Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2022

Open Access 01-12-2022 | Research

Biomechanical analysis of vertebral wedge deformity in elderly women with quantitative CT-based finite element analysis

Authors: Jing Liu, Xiaodong Cheng, Yan Wang, Ping Zhang, Lei Gao, Xingyuan Yang, Shaoqiang He, Ying Liu, Wei Zhang

Published in: BMC Musculoskeletal Disorders | Issue 1/2022

Login to get access

Abstract

Background

To explore the vertebral deformity angle (VD angle) of 1st lumbar vertebral body (L1) in elderly women, investigate the influence of VD on vertebral stiffness (VS) by biomechanical analysis using quantitative computed tomography-based finite element analysis (QCT-FEA).

Methods

Two hundred seventy eight participants were recruited, and underwent QCT scan. Measured VD angles of L1, and constructed QCT-FEA models of L1 with the minimum (0.59°), median (5.79°) and maximum (11.15°) VD angles, respectively. Loads in two directions were applied on the upper edge of L1 with a force of 700 N, and vertebral stiffness (VS) was defined as the ratio of 700 N and displacement at the superior reference point: (1) perpendicular to the upper edge of L1 (defined as VS-U); (2) perpendicular to the lower edge of L1(defined as VS-L).

Results

Age was very weak positively correlated with VD angle, moderate negatively correlated with vBMD, and moderate negatively correlated with VS (P < 0.05). VS-U was significantly different among three VD angles, so was VS-L (P < 0.001). VS-U was higher than VS-L in 5.79° and 11.15° VD angles (P < 0.05), however no difference in 0.59° VD angles (P > 0.10).

Conclusions

VD angle of L1 was slightly increased with age and not correlated with vBMD, and VS was moderate negatively correlated with age, showing that the vertebral body was more likely to fracture with aging. VS-U and VS-L were gradually decreased with the increase of VD angle, and VS-L was lower than VS-U with the increase of VD angle, which showed that vertebral body was more prone to fracture when the load was perpendicular to the lower edge of the vertebral body as the VD angle increasing.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ismail AA, Cooper C, Felsenberg D, Varlow J, Kanis JA, Silman AJ, O’Neill TW. Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos Int. 1999;9(3):206–13.CrossRef Ismail AA, Cooper C, Felsenberg D, Varlow J, Kanis JA, Silman AJ, O’Neill TW. Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. European Vertebral Osteoporosis Study Group. Osteoporos Int. 1999;9(3):206–13.CrossRef
3.
go back to reference Ma C, Wu F, Pan F F, Laslett L, Shah A, Squibb K, Winzenberg T, Jones G. Bone Microarchitecture, Volumetric or Areal Bone Mineral Density for Discrimination of Vertebral Deformity in Adults: A Cross-sectional Study. J Clin Densitom. 2021;24(2):190–9.CrossRef Ma C, Wu F, Pan F F, Laslett L, Shah A, Squibb K, Winzenberg T, Jones G. Bone Microarchitecture, Volumetric or Areal Bone Mineral Density for Discrimination of Vertebral Deformity in Adults: A Cross-sectional Study. J Clin Densitom. 2021;24(2):190–9.CrossRef
4.
go back to reference Genant HK, Wu CY, van Kuijk C, Nevitt MC: Vertebral fracture assessment using a semiquantitative technique. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 1993, 8:1137–1148.https://doi.org/10.1002/jbmr.5650080915. Genant HK, Wu CY, van Kuijk C, Nevitt MC: Vertebral fracture assessment using a semiquantitative technique. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 1993, 8:1137–1148.https://​doi.​org/​10.​1002/​jbmr.​5650080915.
5.
7.
go back to reference Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL. Epidemiology of vertebral fractures in women. Am J epidemiol. 1989;129(5):1000–11.CrossRef Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL. Epidemiology of vertebral fractures in women. Am J epidemiol. 1989;129(5):1000–11.CrossRef
8.
go back to reference Wáng YXJ, Lentle BC. Radiographic osteoporotic vertebral fractures in elderly men: a brief review focusing on differences between the sexes. Quant imaging med surg. 2020;10(9):1863–76.CrossRef Wáng YXJ, Lentle BC. Radiographic osteoporotic vertebral fractures in elderly men: a brief review focusing on differences between the sexes. Quant imaging  med surg. 2020;10(9):1863–76.CrossRef
9.
go back to reference Lunt M, O’Neill TW, Felsenberg D, Reeve J, Kanis JA, Cooper C, Silman AJ. Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone. 2003;33(4):505–13.CrossRef Lunt M, O’Neill TW, Felsenberg D, Reeve J, Kanis JA, Cooper C, Silman AJ. Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone. 2003;33(4):505–13.CrossRef
10.
go back to reference Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA. Bone creep can cause progressive vertebral deformity. Bone. 2009;45(3):466–72.CrossRef Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA. Bone creep can cause progressive vertebral deformity. Bone. 2009;45(3):466–72.CrossRef
11.
go back to reference Landham PR, Gilbert SJ, Baker-Rand HL, Pollintine P, Robson Brown KA, Adams MA, Dolan P. Pathogenesis of Vertebral Anterior Wedge Deformity: A 2-Stage Process? Spine. 2015;40:902–8.CrossRef Landham PR, Gilbert SJ, Baker-Rand HL, Pollintine P, Robson Brown KA, Adams MA, Dolan P. Pathogenesis of Vertebral Anterior Wedge Deformity: A 2-Stage Process? Spine. 2015;40:902–8.CrossRef
12.
13.
go back to reference Luo J, Pollintine P, Gomm E, Dolan P, Adams MA: Vertebral deformity arising from an accelerated "creep" mechanism. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2012, 21:1684–1691.https://doi.org/10.1007/s00586-012-2279-y. Luo J, Pollintine P, Gomm E, Dolan P, Adams MA: Vertebral deformity arising from an accelerated "creep" mechanism. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2012, 21:1684–1691.https://​doi.​org/​10.​1007/​s00586-012-2279-y.
14.
go back to reference Zhao WT, Qin DP, Zhang XG, Wang ZP, Tong Z. Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis. J orthop surg res. 2018;13:32.CrossRef Zhao WT, Qin DP, Zhang XG, Wang ZP, Tong Z. Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis. J orthop surg res. 2018;13:32.CrossRef
15.
go back to reference Jacobson RE, Nenov A, Duong HD. Re-expansion of Osteoporotic Compression Fractures Using Bilateral SpineJack Implants: Early Clinical Experience and Biomechanical Considerations. Cureus. 2019;11:e4572.PubMedPubMedCentral Jacobson RE, Nenov A, Duong HD. Re-expansion of Osteoporotic Compression Fractures Using Bilateral SpineJack Implants: Early Clinical Experience and Biomechanical Considerations. Cureus. 2019;11:e4572.PubMedPubMedCentral
16.
go back to reference Ottardi C, La Barbera L, Pietrogrande L, Villa T. Vertebroplasty and kyphoplasty for the treatment of thoracic fractures in osteoporotic patients: a finite element comparative analysis. J appl biomater funct mat. 2016;14:e197-204. Ottardi C, La Barbera L, Pietrogrande L, Villa T. Vertebroplasty and kyphoplasty for the treatment of thoracic fractures in osteoporotic patients: a finite element comparative analysis. J appl biomater funct mat. 2016;14:e197-204.
17.
go back to reference Li N, Li XM, Xu L, Sun WJ, Cheng XG, Tian W. Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. Int J endocrinol. 2013;2013:895474.PubMedPubMedCentral Li N, Li XM, Xu L, Sun WJ, Cheng XG, Tian W. Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. Int J endocrinol. 2013;2013:895474.PubMedPubMedCentral
18.
go back to reference Khoo BC, Brown K, Cann C, Zhu K, Henzell S, Low V, Gustafsson S, Price RI, Prince RL. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009;20:1539–45.CrossRef Khoo BC, Brown K, Cann C, Zhu K, Henzell S, Low V, Gustafsson S, Price RI, Prince RL. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009;20:1539–45.CrossRef
19.
go back to reference Zhang W, Ma X, Xue P, Gao Y, Wu X, Zhao J, Wang Y, Li S. Associations between fat distribution and volumetric bone mineral density in Chinese adults. Endocrine. 2014;47:862–8.CrossRef Zhang W, Ma X, Xue P, Gao Y, Wu X, Zhao J, Wang Y, Li S. Associations between fat distribution and volumetric bone mineral density in Chinese adults. Endocrine. 2014;47:862–8.CrossRef
20.
go back to reference Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19:385–97.CrossRef Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19:385–97.CrossRef
21.
go back to reference Keaveny TM, Clarke BL, Cosman F, Orwoll ES, Siris ES, Khosla S, Bouxsein ML. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int. 2020;31:1025–48.CrossRef Keaveny TM, Clarke BL, Cosman F, Orwoll ES, Siris ES, Khosla S, Bouxsein ML. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int. 2020;31:1025–48.CrossRef
22.
go back to reference Wei Y, Feng W, Li G, Li Z, Liu Z, Cheng X, Yang H. Experimental testing and biomechanical CT analysis of Chinese cadaveric vertebrae with different modeling approaches. Med eng phys. 2021;93:8–16.CrossRef Wei Y, Feng W, Li G, Li Z, Liu Z, Cheng X, Yang H. Experimental testing and biomechanical CT analysis of Chinese cadaveric vertebrae with different modeling approaches. Med eng phys. 2021;93:8–16.CrossRef
23.
go back to reference Suzuki T, Matsuura Y, Yamazaki T, Akasaka T, Ozone E, Matsuyama Y, et al. Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis. Bone 2020;132:115212.CrossRef Suzuki T, Matsuura Y, Yamazaki T, Akasaka T, Ozone E, Matsuyama Y, et al. Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis. Bone  2020;132:115212.CrossRef
24.
go back to reference Allaire BT, Lu D, Johannesdottir F, Kopperdahl D, Keaveny TM, Jarraya M, et al. Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos Int. 2019;30::323-331.CrossRef Allaire BT, Lu D, Johannesdottir F, Kopperdahl D, Keaveny TM, Jarraya M, et al. Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos Int. 2019;30::323-331.CrossRef
25.
go back to reference Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 2003;33:744–50.CrossRef Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone  2003;33:744–50.CrossRef
26.
go back to reference Zeinali A, Hashemi B, Akhlaghpoor S: Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) 2010, 26:88–97.https://doi.org/10.1016/j.ejmp.2009.08.002. Zeinali A, Hashemi B, Akhlaghpoor S: Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) 2010, 26:88–97.https://​doi.​org/​10.​1016/​j.​ejmp.​2009.​08.​002.
27.
go back to reference Buckley JM, Loo K, Motherway J. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone. 2007;40:767–74.CrossRef Buckley JM, Loo K, Motherway J. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength. Bone. 2007;40:767–74.CrossRef
28.
go back to reference Crawford RP, Rosenberg WS, Keaveny TM. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J biomech eng. 2003;125:434–8.CrossRef Crawford RP, Rosenberg WS, Keaveny TM. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J biomech eng. 2003;125:434–8.CrossRef
29.
go back to reference Giambini H, Dragomir-Daescu D, Nassr A, Yaszemski MJ, Zhao C. Quantitative Computed Tomography Protocols Affect Material Mapping and Quantitative Computed Tomography-Based Finite-Element Analysis Predicted Stiffness. J biomech eng. 2016;138:0910031–7.CrossRef Giambini H, Dragomir-Daescu D, Nassr A, Yaszemski MJ, Zhao C. Quantitative Computed Tomography Protocols Affect Material Mapping and Quantitative Computed Tomography-Based Finite-Element Analysis Predicted Stiffness. J biomech eng. 2016;138:0910031–7.CrossRef
30.
go back to reference Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J biomech. 2003;36:897–904.CrossRef Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J biomech. 2003;36:897–904.CrossRef
31.
go back to reference Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations. J biomech. 2014;47:3531–8.CrossRef Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations. J biomech. 2014;47:3531–8.CrossRef
32.
go back to reference Syed FA, Ng AC. The pathophysiology of the aging skeleton. Curr Osteoporos Rep. 2010;8:235–40.CrossRef Syed FA, Ng AC. The pathophysiology of the aging skeleton. Curr Osteoporos Rep. 2010;8:235–40.CrossRef
33.
go back to reference Oda K, Shibayama Y, Abe M, Onomura T. Morphogenesis of vertebral deformities in involutional osteoporosis. Age-related, three-dimensional trabecular structure. Spine. 1998;23:1050–5 discussion 1056.CrossRef Oda K, Shibayama Y, Abe M, Onomura T. Morphogenesis of vertebral deformities in involutional osteoporosis. Age-related, three-dimensional trabecular structure. Spine. 1998;23:1050–5 discussion 1056.CrossRef
34.
go back to reference Antonacci MD, Mody DR, Rutz K, Weilbaecher D, Heggeness MH. A histologic study of fractured human vertebral bodies. J spinal disord tech. 2002;15:118–26.CrossRef Antonacci MD, Mody DR, Rutz K, Weilbaecher D, Heggeness MH. A histologic study of fractured human vertebral bodies. J spinal disord tech. 2002;15:118–26.CrossRef
35.
go back to reference Costa MC, Eltes P, Lazary A, Varga PP, Viceconti M, Dall’Ara E. Biomechanical assessment of vertebrae with lytic metastases with subject-specific finite element models. J mech behav biomed mater. 2019;98:268–90.CrossRef Costa MC, Eltes P, Lazary A, Varga PP, Viceconti M, Dall’Ara E. Biomechanical assessment of vertebrae with lytic metastases with subject-specific finite element models. J mech behav biomed mater. 2019;98:268–90.CrossRef
Metadata
Title
Biomechanical analysis of vertebral wedge deformity in elderly women with quantitative CT-based finite element analysis
Authors
Jing Liu
Xiaodong Cheng
Yan Wang
Ping Zhang
Lei Gao
Xingyuan Yang
Shaoqiang He
Ying Liu
Wei Zhang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2022
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-022-05518-z

Other articles of this Issue 1/2022

BMC Musculoskeletal Disorders 1/2022 Go to the issue