Skip to main content
Top
Published in: Cellular Oncology 1/2024

Open Access 07-09-2023 | Osteosarcoma | Research

Host-derived growth factors drive ERK phosphorylation and MCL1 expression to promote osteosarcoma cell survival during metastatic lung colonization

Authors: Camille A. McAloney, Rawan Makkawi, Yogesh Budhathoki, Matthew V. Cannon, Emily M. Franz, Amy C. Gross, Maren Cam, Tatyana A. Vetter, Rebekka Duhen, Alexander E. Davies, Ryan D. Roberts

Published in: Cellular Oncology | Issue 1/2024

Login to get access

Abstract

Purpose

For patients with osteosarcoma, disease-related mortality most often results from lung metastasis—a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis.

Methods

We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma.

Results

Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma.

Conclusion

Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference A. Luetke, P.A. Meyers, I. Lewis, H. Juergens, Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat. Rev. 40, 523–532 (2014)PubMedCrossRef A. Luetke, P.A. Meyers, I. Lewis, H. Juergens, Osteosarcoma treatment - where do we stand? A state of the art review. Cancer Treat. Rev. 40, 523–532 (2014)PubMedCrossRef
2.
go back to reference C. Khanna et al., Toward a drug development path that targets metastatic progression in osteosarcoma. Clin. Cancer Res. Off J. Am. Assoc. Cancer Res. 20, 4200–4209 (2014)CrossRef C. Khanna et al., Toward a drug development path that targets metastatic progression in osteosarcoma. Clin. Cancer Res. Off J. Am. Assoc. Cancer Res. 20, 4200–4209 (2014)CrossRef
3.
4.
go back to reference D.S. Hawkins, C.A.S. Arndt, Pattern of Disease recurrence and prognostic factors in patients with Osteosarcoma treated with contemporary chemotherapy. Cancer. 98, 2447–2456 (2003)PubMedCrossRef D.S. Hawkins, C.A.S. Arndt, Pattern of Disease recurrence and prognostic factors in patients with Osteosarcoma treated with contemporary chemotherapy. Cancer. 98, 2447–2456 (2003)PubMedCrossRef
5.
go back to reference G. Bacci et al., Treatment and outcome of recurrent osteosarcoma: experience at Rizzoli in 235 patients initially treated with neoadjuvant chemotherapy. Acta Oncol. 44, 748–755 (2005)PubMedCrossRef G. Bacci et al., Treatment and outcome of recurrent osteosarcoma: experience at Rizzoli in 235 patients initially treated with neoadjuvant chemotherapy. Acta Oncol. 44, 748–755 (2005)PubMedCrossRef
6.
go back to reference M.J. Bissell, W.C. Hines, Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011)PubMedPubMedCentralCrossRef M.J. Bissell, W.C. Hines, Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011)PubMedPubMedCentralCrossRef
9.
go back to reference T.M. Fan, R.D. Roberts, M.M. Lizardo, Understanding and modeling Metastasis Biology to improve therapeutic strategies for combating Osteosarcoma Progression. Front. Oncol. 10, 13 (2020)PubMedPubMedCentralCrossRef T.M. Fan, R.D. Roberts, M.M. Lizardo, Understanding and modeling Metastasis Biology to improve therapeutic strategies for combating Osteosarcoma Progression. Front. Oncol. 10, 13 (2020)PubMedPubMedCentralCrossRef
10.
go back to reference I.J. Fidler, Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. J. Natl. Cancer Inst. 45, 773–782 (1970)PubMed I.J. Fidler, Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2’-deoxyuridine. J. Natl. Cancer Inst. 45, 773–782 (1970)PubMed
11.
go back to reference M.D. Cameron et al., Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 60, 2541–2546 (2000)PubMed M.D. Cameron et al., Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 60, 2541–2546 (2000)PubMed
12.
13.
go back to reference W. Wang, H. Zhao, T. fu, Yao, H. Gong, Advanced development of ErbB family-targeted therapies in osteosarcoma treatment. Invest. New. Drugs. 37, 175–183 (2019)PubMedCrossRef W. Wang, H. Zhao, T. fu, Yao, H. Gong, Advanced development of ErbB family-targeted therapies in osteosarcoma treatment. Invest. New. Drugs. 37, 175–183 (2019)PubMedCrossRef
14.
15.
go back to reference J. Sheng et al., Association of RDM1 with osteosarcoma progression via cell cycle and MEK/ERK signalling pathway regulation. J. Cell. Mol. Med. 25, 8039–8046 (2021)PubMedPubMedCentralCrossRef J. Sheng et al., Association of RDM1 with osteosarcoma progression via cell cycle and MEK/ERK signalling pathway regulation. J. Cell. Mol. Med. 25, 8039–8046 (2021)PubMedPubMedCentralCrossRef
16.
go back to reference H.L. Gardner et al., Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. Commun. Biol. 2, 1–13 (2019)CrossRef H.L. Gardner et al., Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. Commun. Biol. 2, 1–13 (2019)CrossRef
17.
go back to reference D. Cao et al., Blockade of IGF/IGF-1R signaling axis with soluble IGF-1R mutants suppresses the cell proliferation and tumor growth of human osteosarcoma. Am. J. Cancer Res. 10, 3248–3266 (2020)PubMedPubMedCentral D. Cao et al., Blockade of IGF/IGF-1R signaling axis with soluble IGF-1R mutants suppresses the cell proliferation and tumor growth of human osteosarcoma. Am. J. Cancer Res. 10, 3248–3266 (2020)PubMedPubMedCentral
18.
go back to reference J.A. Perry et al., Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl. Acad. Sci. U. S. A. 111, E5564–E5573 (2014) J.A. Perry et al., Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl. Acad. Sci. U. S. A. 111, E5564–E5573 (2014)
19.
go back to reference C. Wang et al., Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway. Cancer Lett. 403, 271–279 (2017)PubMedCrossRef C. Wang et al., Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway. Cancer Lett. 403, 271–279 (2017)PubMedCrossRef
20.
go back to reference Y. Yu, F. Luk, J.L. Yang, W.R. Walsh, Ras/Raf/MEK/ERK pathway is associated with lung metastasis of osteosarcoma in an orthotopic mouse model. Anticancer Res. 31, 1147–1152 (2011)PubMed Y. Yu, F. Luk, J.L. Yang, W.R. Walsh, Ras/Raf/MEK/ERK pathway is associated with lung metastasis of osteosarcoma in an orthotopic mouse model. Anticancer Res. 31, 1147–1152 (2011)PubMed
21.
go back to reference K. Scotlandi et al., Prognostic and therapeutic relevance of HER2 expression in osteosarcoma and Ewing’s sarcoma. Eur. J. Cancer. 41, 1349–1361 (2005)PubMedCrossRef K. Scotlandi et al., Prognostic and therapeutic relevance of HER2 expression in osteosarcoma and Ewing’s sarcoma. Eur. J. Cancer. 41, 1349–1361 (2005)PubMedCrossRef
22.
go back to reference R. Gorlick et al., Expression of HER2/erb B-2 correlates with survival in Osteosarcoma. J. Clin. Oncol. 17, 2781–2781 (1999)PubMedCrossRef R. Gorlick et al., Expression of HER2/erb B-2 correlates with survival in Osteosarcoma. J. Clin. Oncol. 17, 2781–2781 (1999)PubMedCrossRef
23.
go back to reference M. Onda et al., ErbB-2 expression is correlated with poor prognosis for patients with osteosarcoma. Cancer. 77, 71–78 (1996)PubMedCrossRef M. Onda et al., ErbB-2 expression is correlated with poor prognosis for patients with osteosarcoma. Cancer. 77, 71–78 (1996)PubMedCrossRef
24.
go back to reference Y.H. Wen et al., Epidermal growth factor receptor in osteosarcoma: expression and mutational analysis. Hum. Pathol. 38, 1184–1191 (2007)PubMedCrossRef Y.H. Wen et al., Epidermal growth factor receptor in osteosarcoma: expression and mutational analysis. Hum. Pathol. 38, 1184–1191 (2007)PubMedCrossRef
25.
go back to reference S.S. Freeman et al., Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors. Cancer. 113, 1453–1461 (2008)PubMedCrossRef S.S. Freeman et al., Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors. Cancer. 113, 1453–1461 (2008)PubMedCrossRef
26.
go back to reference F. Sevelda et al., EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. J. Exp. Clin. Cancer Res. 34, 134 (2015)PubMedPubMedCentralCrossRef F. Sevelda et al., EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. J. Exp. Clin. Cancer Res. 34, 134 (2015)PubMedPubMedCentralCrossRef
27.
go back to reference J. Gill, R. Gorlick, Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol. 18, 609–624 (2021)PubMedCrossRef J. Gill, R. Gorlick, Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol. 18, 609–624 (2021)PubMedCrossRef
28.
go back to reference Y. Pignochino et al., Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol. Cancer. 8, 1–17 (2009)CrossRef Y. Pignochino et al., Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol. Cancer. 8, 1–17 (2009)CrossRef
29.
go back to reference G. Han, Y. Wang, W. Bi, c-Myc overexpression promotes Osteosarcoma Cell Invasion Via activation of MEK-ERK Pathway. Oncol. Res. Featur Preclin Clin. Cancer Ther. 20, 149–156 (2012) G. Han, Y. Wang, W. Bi, c-Myc overexpression promotes Osteosarcoma Cell Invasion Via activation of MEK-ERK Pathway. Oncol. Res. Featur Preclin Clin. Cancer Ther. 20, 149–156 (2012)
30.
31.
go back to reference C.-M. Leu, C. Chang, C. Hu, Epidermal growth factor (EGF) suppresses staurosporine-induced apoptosis by inducing mcl-1 via the mitogen-activated protein kinase pathway. Oncogene. 19, 1665–1675 (2000)PubMedCrossRef C.-M. Leu, C. Chang, C. Hu, Epidermal growth factor (EGF) suppresses staurosporine-induced apoptosis by inducing mcl-1 via the mitogen-activated protein kinase pathway. Oncogene. 19, 1665–1675 (2000)PubMedCrossRef
32.
go back to reference H. Wang, M. Guo, H. Wei, Y. Chen, Targeting MCL-1 in cancer: current status and perspectives. J. Hematol. Oncol. J. Hematol. Oncol. 14, 1–18 (2021)PubMed H. Wang, M. Guo, H. Wei, Y. Chen, Targeting MCL-1 in cancer: current status and perspectives. J. Hematol. Oncol. J. Hematol. Oncol. 14, 1–18 (2021)PubMed
33.
go back to reference L.W. Thomas, C. Lam, S.W. Edwards, Mcl-1; the molecular regulation of protein function. FEBS Lett. 584, 2981–2989 (2010)PubMedCrossRef L.W. Thomas, C. Lam, S.W. Edwards, Mcl-1; the molecular regulation of protein function. FEBS Lett. 584, 2981–2989 (2010)PubMedCrossRef
34.
go back to reference Le S. Gouill et al., VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 104, 2886–2892 (2004)PubMedCrossRef Le S. Gouill et al., VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 104, 2886–2892 (2004)PubMedCrossRef
35.
36.
go back to reference W. Nakajima, M.A. Hicks, N. Tanaka, G.W. Krystal, H. Harada, Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell. Death Dis. 5, e1052–e1052 (2014)PubMedPubMedCentralCrossRef W. Nakajima, M.A. Hicks, N. Tanaka, G.W. Krystal, H. Harada, Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell. Death Dis. 5, e1052–e1052 (2014)PubMedPubMedCentralCrossRef
37.
go back to reference S. Kehr et al., Targeting BCL-2 proteins in pediatric cancer: dual inhibition of BCL-XL and MCL-1 leads to rapid induction of intrinsic apoptosis. Cancer Lett. 482, 19–32 (2020)PubMedCrossRef S. Kehr et al., Targeting BCL-2 proteins in pediatric cancer: dual inhibition of BCL-XL and MCL-1 leads to rapid induction of intrinsic apoptosis. Cancer Lett. 482, 19–32 (2020)PubMedCrossRef
38.
go back to reference S. Kehr, M. Vogler, It’s time to die: BH3 mimetics in solid tumors. Biochim. Biophys. Acta BBA - Mol. Cell. Res. 1868, 118987 (2021)CrossRef S. Kehr, M. Vogler, It’s time to die: BH3 mimetics in solid tumors. Biochim. Biophys. Acta BBA - Mol. Cell. Res. 1868, 118987 (2021)CrossRef
39.
go back to reference B. Zhao et al., Understanding the Species Selectivity of Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors. Biochemistry 57, 4952–4958 (2018) B. Zhao et al., Understanding the Species Selectivity of Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors. Biochemistry 57, 4952–4958 (2018)
40.
go back to reference A.E. Tron et al., Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun. 9, (2018) A.E. Tron et al., Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun. 9, (2018)
41.
go back to reference A. Kotschy et al., The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 538, 477–482 (2016)ADSPubMedCrossRef A. Kotschy et al., The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 538, 477–482 (2016)ADSPubMedCrossRef
42.
go back to reference J.M. Fenger, C.A. London, W.C. Kisseberth, Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J. 55, 69–85 (2014)PubMedCrossRef J.M. Fenger, C.A. London, W.C. Kisseberth, Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J. 55, 69–85 (2014)PubMedCrossRef
44.
go back to reference F. Mueller, B. Fuchs, B. Kaser-Hotz, Comparative biology of human and canine osteosarcoma. Anticancer Res. 27, 155–164 (2007)PubMed F. Mueller, B. Fuchs, B. Kaser-Hotz, Comparative biology of human and canine osteosarcoma. Anticancer Res. 27, 155–164 (2007)PubMed
45.
go back to reference J.C. Phillips, L. Lembcke, T. Chamberlin, A novel locus for canine osteosarcoma (OSA1) maps to CFA34, the canine orthologue of human 3q26. Genomics. 96, 220–227 (2010)PubMedCrossRef J.C. Phillips, L. Lembcke, T. Chamberlin, A novel locus for canine osteosarcoma (OSA1) maps to CFA34, the canine orthologue of human 3q26. Genomics. 96, 220–227 (2010)PubMedCrossRef
46.
go back to reference M. Paoloni et al., Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genom. 10, 625 (2009)CrossRef M. Paoloni et al., Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression. BMC Genom. 10, 625 (2009)CrossRef
48.
go back to reference H.L. Gardner, J.M. Fenger, C.A. London, Dogs as a model for Cancer. Annu. Rev. Anim. Biosci. 4, 199–222 (2016)PubMedCrossRef H.L. Gardner, J.M. Fenger, C.A. London, Dogs as a model for Cancer. Annu. Rev. Anim. Biosci. 4, 199–222 (2016)PubMedCrossRef
50.
go back to reference S.S. Pinho, S. Carvalho, J. Cabral, C.A. Reis, F. Gärtner, Canine tumors: a spontaneous animal model of human carcinogenesis. Transl Res. 159, 165–172 (2012)PubMedCrossRef S.S. Pinho, S. Carvalho, J. Cabral, C.A. Reis, F. Gärtner, Canine tumors: a spontaneous animal model of human carcinogenesis. Transl Res. 159, 165–172 (2012)PubMedCrossRef
51.
go back to reference P.J. Houghton et al., The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer. 49, 928–940 (2007)PubMedCrossRef P.J. Houghton et al., The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer. 49, 928–940 (2007)PubMedCrossRef
52.
go back to reference S.A. Stewart et al., Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA N. Y. N. 9, 493–501 (2003)CrossRef S.A. Stewart et al., Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA N. Y. N. 9, 493–501 (2003)CrossRef
55.
go back to reference L. Ombrato et al., Generation of neighbor-labeling cells to study intercellular interactions in vivo. Nat. Protoc. 16, 872–892 (2021)PubMedCrossRef L. Ombrato et al., Generation of neighbor-labeling cells to study intercellular interactions in vivo. Nat. Protoc. 16, 872–892 (2021)PubMedCrossRef
56.
go back to reference E.V. Paster, K.A. Villines, D.L. Hickman, Endpoints for mouse abdominal tumor models: refinement of current Criteria. Comp. Med. 59, 234 (2009)PubMedPubMedCentral E.V. Paster, K.A. Villines, D.L. Hickman, Endpoints for mouse abdominal tumor models: refinement of current Criteria. Comp. Med. 59, 234 (2009)PubMedPubMedCentral
57.
go back to reference M. Pargett, T.E. Gillies, C.K. Teragawa, B. Sparta, J.G. Albeck, Single-cell imaging of ERK signaling using fluorescent biosensors. Methods Mol. Biol. Clifton NJ. 1636, 35–59 (2017)CrossRef M. Pargett, T.E. Gillies, C.K. Teragawa, B. Sparta, J.G. Albeck, Single-cell imaging of ERK signaling using fluorescent biosensors. Methods Mol. Biol. Clifton NJ. 1636, 35–59 (2017)CrossRef
58.
go back to reference M. Pargett, J.G. Albeck, Live-Cell Imaging and Analysis with Multiple Genetically Encoded Reporters. Curr. Protoc. Cell Biol. 78, 4.36.1–4.36.19 (2018) M. Pargett, J.G. Albeck, Live-Cell Imaging and Analysis with Multiple Genetically Encoded Reporters. Curr. Protoc. Cell Biol. 78, 4.36.1–4.36.19 (2018)
63.
go back to reference A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018)PubMedPubMedCentralCrossRef A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018)PubMedPubMedCentralCrossRef
64.
go back to reference R. Satija, J.A. Farrell, D. Gennert, A.F. Schier, A. Regev, Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015)PubMedPubMedCentralCrossRef R. Satija, J.A. Farrell, D. Gennert, A.F. Schier, A. Regev, Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015)PubMedPubMedCentralCrossRef
65.
go back to reference D. Aran et al., Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019)PubMedPubMedCentralCrossRef D. Aran et al., Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019)PubMedPubMedCentralCrossRef
67.
go back to reference F.H.G. Tessaro et al., Single-cell RNA-seq of a soft-tissue sarcoma model reveals the critical role of tumor-expressed MIF in shaping macrophage heterogeneity. Cell. Rep. 39, 110977 (2022)PubMedPubMedCentralCrossRef F.H.G. Tessaro et al., Single-cell RNA-seq of a soft-tissue sarcoma model reveals the critical role of tumor-expressed MIF in shaping macrophage heterogeneity. Cell. Rep. 39, 110977 (2022)PubMedPubMedCentralCrossRef
68.
go back to reference C. Li, K. Hua, Dissecting the single-cell Transcriptome Network of Immune Environment Underlying Cervical Premalignant Lesion, Cervical Cancer and metastatic lymph nodes. Front. Immunol. 13, 897366 (2022)PubMedPubMedCentralCrossRef C. Li, K. Hua, Dissecting the single-cell Transcriptome Network of Immune Environment Underlying Cervical Premalignant Lesion, Cervical Cancer and metastatic lymph nodes. Front. Immunol. 13, 897366 (2022)PubMedPubMedCentralCrossRef
69.
go back to reference L. Zhang et al., Single-cell analyses inform mechanisms of myeloid-targeted therapies in Colon cancer. Cell. 181, 442–459e29 (2020)PubMedCrossRef L. Zhang et al., Single-cell analyses inform mechanisms of myeloid-targeted therapies in Colon cancer. Cell. 181, 442–459e29 (2020)PubMedCrossRef
70.
go back to reference R.-Y. Ma, A. Black, B.-Z. Qian, Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022)PubMedCrossRef R.-Y. Ma, A. Black, B.-Z. Qian, Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022)PubMedCrossRef
72.
go back to reference R. Browaeys, W. Saelens, Y. Saeys, NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods. 17, 159–162 (2020)PubMedCrossRef R. Browaeys, W. Saelens, Y. Saeys, NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods. 17, 159–162 (2020)PubMedCrossRef
73.
go back to reference J. Bonnardel et al., Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer Cell Identity on Monocytes colonizing the liver macrophage niche. Immunity. 51, 638–654e9 (2019)PubMedPubMedCentralCrossRef J. Bonnardel et al., Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer Cell Identity on Monocytes colonizing the liver macrophage niche. Immunity. 51, 638–654e9 (2019)PubMedPubMedCentralCrossRef
74.
go back to reference A. Krämer, J. Green, J. Pollard, S. Tugendreich, Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 30, 523–530 (2014)PubMedCrossRef A. Krämer, J. Green, J. Pollard, S. Tugendreich, Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 30, 523–530 (2014)PubMedCrossRef
75.
go back to reference A. Subramanian et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci 102, 15545–15550 (2005) A. Subramanian et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci 102, 15545–15550 (2005)
76.
go back to reference V.K. Mootha et al., PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003)PubMedCrossRef V.K. Mootha et al., PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003)PubMedCrossRef
77.
go back to reference T.E. Gillies, M. Pargett, M. Minguet, A.E. Davies, J.G. Albeck, Linear integration of ERK activity predominates over persistence detection in Fra-1 regulation. Cell. Syst. 5, 549 (2017)PubMedPubMedCentralCrossRef T.E. Gillies, M. Pargett, M. Minguet, A.E. Davies, J.G. Albeck, Linear integration of ERK activity predominates over persistence detection in Fra-1 regulation. Cell. Syst. 5, 549 (2017)PubMedPubMedCentralCrossRef
78.
go back to reference A.E. Davies et al., Systems-Level Properties of EGFR-RAS-ERK Signaling amplify local signals to generate dynamic gene expression heterogeneity. Cell. Syst. 11, 161–175e5 (2020)PubMedPubMedCentralCrossRef A.E. Davies et al., Systems-Level Properties of EGFR-RAS-ERK Signaling amplify local signals to generate dynamic gene expression heterogeneity. Cell. Syst. 11, 161–175e5 (2020)PubMedPubMedCentralCrossRef
79.
go back to reference S.P. Kennedy, J.F. Hastings, J.Z.R. Han, D.R. Croucher, The under-appreciated promiscuity of the epidermal growth factor receptor family. Front. Cell. Dev. Biol. 4, 88 (2016)PubMedPubMedCentralCrossRef S.P. Kennedy, J.F. Hastings, J.Z.R. Han, D.R. Croucher, The under-appreciated promiscuity of the epidermal growth factor receptor family. Front. Cell. Dev. Biol. 4, 88 (2016)PubMedPubMedCentralCrossRef
80.
go back to reference P.J. Green, F.S. Walsh, P. Doherty, Promiscuity of fibroblast growth factor receptors. BioEssays. 18, 639–646 (1996)PubMedCrossRef P.J. Green, F.S. Walsh, P. Doherty, Promiscuity of fibroblast growth factor receptors. BioEssays. 18, 639–646 (1996)PubMedCrossRef
81.
go back to reference S. Regot, J.J. Hughey, B.T. Bajar, S. Carrasco, M.W. Covert, High-sensitivity measurements of multiple kinase activities in live single cells. Cell. 157, 1724–1734 (2014)PubMedPubMedCentralCrossRef S. Regot, J.J. Hughey, B.T. Bajar, S. Carrasco, M.W. Covert, High-sensitivity measurements of multiple kinase activities in live single cells. Cell. 157, 1724–1734 (2014)PubMedPubMedCentralCrossRef
82.
go back to reference A. Colciago et al., In Vitro Effects of PDGF Isoforms (AA, BB, AB and CC) on Migration and Proliferation of SaOS-2 osteoblasts and on Migration of human osteoblasts. Int. J. Biomed. Sci. IJBS. 5, 380–389 (2009)PubMedCrossRef A. Colciago et al., In Vitro Effects of PDGF Isoforms (AA, BB, AB and CC) on Migration and Proliferation of SaOS-2 osteoblasts and on Migration of human osteoblasts. Int. J. Biomed. Sci. IJBS. 5, 380–389 (2009)PubMedCrossRef
83.
go back to reference K.-P. Zhu et al., Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in Osteosarcoma Chemo-Resistance. Mol. Ther. 27, 518–530 (2019)PubMedPubMedCentralCrossRef K.-P. Zhu et al., Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in Osteosarcoma Chemo-Resistance. Mol. Ther. 27, 518–530 (2019)PubMedPubMedCentralCrossRef
84.
go back to reference T. Kubo et al., Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer. 112, 2119–2129 (2008)PubMedCrossRef T. Kubo et al., Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer. 112, 2119–2129 (2008)PubMedCrossRef
85.
go back to reference I. Sulzbacher et al., Expression of platelet-derived growth Factor-AA is Associated with Tumor Progression in Osteosarcoma. Mod. Pathol. 16, 66–71 (2003)PubMedCrossRef I. Sulzbacher et al., Expression of platelet-derived growth Factor-AA is Associated with Tumor Progression in Osteosarcoma. Mod. Pathol. 16, 66–71 (2003)PubMedCrossRef
86.
go back to reference I. Sulzbacher, M. Träxler, I. Mosberger, S. Lang, A. Chott, Platelet-derived growth Factor-AA and -α receptor expression suggests an autocrine and/or Paracrine Loop in Osteosarcoma. Mod. Pathol. 13, 632–637 (2000)PubMedCrossRef I. Sulzbacher, M. Träxler, I. Mosberger, S. Lang, A. Chott, Platelet-derived growth Factor-AA and -α receptor expression suggests an autocrine and/or Paracrine Loop in Osteosarcoma. Mod. Pathol. 13, 632–637 (2000)PubMedCrossRef
87.
go back to reference M. Song, S.D. Finley, ERK and akt exhibit distinct signaling responses following stimulation by pro-angiogenic factors. Cell. Commun. Signal. CCS. 18, 114 (2020)PubMedCrossRef M. Song, S.D. Finley, ERK and akt exhibit distinct signaling responses following stimulation by pro-angiogenic factors. Cell. Commun. Signal. CCS. 18, 114 (2020)PubMedCrossRef
88.
go back to reference S.T. Eblen, Chapter Four - Extracellular-Regulated Kinases: Signaling from ras to ERK Substrates to control Biological Outcomes, in Advances in Cancer Research, vol. 138, ed. by K.D. Tew, P.B. Fisher (Academic Press, 2018), pp. 99–142 S.T. Eblen, Chapter Four - Extracellular-Regulated Kinases: Signaling from ras to ERK Substrates to control Biological Outcomes, in Advances in Cancer Research, vol. 138, ed. by K.D. Tew, P.B. Fisher (Academic Press, 2018), pp. 99–142
89.
go back to reference H. Lavoie, J. Gagnon, M. Therrien, ERK signalling: a master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell. Biol. 21, 607–632 (2020)PubMedCrossRef H. Lavoie, J. Gagnon, M. Therrien, ERK signalling: a master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell. Biol. 21, 607–632 (2020)PubMedCrossRef
90.
go back to reference A.N. Hata, J.A. Engelman, A.C. Faber, The BCL2 family: key mediators of the apoptotic response to targeted Anticancer therapeutics. Cancer Discov. 5, 475–487 (2015)PubMedPubMedCentralCrossRef A.N. Hata, J.A. Engelman, A.C. Faber, The BCL2 family: key mediators of the apoptotic response to targeted Anticancer therapeutics. Cancer Discov. 5, 475–487 (2015)PubMedPubMedCentralCrossRef
91.
go back to reference M. Abraham et al., The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16 – 1 expression. Leukemia. 31, 2336–2346 (2017)PubMedCrossRef M. Abraham et al., The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16 – 1 expression. Leukemia. 31, 2336–2346 (2017)PubMedCrossRef
92.
go back to reference S. Klein et al., CXCR4 promotes Neuroblastoma Growth and Therapeutic Resistance through miR-15a/16 – 1–Mediated ERK and BCL2/Cyclin D1 pathways. Cancer Res. 78, 1471–1483 (2018)PubMedCrossRef S. Klein et al., CXCR4 promotes Neuroblastoma Growth and Therapeutic Resistance through miR-15a/16 – 1–Mediated ERK and BCL2/Cyclin D1 pathways. Cancer Res. 78, 1471–1483 (2018)PubMedCrossRef
93.
go back to reference T. Knight, D. Luedtke, H. Edwards, J.W. Taub, Y. Ge, A delicate balance – the BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem. Pharmacol. 162, 250–261 (2019)PubMedCrossRef T. Knight, D. Luedtke, H. Edwards, J.W. Taub, Y. Ge, A delicate balance – the BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem. Pharmacol. 162, 250–261 (2019)PubMedCrossRef
94.
go back to reference R. Ullah, Q. Yin, A.H. Snell, L. Wan, RAF-MEK-ERK pathway in cancer evolution and treatment. Semin. Cancer Biol. 85, 123–154 (2022)PubMedCrossRef R. Ullah, Q. Yin, A.H. Snell, L. Wan, RAF-MEK-ERK pathway in cancer evolution and treatment. Semin. Cancer Biol. 85, 123–154 (2022)PubMedCrossRef
95.
96.
go back to reference J.A. McCubrey et al., Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta BBA - Mol. Cell. Res. 1773, 1263–1284 (2007)CrossRef J.A. McCubrey et al., Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta BBA - Mol. Cell. Res. 1773, 1263–1284 (2007)CrossRef
97.
go back to reference S.J. Cook, K. Stuart, R. Gilley, M.J. Sale, Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 284, 4177–4195 (2017)PubMedPubMedCentralCrossRef S.J. Cook, K. Stuart, R. Gilley, M.J. Sale, Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 284, 4177–4195 (2017)PubMedPubMedCentralCrossRef
98.
go back to reference V. Raimondi et al., A personalized molecular approach in multiple myeloma: the possible use of RAF/RAS/MEK/ERK and BCL-2 inhibitors. Explor. Target. Anti-Tumor Ther. 3, 463–479 (2022)CrossRef V. Raimondi et al., A personalized molecular approach in multiple myeloma: the possible use of RAF/RAS/MEK/ERK and BCL-2 inhibitors. Explor. Target. Anti-Tumor Ther. 3, 463–479 (2022)CrossRef
99.
go back to reference O. Vitagliano et al., The Bcl-2/Bax and Ras/Raf/MEK/ERK signaling pathways: implications in pediatric leukemia pathogenesis and new prospects for therapeutic approaches. Expert Rev. Hematol. 6, 587–597 (2013)PubMedCrossRef O. Vitagliano et al., The Bcl-2/Bax and Ras/Raf/MEK/ERK signaling pathways: implications in pediatric leukemia pathogenesis and new prospects for therapeutic approaches. Expert Rev. Hematol. 6, 587–597 (2013)PubMedCrossRef
100.
go back to reference M.-J. Boucher et al., MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-XL, and Mcl-1 and promotes survival of human pancreatic cancer cells. J. Cell. Biochem. 79, 355–369 (2000)PubMedCrossRef M.-J. Boucher et al., MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-XL, and Mcl-1 and promotes survival of human pancreatic cancer cells. J. Cell. Biochem. 79, 355–369 (2000)PubMedCrossRef
101.
go back to reference J.M. Galante, M.M. Mortenson, T.L. Bowles, S. Virudachalam, R. Bold, J. ERK/BCL-2 pathway in the resistance of pancreatic Cancer to Anoikis. J. Surg. Res. 152, 18–25 (2009)PubMedCrossRef J.M. Galante, M.M. Mortenson, T.L. Bowles, S. Virudachalam, R. Bold, J. ERK/BCL-2 pathway in the resistance of pancreatic Cancer to Anoikis. J. Surg. Res. 152, 18–25 (2009)PubMedCrossRef
102.
go back to reference A. Egenvall, A. Nødtvedt, von H. Euler, Bone tumors in a population of 400 000 insured swedish dogs up to 10 y of age: incidence and survival. Can. J. Vet. Res. Rev. Can. Rech Veterinaire. 71, 292–299 (2007) A. Egenvall, A. Nødtvedt, von H. Euler, Bone tumors in a population of 400 000 insured swedish dogs up to 10 y of age: incidence and survival. Can. J. Vet. Res. Rev. Can. Rech Veterinaire. 71, 292–299 (2007)
103.
go back to reference E.G. MacEwen, I.D. Kurzman, Canine osteosarcoma: amputation and chemoimmunotherapy. Vet. Clin. North. Am. Small Anim. Pract. 26, 123–133 (1996)PubMedCrossRef E.G. MacEwen, I.D. Kurzman, Canine osteosarcoma: amputation and chemoimmunotherapy. Vet. Clin. North. Am. Small Anim. Pract. 26, 123–133 (1996)PubMedCrossRef
104.
go back to reference E.G. MacEwen et al., Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J. Natl. Cancer Inst. 81, 935–938 (1989)PubMedCrossRef E.G. MacEwen et al., Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J. Natl. Cancer Inst. 81, 935–938 (1989)PubMedCrossRef
105.
go back to reference E. Gregory MacEwen, I.D. Kurzman, Canine osteosarcoma. Vet. Clin. North. Am. Small Anim. Pract. 26, 123–133 (1996)CrossRef E. Gregory MacEwen, I.D. Kurzman, Canine osteosarcoma. Vet. Clin. North. Am. Small Anim. Pract. 26, 123–133 (1996)CrossRef
106.
go back to reference I.D. Kurzman et al., Adjuvant therapy for Osteosarcoma in Dogs: results of Randomized clinical trials using combined Liposome-Encapsulated Muramyl Tripeptide and Cisplatin. Clin. Cancer Res. 1, 1595–1601 (1995)PubMed I.D. Kurzman et al., Adjuvant therapy for Osteosarcoma in Dogs: results of Randomized clinical trials using combined Liposome-Encapsulated Muramyl Tripeptide and Cisplatin. Clin. Cancer Res. 1, 1595–1601 (1995)PubMed
107.
go back to reference D.M. Vail, E.G. MacEwen, Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest. 18, 781–792 (2000)PubMedCrossRef D.M. Vail, E.G. MacEwen, Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest. 18, 781–792 (2000)PubMedCrossRef
108.
go back to reference N.J. Mason, Comparative immunology and immunotherapy of Canine Osteosarcoma, in Current Advances in the Science of Osteosarcoma: Research Perspectives: Tumor Biology, Organ Microenvironment, Potential New Therapeutic Targets, and Canine Models, ed. by E.S. Kleinerman, R. Gorlick (Springer International Publishing, 2020), pp. 199–221. https://doi.org/10.1007/978-3-030-43085-6_14 N.J. Mason, Comparative immunology and immunotherapy of Canine Osteosarcoma, in Current Advances in the Science of Osteosarcoma: Research Perspectives: Tumor Biology, Organ Microenvironment, Potential New Therapeutic Targets, and Canine Models, ed. by E.S. Kleinerman, R. Gorlick (Springer International Publishing, 2020), pp. 199–221. https://​doi.​org/​10.​1007/​978-3-030-43085-6_​14
109.
go back to reference S.J. Withrow, B.E. Powers, R.C. Straw, R.M. Wilkins, Comparative aspects of osteosarcoma. Dog versus man. Clin. Orthop. 159–168 (1991) S.J. Withrow, B.E. Powers, R.C. Straw, R.M. Wilkins, Comparative aspects of osteosarcoma. Dog versus man. Clin. Orthop. 159–168 (1991)
110.
go back to reference K. Lee et al., MYC and MCL1 cooperatively promote chemotherapy-resistant breast Cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell. Metab. 26, 633–647e7 (2017)PubMedPubMedCentralCrossRef K. Lee et al., MYC and MCL1 cooperatively promote chemotherapy-resistant breast Cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell. Metab. 26, 633–647e7 (2017)PubMedPubMedCentralCrossRef
111.
go back to reference H. Widden, W.J. Placzek, The multiple mechanisms of MCL1 in the regulation of cell fate. Commun. Biol. 4, 1–12 (2021)CrossRef H. Widden, W.J. Placzek, The multiple mechanisms of MCL1 in the regulation of cell fate. Commun. Biol. 4, 1–12 (2021)CrossRef
112.
go back to reference S. Li, W. Guo, H. Wu, The role of post-translational modifications in the regulation of MCL1. Cell. Signal. 81, 109933 (2021)PubMedCrossRef S. Li, W. Guo, H. Wu, The role of post-translational modifications in the regulation of MCL1. Cell. Signal. 81, 109933 (2021)PubMedCrossRef
113.
go back to reference H.-F. Yang-Yen, Mcl-1: a highly regulated cell death and survival controller. J. Biomed. Sci. 13, 201–204 (2006)PubMedCrossRef H.-F. Yang-Yen, Mcl-1: a highly regulated cell death and survival controller. J. Biomed. Sci. 13, 201–204 (2006)PubMedCrossRef
114.
go back to reference V.V. Senichkin, A.Y. Streletskaia, A.S. Gorbunova, B. Zhivotovsky, G.S. Kopeina, Saga of Mcl-1: regulation from transcription to degradation. Cell. Death Differ. 27, 405–419 (2020)PubMedPubMedCentralCrossRef V.V. Senichkin, A.Y. Streletskaia, A.S. Gorbunova, B. Zhivotovsky, G.S. Kopeina, Saga of Mcl-1: regulation from transcription to degradation. Cell. Death Differ. 27, 405–419 (2020)PubMedPubMedCentralCrossRef
115.
go back to reference R.M. McAllister et al., Cultivation in vitro of cells derived from a human osteosarcoma. Cancer. 27, 397–402 (1971)PubMedCrossRef R.M. McAllister et al., Cultivation in vitro of cells derived from a human osteosarcoma. Cancer. 27, 397–402 (1971)PubMedCrossRef
116.
go back to reference L. Ottaviano et al., Molecular characterization of commonly used cell lines for bone tumor research: a trans-european EuroBoNet effort. Genes. Chromosomes Cancer. 49, 40–51 (2010)PubMedCrossRef L. Ottaviano et al., Molecular characterization of commonly used cell lines for bone tumor research: a trans-european EuroBoNet effort. Genes. Chromosomes Cancer. 49, 40–51 (2010)PubMedCrossRef
117.
go back to reference C. Meazza, S. Bastoni, P. Scanagatta, What is the best clinical approach to recurrent/refractory osteosarcoma? Expert Rev. Anticancer Ther. 20, 415–428 (2020)PubMedCrossRef C. Meazza, S. Bastoni, P. Scanagatta, What is the best clinical approach to recurrent/refractory osteosarcoma? Expert Rev. Anticancer Ther. 20, 415–428 (2020)PubMedCrossRef
118.
go back to reference R.D. Roberts, M.F. Wedekind, B.A. Setty, Malignant Pediatric Bone Tumors—Treatment & Management (Springer, 2015) R.D. Roberts, M.F. Wedekind, B.A. Setty, Malignant Pediatric Bone Tumors—Treatment & Management (Springer, 2015)
120.
go back to reference S.J. Strauss et al., Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. Off J. Eur. Soc. Med. Oncol. 32, 1520–1536 (2021)CrossRef S.J. Strauss et al., Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. Off J. Eur. Soc. Med. Oncol. 32, 1520–1536 (2021)CrossRef
121.
go back to reference J.C. Gentet et al., Ifosfamide and etoposide in childhood osteosarcoma. A phase II study of the French Society of Paediatric Oncology. Eur. J. Cancer Oxf. Engl. 1990. 33, 232–237 (1997) J.C. Gentet et al., Ifosfamide and etoposide in childhood osteosarcoma. A phase II study of the French Society of Paediatric Oncology. Eur. J. Cancer Oxf. Engl. 1990. 33, 232–237 (1997)
122.
go back to reference J.A. Lee et al., Higher Gemcitabine Dose was Associated with Better Outcome of Osteosarcoma Patients receiving gemcitabine-docetaxel chemotherapy. Pediatr. Blood Cancer. 63, 1552–1556 (2016)PubMedCrossRef J.A. Lee et al., Higher Gemcitabine Dose was Associated with Better Outcome of Osteosarcoma Patients receiving gemcitabine-docetaxel chemotherapy. Pediatr. Blood Cancer. 63, 1552–1556 (2016)PubMedCrossRef
123.
go back to reference J.S. Miser et al., Ifosfamide with mesna uroprotection and etoposide: an effective regimen in the treatment of recurrent sarcomas and other tumors of children and young adults. J. Clin. Oncol. Off J. Am. Soc. Clin. Oncol. 5, 1191–1198 (1987)CrossRef J.S. Miser et al., Ifosfamide with mesna uroprotection and etoposide: an effective regimen in the treatment of recurrent sarcomas and other tumors of children and young adults. J. Clin. Oncol. Off J. Am. Soc. Clin. Oncol. 5, 1191–1198 (1987)CrossRef
124.
go back to reference C. Rodríguez-Galindo et al., Treatment of refractory osteosarcoma with fractionated cyclophosphamide and etoposide. J. Pediatr. Hematol. Oncol. 24, 250–255 (2002)PubMedCrossRef C. Rodríguez-Galindo et al., Treatment of refractory osteosarcoma with fractionated cyclophosphamide and etoposide. J. Pediatr. Hematol. Oncol. 24, 250–255 (2002)PubMedCrossRef
125.
go back to reference F.M. Akl, M.F. Akl, Cyclophosphamide and Etoposide as a salvage treatment in metastatic osteosarcoma patients. J. Cancer Ther. 9, 529–537 (2018)CrossRef F.M. Akl, M.F. Akl, Cyclophosphamide and Etoposide as a salvage treatment in metastatic osteosarcoma patients. J. Cancer Ther. 9, 529–537 (2018)CrossRef
126.
go back to reference B. Massimo et al., Phase 2 trial of two courses of cyclophosphamide and etoposide for relapsed high-risk osteosarcoma patients. Cancer. 115, 2980–2987 (2009)CrossRef B. Massimo et al., Phase 2 trial of two courses of cyclophosphamide and etoposide for relapsed high-risk osteosarcoma patients. Cancer. 115, 2980–2987 (2009)CrossRef
127.
go back to reference E.M. Greenfield, C.D. Collier, P.J. Getty, Receptor tyrosine kinases in Osteosarcoma: 2019 update. Adv. Exp. Med. Biol. 1258, 141–155 (2020)PubMedCrossRef E.M. Greenfield, C.D. Collier, P.J. Getty, Receptor tyrosine kinases in Osteosarcoma: 2019 update. Adv. Exp. Med. Biol. 1258, 141–155 (2020)PubMedCrossRef
128.
go back to reference D.J. Harrison, D.S. Geller, J.D. Gill, V.O. Lewis, R. Gorlick, Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer Ther. 18, 39–50 (2018)PubMedCrossRef D.J. Harrison, D.S. Geller, J.D. Gill, V.O. Lewis, R. Gorlick, Current and future therapeutic approaches for osteosarcoma. Expert Rev. Anticancer Ther. 18, 39–50 (2018)PubMedCrossRef
129.
go back to reference C.M. Hattinger, M.P. Patrizio, F. Magagnoli, S. Luppi, M. Serra, An update on emerging drugs in osteosarcoma: towards tailored therapies? Expert Opin. Emerg. Drugs. 24, 153–171 (2019)PubMedCrossRef C.M. Hattinger, M.P. Patrizio, F. Magagnoli, S. Luppi, M. Serra, An update on emerging drugs in osteosarcoma: towards tailored therapies? Expert Opin. Emerg. Drugs. 24, 153–171 (2019)PubMedCrossRef
130.
go back to reference J.K. Anninga et al., Overexpression of the HER-2 oncogene does not play a role in high-grade osteosarcomas. Eur. J. Cancer. 40, 963–970 (2004)PubMedCrossRef J.K. Anninga et al., Overexpression of the HER-2 oncogene does not play a role in high-grade osteosarcomas. Eur. J. Cancer. 40, 963–970 (2004)PubMedCrossRef
131.
go back to reference E. Bousoik, H. Montazeri Aliabadi, Do we know Jack about JAK? A closer look at JAK/STAT signaling pathway. Front. Oncol. 8, (2018) E. Bousoik, H. Montazeri Aliabadi, Do we know Jack about JAK? A closer look at JAK/STAT signaling pathway. Front. Oncol. 8, (2018)
133.
go back to reference Y. Song et al., Targeting RAS–RAF–MEK–ERK signaling pathway in human cancer: current status in clinical trials. Genes Dis. 10, 76–88 (2023)PubMedCrossRef Y. Song et al., Targeting RAS–RAF–MEK–ERK signaling pathway in human cancer: current status in clinical trials. Genes Dis. 10, 76–88 (2023)PubMedCrossRef
134.
go back to reference E.T.H. Ek, C.R. Dass, P. Choong, F. M. commonly used mouse models of osteosarcoma. Crit. Rev. Oncol. Hematol. 60, 1–8 (2006)PubMedCrossRef E.T.H. Ek, C.R. Dass, P. Choong, F. M. commonly used mouse models of osteosarcoma. Crit. Rev. Oncol. Hematol. 60, 1–8 (2006)PubMedCrossRef
135.
go back to reference T.P. Butler, P.M. Gullino, Quantitation of cell shedding into Efferent blood of mammary Adenocarcinoma1. Cancer Res. 35, 512–516 (1975)PubMed T.P. Butler, P.M. Gullino, Quantitation of cell shedding into Efferent blood of mammary Adenocarcinoma1. Cancer Res. 35, 512–516 (1975)PubMed
136.
go back to reference S.A. Eccles, D.R. Welch, Metastasis: recent discoveries and novel treatment strategies. The Lancet. 369, 1742–1757 (2007)CrossRef S.A. Eccles, D.R. Welch, Metastasis: recent discoveries and novel treatment strategies. The Lancet. 369, 1742–1757 (2007)CrossRef
Metadata
Title
Host-derived growth factors drive ERK phosphorylation and MCL1 expression to promote osteosarcoma cell survival during metastatic lung colonization
Authors
Camille A. McAloney
Rawan Makkawi
Yogesh Budhathoki
Matthew V. Cannon
Emily M. Franz
Amy C. Gross
Maren Cam
Tatyana A. Vetter
Rebekka Duhen
Alexander E. Davies
Ryan D. Roberts
Publication date
07-09-2023
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 1/2024
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-023-00867-w

Other articles of this Issue 1/2024

Cellular Oncology 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine