Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2022

Open Access 01-12-2022 | Osteoporosis | Research

The accuracy and effectiveness of automatic pedicle screw trajectory planning based on computer tomography values: an in vitro osteoporosis model study

Authors: Jia Bin Liu, Rui Zuo, Wen Jie Zheng, Chang Qing Li, Chao Zhang, Yue Zhou

Published in: BMC Musculoskeletal Disorders | Issue 1/2022

Login to get access

Abstract

Background

Pedicle screw placement in patients with osteoporosis is a serious clinical challenge. The bone mineral density (BMD) of the screw trajectory has been positively correlated with the screw pull-out force, while the computer tomography (CT) value has been linearly correlated with the BMD. The purpose of this study was to establish an in vitro osteoporosis model and verify the accuracy and effectiveness of automated pedicle screw planning software based on CT values in this model.

Methods

Ten vertebrae (L1-L5) of normal adult pigs were randomly divided into decalcification and control groups. In the decalcification group, the vertebral bodies were decalcified with Ethylenediaminetetraacetic acid (EDTA) to construct an in vitro osteoporosis model. In the decalcification group, automatic planning (AP) and conventional manual planning (MP) were used to plan the pedicle screw trajectory on the left and right sides of the pedicle, respectively, and MP was used on both sides of the control group. CT values of trajectories obtained by the two methods were measured and compared. Then, 3D-printed guide plates were designed to assist pedicle screw placement. Finally, the pull-out force of the trajectory obtained by the two methods was measured.

Results

After decalcification, the BMD of the vertebra decreased from − 0.03 ± 1.03 to − 3.03 ± 0.29 (P < 0.05). In the decalcification group, the MP trajectory CT value was 2167.28 ± 65.62 Hu, the AP trajectory CT value was 2723.96 ± 165.83 Hu, and the MP trajectory CT value in the control group was 2242.94 ± 25.80 Hu (P < 0.05). In the decalcified vertebrae, the screw pull-out force of the MP group was 48.6% lower than that of the control group (P < 0.05). The pull-out force of the AP trajectory was 44.7% higher than that of the MP trajectory (P < 0.05) and reached 97.4% of the MP trajectory in the control group (P > 0.05).

Conclusion

Automatic planning of the pedicle screw trajectory based on the CT value can obtain a higher screw pull-out force, which is a valuable new method of pedicle screw placement in osteoporotic vertebre.
Appendix
Available only for authorised users
Literature
1.
go back to reference Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976). 1994;19(21):2415–20.CrossRef Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976). 1994;19(21):2415–20.CrossRef
2.
go back to reference Ruffoni D, Wirth AJ, Steiner JA, Parkinson IH, Müller R, van Lenthe GH. The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra. Bone. 2012;50(3):733–8.CrossRef Ruffoni D, Wirth AJ, Steiner JA, Parkinson IH, Müller R, van Lenthe GH. The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra. Bone. 2012;50(3):733–8.CrossRef
3.
go back to reference Zhuang XM, Yu BS, Zheng ZM, Zhang JF, Lu WW. Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws. Spine (Phila Pa 1976). 2010;35(19):E925–31.CrossRef Zhuang XM, Yu BS, Zheng ZM, Zhang JF, Lu WW. Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws. Spine (Phila Pa 1976). 2010;35(19):E925–31.CrossRef
4.
go back to reference Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001;1(6):402–7.CrossRef Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J. 2001;1(6):402–7.CrossRef
5.
go back to reference Ponnusamy KE, Iyer S, Gupta G, Khanna AJ. Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J. 2011;11(1):54–63.CrossRef Ponnusamy KE, Iyer S, Gupta G, Khanna AJ. Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J. 2011;11(1):54–63.CrossRef
6.
go back to reference Jain P, Khan MR. Selection of suitable pedicle screw for degenerated cortical and cancellous bone of human lumbar spine: A finite element study. Int J Artif Organs. 2021;44(5):361–6.CrossRef Jain P, Khan MR. Selection of suitable pedicle screw for degenerated cortical and cancellous bone of human lumbar spine: A finite element study. Int J Artif Organs. 2021;44(5):361–6.CrossRef
7.
go back to reference Martín-Fernández M, López-Herradón A, Piñera AR, Tomé-Bermejo F, Duart JM, Vlad MD, et al. Potential risks of using cement-augmented screws for spinal fusion in patients with low bone quality. Spine J. 2017;17(8):1192–9.CrossRef Martín-Fernández M, López-Herradón A, Piñera AR, Tomé-Bermejo F, Duart JM, Vlad MD, et al. Potential risks of using cement-augmented screws for spinal fusion in patients with low bone quality. Spine J. 2017;17(8):1192–9.CrossRef
8.
go back to reference Lai DM, Shih YT, Chen YH, Chien A, Wang JL. Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. J Biomech. 2018;70:196–203.CrossRef Lai DM, Shih YT, Chen YH, Chien A, Wang JL. Effect of pedicle screw diameter on screw fixation efficacy in human osteoporotic thoracic vertebrae. J Biomech. 2018;70:196–203.CrossRef
9.
go back to reference Teoh SH, Chui CK. Bone material properties and fracture analysis: needle insertion for spinal surgery. J Mech Behav Biomed Mater. 2008;1(2):115–39.CrossRef Teoh SH, Chui CK. Bone material properties and fracture analysis: needle insertion for spinal surgery. J Mech Behav Biomed Mater. 2008;1(2):115–39.CrossRef
10.
go back to reference Jain P, Rana M, Biswas JK, Khan MR. Biomechanics of spinal implants-a review. Biomed Phys Eng Express. 2020;6(4):042002.CrossRef Jain P, Rana M, Biswas JK, Khan MR. Biomechanics of spinal implants-a review. Biomed Phys Eng Express. 2020;6(4):042002.CrossRef
11.
go back to reference Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32(10):1013–20.CrossRef Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32(10):1013–20.CrossRef
12.
go back to reference Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17(5):347–55.CrossRef Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17(5):347–55.CrossRef
13.
go back to reference Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech. 1994;27(9):1159–68.CrossRef Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech. 1994;27(9):1159–68.CrossRef
14.
go back to reference Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977;59(7):954–62.CrossRef Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977;59(7):954–62.CrossRef
15.
go back to reference Jain P, Khan MR. Biomechanical Study of Fused Lumbar Spine Considering Bone Degeneracy Using FEA. Arab J Sci Eng. 2018;43(3):1325–34.CrossRef Jain P, Khan MR. Biomechanical Study of Fused Lumbar Spine Considering Bone Degeneracy Using FEA. Arab J Sci Eng. 2018;43(3):1325–34.CrossRef
16.
go back to reference Tajsic T, Patel K, Farmer R, Mannion RJ, Trivedi RA. Spinal navigation for minimally invasive thoracic and lumbosacral spine fixation: implications for radiation exposure, operative time, and accuracy of pedicle screw placement. Eur Spine J. 2018;27(8):1918–24.CrossRef Tajsic T, Patel K, Farmer R, Mannion RJ, Trivedi RA. Spinal navigation for minimally invasive thoracic and lumbosacral spine fixation: implications for radiation exposure, operative time, and accuracy of pedicle screw placement. Eur Spine J. 2018;27(8):1918–24.CrossRef
17.
go back to reference Knez D, Likar B, Pernus F, Vrtovec T. Computer-Assisted Screw Size and Insertion Trajectory Planning for Pedicle Screw Placement Surgery. IEEE Trans Med Imaging. 2016;35(6):1420–30.CrossRef Knez D, Likar B, Pernus F, Vrtovec T. Computer-Assisted Screw Size and Insertion Trajectory Planning for Pedicle Screw Placement Surgery. IEEE Trans Med Imaging. 2016;35(6):1420–30.CrossRef
18.
go back to reference Goerres J, Uneri A, De Silva T, Ketcha M, Reaungamornrat S, Jacobson M, et al. Spinal pedicle screw planning using deformable atlas registration. Phys Med Biol. 2017;62(7):2871–91.CrossRef Goerres J, Uneri A, De Silva T, Ketcha M, Reaungamornrat S, Jacobson M, et al. Spinal pedicle screw planning using deformable atlas registration. Phys Med Biol. 2017;62(7):2871–91.CrossRef
19.
go back to reference Lee J, Kim S, Kim YS, Chung WK. Optimal surgical planning guidance for lumbar spinal fusion considering operational safety and vertebra-screw interface strength. Int J Med Robot. 2012;8(3):261–72.CrossRef Lee J, Kim S, Kim YS, Chung WK. Optimal surgical planning guidance for lumbar spinal fusion considering operational safety and vertebra-screw interface strength. Int J Med Robot. 2012;8(3):261–72.CrossRef
20.
go back to reference Wicker R, Tedla B. Automatic determination of pedicle screw size, length, and trajectory from patient data. Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1487–90.PubMed Wicker R, Tedla B. Automatic determination of pedicle screw size, length, and trajectory from patient data. Conf Proc IEEE Eng Med Biol Soc. 2004;2004:1487–90.PubMed
21.
go back to reference Liu JB, Xia GF, Zuo R. Automatic pedicle screw trajectory planning for osteoporosis. China Medical Equipment. In process. Liu JB, Xia GF, Zuo R. Automatic pedicle screw trajectory planning for osteoporosis. China Medical Equipment. In process.
22.
go back to reference Guha D, Jakubovic R, Gupta S, Alotaibi NM, Cadotte D, da Costa LB, et al. Spinal intraoperative three-dimensional navigation: correlation between clinical and absolute engineering accuracy. Spine J. 2017;17(4):489–98.CrossRef Guha D, Jakubovic R, Gupta S, Alotaibi NM, Cadotte D, da Costa LB, et al. Spinal intraoperative three-dimensional navigation: correlation between clinical and absolute engineering accuracy. Spine J. 2017;17(4):489–98.CrossRef
23.
go back to reference Aldini NN, Fini M, Giavaresi G, Giardino R, Greggi T, Parisini P. Pedicular fixation in the osteoporotic spine: a pilot in vivo study on long-term ovariectomized sheep. J Orthop Res. 2002;20(6):1217–24.CrossRef Aldini NN, Fini M, Giavaresi G, Giardino R, Greggi T, Parisini P. Pedicular fixation in the osteoporotic spine: a pilot in vivo study on long-term ovariectomized sheep. J Orthop Res. 2002;20(6):1217–24.CrossRef
24.
go back to reference Schorlemmer S, Ignatius A, Claes L, Augat P. Inhibition of cortical and cancellous bone formation in glucocorticoid-treated OVX sheep. Bone. 2005;37(4):491–6.CrossRef Schorlemmer S, Ignatius A, Claes L, Augat P. Inhibition of cortical and cancellous bone formation in glucocorticoid-treated OVX sheep. Bone. 2005;37(4):491–6.CrossRef
25.
go back to reference Shibasaki Y, Tsutsui S, Yamamoto E, Murakami K, Yoshida M, Yamada H. A bicortical pedicle screw in the caudad trajectory is the best option for the fixation of an osteoporotic vertebra: An in-vitro experimental study using synthetic lumbar osteoporotic bone models. Clin Biomech (Bristol, Avon). 2020;72:150–4.CrossRef Shibasaki Y, Tsutsui S, Yamamoto E, Murakami K, Yoshida M, Yamada H. A bicortical pedicle screw in the caudad trajectory is the best option for the fixation of an osteoporotic vertebra: An in-vitro experimental study using synthetic lumbar osteoporotic bone models. Clin Biomech (Bristol, Avon). 2020;72:150–4.CrossRef
26.
go back to reference Lee CY, Chan SH, Lai HY, Lee ST. A method to develop an in vitro osteoporosis model of porcine vertebrae: histological and biomechanical study. J Neurosurg Spine. 2011;14(6):789–98.CrossRef Lee CY, Chan SH, Lai HY, Lee ST. A method to develop an in vitro osteoporosis model of porcine vertebrae: histological and biomechanical study. J Neurosurg Spine. 2011;14(6):789–98.CrossRef
27.
go back to reference Tang YC, Guo HZ, Guo DQ, Luo PJ, Li YX, Mo GY, et al. Effect and potential risks of using multilevel cement-augmented pedicle screw fixation in osteoporotic spine with lumbar degenerative disease. BMC Musculoskelet Disord. 2020;21(1):274.CrossRef Tang YC, Guo HZ, Guo DQ, Luo PJ, Li YX, Mo GY, et al. Effect and potential risks of using multilevel cement-augmented pedicle screw fixation in osteoporotic spine with lumbar degenerative disease. BMC Musculoskelet Disord. 2020;21(1):274.CrossRef
28.
go back to reference Trost M, Schmoelz W, Wimmer D, Hörmann R, Frey S, Schulte TL. Local osteo-enhancement of osteoporotic vertebra with a triphasic bone implant material increases strength-a biomechanical study. Arch Orthop Trauma Surg. 2020;140(10):1395–401.CrossRef Trost M, Schmoelz W, Wimmer D, Hörmann R, Frey S, Schulte TL. Local osteo-enhancement of osteoporotic vertebra with a triphasic bone implant material increases strength-a biomechanical study. Arch Orthop Trauma Surg. 2020;140(10):1395–401.CrossRef
29.
go back to reference Kueny RA, Kolb JP, Lehmann W, Püschel K, Morlock MM, Huber G. Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pull-out versus fatigue testing. Eur Spine J. 2014;23(10):2196–202.CrossRef Kueny RA, Kolb JP, Lehmann W, Püschel K, Morlock MM, Huber G. Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pull-out versus fatigue testing. Eur Spine J. 2014;23(10):2196–202.CrossRef
30.
go back to reference Knez D, Mohar J, Cirman RJ, Likar B, Pernuš F, Vrtovec T. Variability Analysis of Manual and Computer-Assisted Preoperative Thoracic Pedicle Screw Placement Planning. Spine (Phila Pa 1976). 2018;43(21):1487–95.CrossRef Knez D, Mohar J, Cirman RJ, Likar B, Pernuš F, Vrtovec T. Variability Analysis of Manual and Computer-Assisted Preoperative Thoracic Pedicle Screw Placement Planning. Spine (Phila Pa 1976). 2018;43(21):1487–95.CrossRef
31.
go back to reference Xiaozhao C, Jinfeng H, Baolin M, Chongnan Y, Yan K. A method of lumbar pedicle screw placement optimization applied to guidance techniques. Comput Assist Surg. 2016;21(sup1):142–7.CrossRef Xiaozhao C, Jinfeng H, Baolin M, Chongnan Y, Yan K. A method of lumbar pedicle screw placement optimization applied to guidance techniques. Comput Assist Surg. 2016;21(sup1):142–7.CrossRef
32.
go back to reference Vijayan R, De Silva T, Han R, Zhang X, Uneri A, Doerr S, et al. Automatic pedicle screw planning using atlas-based registration of anatomy and reference trajectories. Phys Med Biol. 2019;64(16):165020.CrossRef Vijayan R, De Silva T, Han R, Zhang X, Uneri A, Doerr S, et al. Automatic pedicle screw planning using atlas-based registration of anatomy and reference trajectories. Phys Med Biol. 2019;64(16):165020.CrossRef
33.
go back to reference Lehman RA Jr, Polly DW Jr, Kuklo TR, Cunningham B, Kirk KL, Belmont PJ Jr. Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine (Phila Pa 1976). 2003;28(18):2058–65.CrossRef Lehman RA Jr, Polly DW Jr, Kuklo TR, Cunningham B, Kirk KL, Belmont PJ Jr. Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine (Phila Pa 1976). 2003;28(18):2058–65.CrossRef
34.
go back to reference Jia C, Zhang R, Xing T, Gao H, Li H, Dong F, et al. Biomechanical properties of pedicle screw fixation augmented with allograft bone particles in osteoporotic vertebrae: different sizes and amounts. Spine J. 2019;19(8):1443–52.CrossRef Jia C, Zhang R, Xing T, Gao H, Li H, Dong F, et al. Biomechanical properties of pedicle screw fixation augmented with allograft bone particles in osteoporotic vertebrae: different sizes and amounts. Spine J. 2019;19(8):1443–52.CrossRef
Metadata
Title
The accuracy and effectiveness of automatic pedicle screw trajectory planning based on computer tomography values: an in vitro osteoporosis model study
Authors
Jia Bin Liu
Rui Zuo
Wen Jie Zheng
Chang Qing Li
Chao Zhang
Yue Zhou
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2022
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-022-05101-6

Other articles of this Issue 1/2022

BMC Musculoskeletal Disorders 1/2022 Go to the issue