodbelt A, Davis C, et al. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J Neurooncol. 2016;127:463–72.PubMedPubMedCentralCrossRef
37.
go back to reference Chen F, Meng C, Qu H, Cheng C, Chen C, Yang B, et al. Human serum mid-infrared spectroscopy combined with machine learning algorithms for rapid detection of gliomas. Photodiagnosis Photodyn Ther. 2021;35:102308.PubMedCrossRef Chen F, Meng C, Qu H, Cheng C, Chen C, Yang B, et al. Human serum mid-infrared spectroscopy combined with machine learning algorithms for rapid detection of gliomas. Photodiagnosis Photodyn Ther. 2021;35:102308.PubMedCrossRef
38.
go back to reference Smith BR, Ashton KM, Brodbelt A, Dawson T, Jenkinson MD, Hunt NT, et al. Combining random forest and 2D correlation analysis to identify serum spectral signatures for neuro-oncology. Analyst. 2016;141(12):3668–78.PubMedCrossRefADS Smith BR, Ashton KM, Brodbelt A, Dawson T, Jenkinson MD, Hunt NT, et al. Combining random forest and 2D correlation analysis to identify serum spectral signatures for neuro-oncology. Analyst. 2016;141(12):3668–78.PubMedCrossRefADS
39.
go back to reference Hands JR, Dorling KM, Abel P, Ashton KM, Brodbelt A, Davis C, et al. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J Biophotonics. 2014;7(3–4):189–99.PubMedCrossRef Hands JR, Dorling KM, Abel P, Ashton KM, Brodbelt A, Davis C, et al. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J Biophotonics. 2014;7(3–4):189–99.PubMedCrossRef
40.
go back to reference Hands JR, Abel P, Ashton K, Dawson T, Davis C, Lea RW, et al. Investigating the rapid diagnosis of gliomas from serum samples using infrared spectroscopy and cytokine and angiogenesis factors. Anal Bioanal Chem. 2013;405(23):7347–55.PubMedCrossRef Hands JR, Abel P, Ashton K, Dawson T, Davis C, Lea RW, et al. Investigating the rapid diagnosis of gliomas from serum samples using infrared spectroscopy and cytokine and angiogenesis factors. Anal Bioanal Chem. 2013;405(23):7347–55.PubMedCrossRef
41.
go back to reference Guleken Z, Bulut H, Gültekin Gİ, Arıkan S, Yaylım İ, Hakan MT, et al. Assessment of structural protein expression by FTIR and biochemical assays as biomarkers of metabolites response in gastric and colon cancer. Talanta. 2021;231:122353.PubMedCrossRef Guleken Z, Bulut H, Gültekin Gİ, Arıkan S, Yaylım İ, Hakan MT, et al. Assessment of structural protein expression by FTIR and biochemical assays as biomarkers of metabolites response in gastric and colon cancer. Talanta. 2021;231:122353.PubMedCrossRef
42.
go back to reference Guo S, Wei G, Chen W, Lei C, Xu C, Guan Y, et al. Fast and deep diagnosis using blood-based ATR-FTIR spectroscopy for digestive tract cancers. Biomolecules. 2022;12:1815.PubMedPubMedCentralCrossRef Guo S, Wei G, Chen W, Lei C, Xu C, Guan Y, et al. Fast and deep diagnosis using blood-based ATR-FTIR spectroscopy for digestive tract cancers. Biomolecules. 2022;12:1815.PubMedPubMedCentralCrossRef
43.
go back to reference Kepesidis KV, Bozic-Iven M, Huber M, Abdel-Aziz N, Kullab S, Abdelwarith A, et al. Breast-cancer detection using blood-based infrared molecular fingerprints. BMC Cancer. 2021;21(1):1287.PubMedPubMedCentralCrossRef Kepesidis KV, Bozic-Iven M, Huber M, Abdel-Aziz N, Kullab S, Abdelwarith A, et al. Breast-cancer detection using blood-based infrared molecular fingerprints. BMC Cancer. 2021;21(1):1287.PubMedPubMedCentralCrossRef
44.
go back to reference Tołpa B, Depciuch J, Jakubczyk P, Paja W, Pancerz K, Wosiak A, et al. Fourier transform infrared spectroscopic marker of glioblastoma obtained from machine learning and changes in the spectra. Photodiagnosis Photodyn Ther. 2023;42:103550.PubMedCrossRef Tołpa B, Depciuch J, Jakubczyk P, Paja W, Pancerz K, Wosiak A, et al. Fourier transform infrared spectroscopic marker of glioblastoma obtained from machine learning and changes in the spectra. Photodiagnosis Photodyn Ther. 2023;42:103550.PubMedCrossRef
45.
go back to reference Iturrioz-Rodríguez N, De Pasquale D, Fiaschi P, Ciofani G. Discrimination of glioma patient-derived cells from healthy astrocytes by exploiting Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2022;269:120773.PubMedCrossRef Iturrioz-Rodríguez N, De Pasquale D, Fiaschi P, Ciofani G. Discrimination of glioma patient-derived cells from healthy astrocytes by exploiting Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2022;269:120773.PubMedCrossRef
46.
go back to reference Riva M, Sciortino T, Secoli R, D’Amico E, Moccia S, Fernandes B, et al. Glioma biopsies classification using Raman spectroscopy and machine learning models on fresh tissue samples. Cancers (Basel). 2021;13(5):1073.PubMedCrossRef Riva M, Sciortino T, Secoli R, D’Amico E, Moccia S, Fernandes B, et al. Glioma biopsies classification using Raman spectroscopy and machine learning models on fresh tissue samples. Cancers (Basel). 2021;13(5):1073.PubMedCrossRef
47.
go back to reference Sciortino T, Secoli R, d’Amico E, Moccia S, Conti Nibali M, Gay L, et al. Raman spectroscopy and machine learning for IDH genotyping of unprocessed glioma biopsies. Cancers. 2021;13:4196.PubMedPubMedCentralCrossRef Sciortino T, Secoli R, d’Amico E, Moccia S, Conti Nibali M, Gay L, et al. Raman spectroscopy and machine learning for IDH genotyping of unprocessed glioma biopsies. Cancers. 2021;13:4196.PubMedPubMedCentralCrossRef
48.
go back to reference Livermore LJ, Isabelle M, Bell IM, Scott C, Walsby-Tickle J, Gannon J, et al. Rapid intraoperative molecular genetic classification of gliomas using Raman spectroscopy. Neurooncol Adv. 2019;1(1):vdz008.PubMedPubMedCentral Livermore LJ, Isabelle M, Bell IM, Scott C, Walsby-Tickle J, Gannon J, et al. Rapid intraoperative molecular genetic classification of gliomas using Raman spectroscopy. Neurooncol Adv. 2019;1(1):vdz008.PubMedPubMedCentral
49.
go back to reference Uckermann O, Juratli TA, Galli R, Conde M, Wiedemuth R, Krex D, et al. Optical analysis of glioma: Fourier-transform infrared spectroscopy reveals the IDH1 mutation status. Clin Cancer Res. 2018;24(11):2530–8.PubMedCrossRef Uckermann O, Juratli TA, Galli R, Conde M, Wiedemuth R, Krex D, et al. Optical analysis of glioma: Fourier-transform infrared spectroscopy reveals the IDH1 mutation status. Clin Cancer Res. 2018;24(11):2530–8.PubMedCrossRef
50.
go back to reference Cameron JM, Conn JJA, Rinaldi C, Sala A, Brennan PM, Jenkinson MD, et al. Interrogation of IDH1 status in gliomas by Fourier transform infrared spectroscopy. Cancers (Basel). 2020;12:3682.PubMedCrossRef Cameron JM, Conn JJA, Rinaldi C, Sala A, Brennan PM, Jenkinson MD, et al. Interrogation of IDH1 status in gliomas by Fourier transform infrared spectroscopy. Cancers (Basel). 2020;12:3682.PubMedCrossRef
51.
go back to reference Quesnel A, Coles N, Angione C, Dey P, Polvikoski TM, Outeiro TF, et al. Glycosylation spectral signatures for glioma grade discrimination using Raman spectroscopy. BMC Cancer. 2023;23:174.PubMedPubMedCentralCrossRef Quesnel A, Coles N, Angione C, Dey P, Polvikoski TM, Outeiro TF, et al. Glycosylation spectral signatures for glioma grade discrimination using Raman spectroscopy. BMC Cancer. 2023;23:174.PubMedPubMedCentralCrossRef
52.
go back to reference Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003;17:166–73.CrossRef Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003;17:166–73.CrossRef
53.
go back to reference Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med. 2013;4:627–35. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med. 2013;4:627–35.
54.
go back to reference Anwardeen NR, Diboun I, Mokrab Y, Althani AA, Elrayess MA. Statistical methods and resources for biomarker discovery using metabolomics. BMC Bioinform. 2023;24:250.CrossRef Anwardeen NR, Diboun I, Mokrab Y, Althani AA, Elrayess MA. Statistical methods and resources for biomarker discovery using metabolomics. BMC Bioinform. 2023;24:250.CrossRef
55.
go back to reference Wood BR. The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues. Chem Soc Rev. 2016;45:1980–98.PubMedCrossRef Wood BR. The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues. Chem Soc Rev. 2016;45:1980–98.PubMedCrossRef
56.
go back to reference Deleris G, Petibois C. Applications of FT-IR spectrometry to plasma contents analysis and monitoring. Vib Spectrosc. 2003;32:129–36.CrossRef Deleris G, Petibois C. Applications of FT-IR spectrometry to plasma contents analysis and monitoring. Vib Spectrosc. 2003;32:129–36.CrossRef
57.
go back to reference Lombardi G, Corona G, Bellu L, Della Puppa A, Pambuku A, Fiduccia P, et al. Diagnostic value of plasma and urinary 2-hydroxyglutarate to identify patients with isocitrate dehydrogenase-mutated glioma. Oncologist. 2015;20:562–7.PubMedPubMedCentralCrossRef Lombardi G, Corona G, Bellu L, Della Puppa A, Pambuku A, Fiduccia P, et al. Diagnostic value of plasma and urinary 2-hydroxyglutarate to identify patients with isocitrate dehydrogenase-mutated glioma. Oncologist. 2015;20:562–7.PubMedPubMedCentralCrossRef
58.
go back to reference De Meutter J, Goormaghtigh E. Amino acid side chain contribution to protein FTIR spectra: impact on secondary structure evaluation. Eur Biophys J. 2021;50:641–51.PubMedPubMedCentralCrossRef De Meutter J, Goormaghtigh E. Amino acid side chain contribution to protein FTIR spectra: impact on secondary structure evaluation. Eur Biophys J. 2021;50:641–51.PubMedPubMedCentralCrossRef
59.
go back to reference Pavliukeviciene B, Zentelyte A, Jankunec M, Valiuliene G, Talaikis M, Navakauskiene R, et al. Amyloid β oligomers inhibit growth of human cancer cells. PLoS ONE. 2019;14:e0221563.PubMedPubMedCentralCrossRef Pavliukeviciene B, Zentelyte A, Jankunec M, Valiuliene G, Talaikis M, Navakauskiene R, et al. Amyloid β oligomers inhibit growth of human cancer cells. PLoS ONE. 2019;14:e0221563.PubMedPubMedCentralCrossRef
60.
go back to reference Goldblatt G, Cilenti L, Matos JO, Lee B, Ciaffone N, Wang QX, et al. Unmodified and pyroglutamylated amyloid β peptides form hypertoxic hetero-oligomers of unique secondary structure. FEBS J. 2017;284:1355–69.PubMedCrossRef Goldblatt G, Cilenti L, Matos JO, Lee B, Ciaffone N, Wang QX, et al. Unmodified and pyroglutamylated amyloid β peptides form hypertoxic hetero-oligomers of unique secondary structure. FEBS J. 2017;284:1355–69.PubMedCrossRef
61.
go back to reference Sarroukh R, Goormaghtigh E, Ruysschaert JM, Raussens V. ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta. 2013;1828:2328–38.PubMedCrossRef Sarroukh R, Goormaghtigh E, Ruysschaert JM, Raussens V. ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta. 2013;1828:2328–38.PubMedCrossRef
62.
go back to reference Matsubara T, Yasumori H, Ito K, Shimoaka T, Hasegawa T, Sato T. Amyloid-β fibrils assembled on ganglioside-enriched membranes contain both parallel β-sheets and turns. J Biol Chem. 2018;293:14146–54.PubMedPubMedCentralCrossRef Matsubara T, Yasumori H, Ito K, Shimoaka T, Hasegawa T, Sato T. Amyloid-β fibrils assembled on ganglioside-enriched membranes contain both parallel β-sheets and turns. J Biol Chem. 2018;293:14146–54.PubMedPubMedCentralCrossRef
63.
go back to reference Waeytens J, Mathurin J, Deniset-Besseau A, Arluison V, Bousset L, Rezaei H, et al. Probing amyloid fibril secondary structures by infrared nanospectroscopy: experimental and theoretical considerations. Analyst. 2021;146:132–45.PubMedCrossRefADS Waeytens J, Mathurin J, Deniset-Besseau A, Arluison V, Bousset L, Rezaei H, et al. Probing amyloid fibril secondary structures by infrared nanospectroscopy: experimental and theoretical considerations. Analyst. 2021;146:132–45.PubMedCrossRefADS
64.
go back to reference Jin WS, Bu XL, Liu YH, Shen LL, Zhuang ZQ, Jiao SS, et al. Plasma amyloid-beta levels in patients with different types of cancer. Neurotox Res. 2017;31:283–8.PubMedCrossRef Jin WS, Bu XL, Liu YH, Shen LL, Zhuang ZQ, Jiao SS, et al. Plasma amyloid-beta levels in patients with different types of cancer. Neurotox Res. 2017;31:283–8.PubMedCrossRef
65.
go back to reference Zayas-Santiago A, Díaz-García A, Nuñez-Rodríguez R, Inyushin M. Accumulation of amyloid beta in human glioblastomas. Clin Exp Immunol. 2022;202:325–34.CrossRef Zayas-Santiago A, Díaz-García A, Nuñez-Rodríguez R, Inyushin M. Accumulation of amyloid beta in human glioblastomas. Clin Exp Immunol. 2022;202:325–34.CrossRef
67.
go back to reference Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Front Cell Neurosci. 2015;9:191.PubMedPubMedCentralCrossRef Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Front Cell Neurosci. 2015;9:191.PubMedPubMedCentralCrossRef
68.
go back to reference Cho MH, Cho K, Kang HJ, Jeon EY, Kim HS, Kwon HJ, et al. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy. 2014;10:1761–75.PubMedPubMedCentralCrossRef Cho MH, Cho K, Kang HJ, Jeon EY, Kim HS, Kwon HJ, et al. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy. 2014;10:1761–75.PubMedPubMedCentralCrossRef
70.
go back to reference Wang H, Ma J, Tan Y, Wang Z, Sheng C, Chen S, et al. Amyloid-beta1-42 induces reactive oxygen species-mediated autophagic cell death in U87 and SH-SY5Y cells. J Alzheimers Dis. 2010;21:597–610.PubMedCrossRef Wang H, Ma J, Tan Y, Wang Z, Sheng C, Chen S, et al. Amyloid-beta1-42 induces reactive oxygen species-mediated autophagic cell death in U87 and SH-SY5Y cells. J Alzheimers Dis. 2010;21:597–610.PubMedCrossRef
71.
go back to reference Emilie C, Rabia S, Shiori TK, Leonid B, Sylvie D, Yves FD, et al. Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J. 2009;421:415–23.CrossRef Emilie C, Rabia S, Shiori TK, Leonid B, Sylvie D, Yves FD, et al. Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J. 2009;421:415–23.CrossRef
72.
go back to reference Papin S, Paganetti P. Emerging evidences for an Implication of the neurodegeneration-associated protein tau. Cancer Brain Sci. 2020;10:862.PubMedCrossRef Papin S, Paganetti P. Emerging evidences for an Implication of the neurodegeneration-associated protein tau. Cancer Brain Sci. 2020;10:862.PubMedCrossRef
73.
go back to reference Gargini R, Segura-Collar B, Herránz B, García-Escudero V, Romero-Bravo A, Núñez FJ, et al. The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Sci Transl Med. 2020;12(527):eaax1501.PubMedPubMedCentralCrossRef Gargini R, Segura-Collar B, Herránz B, García-Escudero V, Romero-Bravo A, Núñez FJ, et al. The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Sci Transl Med. 2020;12(527):eaax1501.PubMedPubMedCentralCrossRef
74.
go back to reference Polanco J, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity – towards improved biomarkers and targeted therapies. Nat Rev Neurol. 2018;14:22–39.PubMedCrossRef Polanco J, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity – towards improved biomarkers and targeted therapies. Nat Rev Neurol. 2018;14:22–39.PubMedCrossRef
75.
go back to reference Guzman-Velez E, Diez I, Schoemaker D, Pardilla-Delgado E, Vila-Castelar C, Fox-Fuller JT, et al. Amyloid-beta and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease. Proc Natl Acad Sci USA. 2022;119:e2113641119.PubMedPubMedCentralCrossRef Guzman-Velez E, Diez I, Schoemaker D, Pardilla-Delgado E, Vila-Castelar C, Fox-Fuller JT, et al. Amyloid-beta and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease. Proc Natl Acad Sci USA. 2022;119:e2113641119.PubMedPubMedCentralCrossRef
76.
go back to reference Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer’s disease. Acta Neuropathol. 2020;140:793–810.PubMedPubMedCentralCrossRef Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer’s disease. Acta Neuropathol. 2020;140:793–810.PubMedPubMedCentralCrossRef
77.
go back to reference Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci. 2020;23:1183–93.PubMedCrossRef Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci. 2020;23:1183–93.PubMedCrossRef
78.
go back to reference Bloom GS. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8.PubMedCrossRef Bloom GS. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8.PubMedCrossRef
79.
go back to reference Iorgulescu JB, Sun C, Neff C, Cioffi G, Gutierrez C, Kruchko C, et al. Molecular biomarker-defined brain tumors: Epidemiology, validity, and completeness in the United States. Neuro Oncol. 2022;24(11):1989–2000.PubMedPubMedCentralCrossRef Iorgulescu JB, Sun C, Neff C, Cioffi G, Gutierrez C, Kruchko C, et al. Molecular biomarker-defined brain tumors: Epidemiology, validity, and completeness in the United States. Neuro Oncol. 2022;24(11):1989–2000.PubMedPubMedCentralCrossRef
Metadata
Title
Distinguishing IDH mutation status in gliomas using FTIR-ATR spectra of peripheral blood plasma indicating clear traces of protein amyloid aggregation
Authors
Saiko Kino
Masayuki Kanamori
Yoshiteru Shimoda
Kuniyasu Niizuma
Hidenori Endo
Yuji Matsuura
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-11970-y

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine