Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 6/2014

01-06-2014 | Experimental Study

Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model

Authors: E. Kon, G. Filardo, D. Robinson, J. A. Eisman, A. Levy, K. Zaslav, J. Shani, N. Altschuler

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 6/2014

Login to get access

Abstract

Purpose

The objective of this study was to examine whether different mechanical modifications and/or impregnation of hyaluronic acid (HA) might enhance aragonite-based scaffold properties for the regeneration of cartilage and bone in an animal model.

Methods

Bi-phasic osteochondral scaffolds were prepared using coralline aragonite with different modifications, including 1- to 2-mm-deep drilled channels in the cartilage phase (Group 1, n = 7) or in the bone phase (Group 2, n = 8), and compared with unmodified coral cylinders (Group 3, n = 8) as well as empty control defects (Group 4, n = 4). In each group, four of the implants were impregnated with HA to the cartilage phase. Osteochondral defects (6 mm diameter, 8 mm depth) were made in medial and lateral femoral condyles of 14 goats, and the scaffolds were implanted according to a randomization chart. After 6 months, cartilage and bone regeneration were evaluated macroscopically and histologically by an external laboratory.

Results

Group 1 implants were replaced by newly formed hyaline cartilage and subchondral bone (combined histological evaluation according to the ICRS II-2010 and O’Driscoll et al. 34 ± 4 n = 7). In this group, the cartilaginous repair tissue showed a smooth contour and was well integrated into the adjacent native cartilage, with morphological evidence of hyaline cartilage as confirmed by the marked presence of proteoglycans, a marked grade of collagen type II and the absence of collagen type I. The average scores in other groups were significantly lower (Group 2 (n = 8) 28.8 ± 11, Group 3 (n = 8) 23 ± 9 and Group 4 (empty control, n = 4) 19.7 ± 15).

Conclusions

The implants with the mechanical modification and HA impregnation in the cartilage phase outperformed all other types of implant. Although native coral is an excellent material for bone repair, as a stand-alone material implant, it does not regenerate hyaline cartilage. Mechanical modification with drilled channels and impregnation of HA within the coral pores enhanced the scaffold’s cartilage regenerative potential. The modified implant shows young hyaline cartilage regeneration. This implant might be useful for the treatment of both chondral and osteochondral defects in humans.
Literature
1.
go back to reference Ahem BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17:705–713CrossRef Ahem BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17:705–713CrossRef
2.
go back to reference Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184PubMedCrossRef Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184PubMedCrossRef
3.
go back to reference Bhattarai N, Li ZS, Edmondson D, Zhang MQ (2006) Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18(11):1463–1467CrossRef Bhattarai N, Li ZS, Edmondson D, Zhang MQ (2006) Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18(11):1463–1467CrossRef
4.
go back to reference Boiteux JP, Paré G, Robin JP (1988) Madreporal periapical augmentation. Clinical experience in use of a madrepore filling material for loss of periapical bone. Rev Odontostomatol (Paris) 17(4):291–298 Boiteux JP, Paré G, Robin JP (1988) Madreporal periapical augmentation. Clinical experience in use of a madrepore filling material for loss of periapical bone. Rev Odontostomatol (Paris) 17(4):291–298
5.
go back to reference Brun P, Panfilo S, Gordini D Daga, Cortivo R, Abatangelo G (2003) The effect of hyaluronan on CD44-mediated survival of normal and hydroxyl radical-damaged chondrocytes. Osteoarthritis Cartilage 11(3):208–216PubMedCrossRef Brun P, Panfilo S, Gordini D Daga, Cortivo R, Abatangelo G (2003) The effect of hyaluronan on CD44-mediated survival of normal and hydroxyl radical-damaged chondrocytes. Osteoarthritis Cartilage 11(3):208–216PubMedCrossRef
6.
go back to reference Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T (2009) Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy 25(7):810–814PubMedCrossRef Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T (2009) Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy 25(7):810–814PubMedCrossRef
7.
go back to reference Chiroff RT, White EW, Weber KN, Rov DM (1975) Tissue ingrowth of replamineform implants. J Biomed Mater Res 9(4):29–45PubMedCrossRef Chiroff RT, White EW, Weber KN, Rov DM (1975) Tissue ingrowth of replamineform implants. J Biomed Mater Res 9(4):29–45PubMedCrossRef
8.
go back to reference Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQ, Nielsen AD, Nygaard JV et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20(6):1192–1204PubMedCrossRef Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQ, Nielsen AD, Nygaard JV et al (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20(6):1192–1204PubMedCrossRef
9.
go back to reference Collangettes-Peyrat D, Fonck Y, Capelani JC, Irigaray JL, Oudadesse H (1989) Ossification de corail implante dans une machoire d’ovin: determination quantitative par des methodes physiques et etude anatomo-pathologique. Innov Tech Biol Med 10:679–693 Collangettes-Peyrat D, Fonck Y, Capelani JC, Irigaray JL, Oudadesse H (1989) Ossification de corail implante dans une machoire d’ovin: determination quantitative par des methodes physiques et etude anatomo-pathologique. Innov Tech Biol Med 10:679–693
10.
go back to reference Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Bio-Med Mater Eng 12:15–35 Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Bio-Med Mater Eng 12:15–35
11.
go back to reference Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF et al (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103(13):5054–5059PubMedCentralPubMedCrossRef Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF et al (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103(13):5054–5059PubMedCentralPubMedCrossRef
13.
go back to reference Fricain JC, Bareille R, Ulysse F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form. J Biomed Mater Res 42(1):96–102PubMedCrossRef Fricain JC, Bareille R, Ulysse F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite of calcite form. J Biomed Mater Res 42(1):96–102PubMedCrossRef
14.
go back to reference Fukuda K, Takayama M, Ueno M, Oh M, Asada S, Kumano F et al (1997) Hyaluronic acid inhibits interleukin-1-induced superoxide anion in bovine chondrocytes. Inflamm Res 46(3):114–117PubMedCrossRef Fukuda K, Takayama M, Ueno M, Oh M, Asada S, Kumano F et al (1997) Hyaluronic acid inhibits interleukin-1-induced superoxide anion in bovine chondrocytes. Inflamm Res 46(3):114–117PubMedCrossRef
15.
go back to reference Furla P, Allemand D (2000) Nos ancêtres les coraux. Méd Sci 16:1139–1140 Furla P, Allemand D (2000) Nos ancêtres les coraux. Méd Sci 16:1139–1140
16.
go back to reference Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11):1456–1464PubMedCrossRef Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11):1456–1464PubMedCrossRef
17.
go back to reference Guillemin G, Fournie J, Patat JL, Chetail M (1981) Fate of a fragment of madrepore coral skeleton implanted in the diaphysis of long bones in dogs. CR Seances Acad Sci III 293:371–376 Guillemin G, Fournie J, Patat JL, Chetail M (1981) Fate of a fragment of madrepore coral skeleton implanted in the diaphysis of long bones in dogs. CR Seances Acad Sci III 293:371–376
18.
go back to reference Guillemin G, Launay M, Meunier A (1993) Natural coral as a substrate for fibroblastic growth in vitro. J Mater Sci Mater Med 4(6):575–581CrossRef Guillemin G, Launay M, Meunier A (1993) Natural coral as a substrate for fibroblastic growth in vitro. J Mater Sci Mater Med 4(6):575–581CrossRef
19.
go back to reference Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L (1989) Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res 23:765–779PubMedCrossRef Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L (1989) Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res 23:765–779PubMedCrossRef
20.
go back to reference Guillemin G, Patat JL, Fournie J, Chetail M (1987) The use of coral as a bone graft substitute. J Biomed Mater Res 21:557–567PubMedCrossRef Guillemin G, Patat JL, Fournie J, Chetail M (1987) The use of coral as a bone graft substitute. J Biomed Mater Res 21:557–567PubMedCrossRef
22.
go back to reference Im GI, Ahn JH, Kim SY, Choi BS, Lee SW (2010) A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng Part A 16(4):1189–1200PubMedCrossRef Im GI, Ahn JH, Kim SY, Choi BS, Lee SW (2010) A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng Part A 16(4):1189–1200PubMedCrossRef
23.
go back to reference Issahakian S, Ouhayoun JP, Guillemin G, Patat JL (1987) Madreporic coral. Inf Dent 69(24):2123–2132PubMed Issahakian S, Ouhayoun JP, Guillemin G, Patat JL (1987) Madreporic coral. Inf Dent 69(24):2123–2132PubMed
24.
go back to reference Julovi SM, Yasuda T, Shimizu M, Hiramitsu T, Nakamura T (2004) Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum 50(2):516–525PubMedCrossRef Julovi SM, Yasuda T, Shimizu M, Hiramitsu T, Nakamura T (2004) Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum 50(2):516–525PubMedCrossRef
25.
go back to reference Kenesi C, Voisin MC, Dhem A (1997) Additive medial osteotomy of the tibia locked with a coral callus. First results apropos of 38 operations. Chirurgie 122(7):379–382PubMed Kenesi C, Voisin MC, Dhem A (1997) Additive medial osteotomy of the tibia locked with a coral callus. First results apropos of 38 operations. Chirurgie 122(7):379–382PubMed
26.
go back to reference Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190PubMedCrossRef Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 39(6):1180–1190PubMedCrossRef
27.
go back to reference Kon E, Delcogliano M, Filardo G, Montaperto C, Marcacci M (2008) Second generation issues in cartilage repair. Sports Med Arthrosc 16(4):221–229PubMedCrossRef Kon E, Delcogliano M, Filardo G, Montaperto C, Marcacci M (2008) Second generation issues in cartilage repair. Sports Med Arthrosc 16(4):221–229PubMedCrossRef
28.
go back to reference Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G et al (2010) Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220PubMedCentralPubMedCrossRef Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G et al (2010) Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220PubMedCentralPubMedCrossRef
29.
30.
go back to reference Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G et al (2009) Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37(S1):156S–166SPubMedCrossRef Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G et al (2009) Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37(S1):156S–166SPubMedCrossRef
31.
go back to reference Kreklau B, Sittinger M, Mensing MB, Voigt C, Berger G, Burmester GR et al (1999) Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20(18):1743–1749PubMedCrossRef Kreklau B, Sittinger M, Mensing MB, Voigt C, Berger G, Burmester GR et al (1999) Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20(18):1743–1749PubMedCrossRef
32.
go back to reference Kujawa MJ, Carrino DA, Caplan AI (1986) Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 114(2):519–528PubMedCrossRef Kujawa MJ, Carrino DA, Caplan AI (1986) Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 114(2):519–528PubMedCrossRef
33.
go back to reference Levet Y, Jost G (1983) Use of Madreporaria coral skeletons in reparative surgery. Ann Chir Plast Esthet 28:180–181PubMed Levet Y, Jost G (1983) Use of Madreporaria coral skeletons in reparative surgery. Ann Chir Plast Esthet 28:180–181PubMed
34.
go back to reference Lisignoli G, Grassi F, Zini N, Toneguzzi S, Piacentini A, Guidolin D et al (2001) Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis Rheum 44(8):1800–1807PubMedCrossRef Lisignoli G, Grassi F, Zini N, Toneguzzi S, Piacentini A, Guidolin D et al (2001) Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis Rheum 44(8):1800–1807PubMedCrossRef
35.
go back to reference Lutolf MP, Hubbell JH (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRef Lutolf MP, Hubbell JH (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRef
36.
go back to reference Mainil-Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S (2010) A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med 38(5):880–890PubMedCrossRef Mainil-Varlet P, Van Damme B, Nesic D, Knutsen G, Kandel R, Roberts S (2010) A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am J Sports Med 38(5):880–890PubMedCrossRef
37.
go back to reference McKee MG, Layman JM, Cashion MP, Long TE (2006) Phospholipid nonwoven electrospun membranes. Science 311:353–355PubMedCrossRef McKee MG, Layman JM, Cashion MP, Long TE (2006) Phospholipid nonwoven electrospun membranes. Science 311:353–355PubMedCrossRef
38.
go back to reference Miot S, Brehm W, Dickinson S, Sims T, Wixmerten A, Longinotti C et al (2012) Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cell Mater 23:222–236 Miot S, Brehm W, Dickinson S, Sims T, Wixmerten A, Longinotti C et al (2012) Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cell Mater 23:222–236
39.
go back to reference O’Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 68(7):1017–1035PubMed O’Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 68(7):1017–1035PubMed
40.
go back to reference Patel A, Honnart F, Guillemin G, Patat JL (1980) Use of madreporaria coral skeletal fragments in orthopedic and reconstructive surgery: experimental studies and human clinical application. Chirurgie 106:199–205PubMed Patel A, Honnart F, Guillemin G, Patat JL (1980) Use of madreporaria coral skeletal fragments in orthopedic and reconstructive surgery: experimental studies and human clinical application. Chirurgie 106:199–205PubMed
41.
go back to reference Petite H, Kacem K, Triffitt JT (1996) Adhesion, growth and differentiation of human bone marrow stromal cells on non-porous calcium carbonate and plastic substrata: effects of dexamethasone and 1,25 dihydroxyvitamin D3. J Mater Sci Mater Med 7(11):665–671CrossRef Petite H, Kacem K, Triffitt JT (1996) Adhesion, growth and differentiation of human bone marrow stromal cells on non-porous calcium carbonate and plastic substrata: effects of dexamethasone and 1,25 dihydroxyvitamin D3. J Mater Sci Mater Med 7(11):665–671CrossRef
42.
go back to reference Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications. Tissue Eng 12:1197–1211PubMedCrossRef Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications. Tissue Eng 12:1197–1211PubMedCrossRef
43.
go back to reference Pouliquen JC, Noat M, Verneret C, Guillemin G, Patat JL (1989) Coral substituted for bone grafting in posterior vertebral arthrodesis in children. Initial results. Rev Chir Orthop Reparatrice Appar Mot 75:360–369PubMed Pouliquen JC, Noat M, Verneret C, Guillemin G, Patat JL (1989) Coral substituted for bone grafting in posterior vertebral arthrodesis in children. Initial results. Rev Chir Orthop Reparatrice Appar Mot 75:360–369PubMed
44.
go back to reference Roux FX, Brasnu D, Loty B, George B, Guillemin G (1988) Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg 69:510–513PubMedCrossRef Roux FX, Brasnu D, Loty B, George B, Guillemin G (1988) Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg 69:510–513PubMedCrossRef
45.
46.
go back to reference Shors EC (1999) Coralline bone graft substitutes. Orthop Clin N Am 30(4):599–613CrossRef Shors EC (1999) Coralline bone graft substitutes. Orthop Clin N Am 30(4):599–613CrossRef
47.
go back to reference Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM et al (2000) Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 18(5):773–780PubMedCrossRef Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM et al (2000) Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 18(5):773–780PubMedCrossRef
48.
go back to reference Souyris F, Pellequer C, Payrot C, Servera C (1985) Coral, a new biomedical material. Experimental and first clinical investigations on madreporia. J Maxillofac Surg 13:64–69PubMedCrossRef Souyris F, Pellequer C, Payrot C, Servera C (1985) Coral, a new biomedical material. Experimental and first clinical investigations on madreporia. J Maxillofac Surg 13:64–69PubMedCrossRef
49.
go back to reference Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG (2010) The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop 34(4):589–597PubMedCentralPubMedCrossRef Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG (2010) The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop 34(4):589–597PubMedCentralPubMedCrossRef
50.
go back to reference Toole BP, Yu Q, Underhill CB (2001) Hyaluronan and hyaluronan-binding proteins. Probes for specific detection. Methods Mol Biol 171:479–485PubMed Toole BP, Yu Q, Underhill CB (2001) Hyaluronan and hyaluronan-binding proteins. Probes for specific detection. Methods Mol Biol 171:479–485PubMed
51.
go back to reference Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D, Itzhak D (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50(2–3):253–259PubMedCrossRef Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D, Itzhak D (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Methods 50(2–3):253–259PubMedCrossRef
52.
go back to reference Vuola J, Göransson H, Böhling T, Asko-Seljavaara S (1996) Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials 17(18):1761–1766PubMedCrossRef Vuola J, Göransson H, Böhling T, Asko-Seljavaara S (1996) Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials 17(18):1761–1766PubMedCrossRef
53.
go back to reference Zaner DJ, Yukna RA (1984) Particle size of periodontal bone grafting materials. J Periodontol 55(7):406–409PubMedCrossRef Zaner DJ, Yukna RA (1984) Particle size of periodontal bone grafting materials. J Periodontol 55(7):406–409PubMedCrossRef
Metadata
Title
Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model
Authors
E. Kon
G. Filardo
D. Robinson
J. A. Eisman
A. Levy
K. Zaslav
J. Shani
N. Altschuler
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 6/2014
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-013-2467-2

Other articles of this Issue 6/2014

Knee Surgery, Sports Traumatology, Arthroscopy 6/2014 Go to the issue