Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2014

Open Access 01-12-2014 | Research article

Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice

Authors: Tasneem P Sharma, Colleen M McDowell, Yang Liu, Alex H Wagner, David Thole, Benjamin P Faga, Robert J Wordinger, Terry A Braun, Abbot F Clark

Published in: Molecular Neurodegeneration | Issue 1/2014

Login to get access

Abstract

Background

Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets.

Results

Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p < 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nrn1) from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal neurodegeneration by immunohistochemistry and qRT-PCR.

Conclusion

A number of detrimental gene expression changes occur that contribute to trauma-induced neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schwartz M: Optic nerve crush: protection and regeneration. Brain Res Bull. 2004, 62 (6): 467-471. 10.1016/S0361-9230(03)00076-5.PubMed Schwartz M: Optic nerve crush: protection and regeneration. Brain Res Bull. 2004, 62 (6): 467-471. 10.1016/S0361-9230(03)00076-5.PubMed
2.
go back to reference Ohlsson M, Mattsson P, Svensson M: A temporal study of axonal degeneration and glial scar formation following a standardized crush injury of the optic nerve in the adult rat. Restor Neurol Neurosci. 2004, 22 (1): 1-10.PubMed Ohlsson M, Mattsson P, Svensson M: A temporal study of axonal degeneration and glial scar formation following a standardized crush injury of the optic nerve in the adult rat. Restor Neurol Neurosci. 2004, 22 (1): 1-10.PubMed
3.
go back to reference Magharious M, D’Onofrio PM, Hollander A, Zhu P, Chen J, Koeberle PD: Quantitative iTRAQ analysis of retinal ganglion cell degeneration after optic nerve crush. J Proteome Res. 2011, 10 (8): 3344-3362. 10.1021/pr2004055.PubMed Magharious M, D’Onofrio PM, Hollander A, Zhu P, Chen J, Koeberle PD: Quantitative iTRAQ analysis of retinal ganglion cell degeneration after optic nerve crush. J Proteome Res. 2011, 10 (8): 3344-3362. 10.1021/pr2004055.PubMed
4.
go back to reference Wohlfart G: Degeneration and regeneration in the nervous system. Recent advances. World Neurol. 1961, 2: 187-198.PubMed Wohlfart G: Degeneration and regeneration in the nervous system. Recent advances. World Neurol. 1961, 2: 187-198.PubMed
5.
go back to reference Windle WF: Regeneration of axons in the vertebrate central nervous system. Physiol Rev. 1956, 36 (4): 427-440.PubMed Windle WF: Regeneration of axons in the vertebrate central nervous system. Physiol Rev. 1956, 36 (4): 427-440.PubMed
6.
go back to reference Huber AB, Schwab ME: Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem. 2000, 381 (5–6): 407-419.PubMed Huber AB, Schwab ME: Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem. 2000, 381 (5–6): 407-419.PubMed
7.
go back to reference Huber AB, Weinmann O, Brosamle C, Oertle T, Schwab ME: Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J Neurosci. 2002, 22 (9): 3553-3567.PubMed Huber AB, Weinmann O, Brosamle C, Oertle T, Schwab ME: Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J Neurosci. 2002, 22 (9): 3553-3567.PubMed
8.
go back to reference Filbin MT: Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci. 2003, 4 (9): 703-713. 10.1038/nrn1195.PubMed Filbin MT: Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci. 2003, 4 (9): 703-713. 10.1038/nrn1195.PubMed
9.
go back to reference Tang S, Qiu J, Nikulina E, Filbin MT: Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration. Mol Cell Neurosci. 2001, 18 (3): 259-269. 10.1006/mcne.2001.1020.PubMed Tang S, Qiu J, Nikulina E, Filbin MT: Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration. Mol Cell Neurosci. 2001, 18 (3): 259-269. 10.1006/mcne.2001.1020.PubMed
10.
go back to reference Winzeler AM, Mandemakers WJ, Sun MZ, Stafford M, Phillips CT, Barres BA: The lipid sulfatide is a novel myelin-associated inhibitor of CNS axon outgrowth. J Neurosci. 2011, 31 (17): 6481-6492. 10.1523/JNEUROSCI.3004-10.2011.PubMedCentralPubMed Winzeler AM, Mandemakers WJ, Sun MZ, Stafford M, Phillips CT, Barres BA: The lipid sulfatide is a novel myelin-associated inhibitor of CNS axon outgrowth. J Neurosci. 2011, 31 (17): 6481-6492. 10.1523/JNEUROSCI.3004-10.2011.PubMedCentralPubMed
11.
go back to reference Kopp MA, Liebscher T, Niedeggen A, Laufer S, Brommer B, Jungehulsing GJ, Strittmatter SM, Dirnagl U, Schwab JM: Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury. Cell Tissue Res. 2012, 349 (1): 119-132. 10.1007/s00441-012-1334-7.PubMedCentralPubMed Kopp MA, Liebscher T, Niedeggen A, Laufer S, Brommer B, Jungehulsing GJ, Strittmatter SM, Dirnagl U, Schwab JM: Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury. Cell Tissue Res. 2012, 349 (1): 119-132. 10.1007/s00441-012-1334-7.PubMedCentralPubMed
12.
go back to reference Sandvig A, Berry M, Barrett LB, Butt A, Logan A: Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia. 2004, 46 (3): 225-251. 10.1002/glia.10315.PubMed Sandvig A, Berry M, Barrett LB, Butt A, Logan A: Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia. 2004, 46 (3): 225-251. 10.1002/glia.10315.PubMed
13.
go back to reference Silver J, Miller JH: Regeneration beyond the glial scar. Nat Rev Neurosci. 2004, 5 (2): 146-156. 10.1038/nrn1326.PubMed Silver J, Miller JH: Regeneration beyond the glial scar. Nat Rev Neurosci. 2004, 5 (2): 146-156. 10.1038/nrn1326.PubMed
14.
go back to reference Lawson LJ, Frost L, Risbridger J, Fearn S, Perry VH: Quantification of the mononuclear phagocyte response to Wallerian degeneration of the optic nerve. J Neurocytol. 1994, 23 (12): 729-744. 10.1007/BF01268086.PubMed Lawson LJ, Frost L, Risbridger J, Fearn S, Perry VH: Quantification of the mononuclear phagocyte response to Wallerian degeneration of the optic nerve. J Neurocytol. 1994, 23 (12): 729-744. 10.1007/BF01268086.PubMed
15.
go back to reference Lazarov-Spiegler O, Rapalino O, Agranov G, Schwartz M: Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration?. Mol Med Today. 1998, 4 (8): 337-342. 10.1016/S1357-4310(98)01298-2.PubMed Lazarov-Spiegler O, Rapalino O, Agranov G, Schwartz M: Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration?. Mol Med Today. 1998, 4 (8): 337-342. 10.1016/S1357-4310(98)01298-2.PubMed
16.
go back to reference Jaerve A, Muller HW: Chemokines in CNS injury and repair. Cell Tissue Res. 2012, 349 (1): 229-248. 10.1007/s00441-012-1427-3.PubMed Jaerve A, Muller HW: Chemokines in CNS injury and repair. Cell Tissue Res. 2012, 349 (1): 229-248. 10.1007/s00441-012-1427-3.PubMed
17.
go back to reference Monnier PP, D’Onofrio PM, Magharious M, Hollander AC, Tassew N, Szydlowska K, Tymianski M, Koeberle PD: Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells. J Neurosci. 2011, 31 (29): 10494-10505. 10.1523/JNEUROSCI.0148-11.2011.PubMed Monnier PP, D’Onofrio PM, Magharious M, Hollander AC, Tassew N, Szydlowska K, Tymianski M, Koeberle PD: Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells. J Neurosci. 2011, 31 (29): 10494-10505. 10.1523/JNEUROSCI.0148-11.2011.PubMed
18.
go back to reference Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ: Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995, 36 (5): 774-786.PubMed Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ: Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995, 36 (5): 774-786.PubMed
19.
go back to reference Li Y, Schlamp CL, Nickells RW: Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci. 1999, 40 (5): 1004-1008.PubMed Li Y, Schlamp CL, Nickells RW: Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci. 1999, 40 (5): 1004-1008.PubMed
20.
go back to reference Li Y, Semaan SJ, Schlamp CL, Nickells RW: Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice. BMC Neurosci. 2007, 8: 19-10.1186/1471-2202-8-19.PubMedCentralPubMed Li Y, Semaan SJ, Schlamp CL, Nickells RW: Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice. BMC Neurosci. 2007, 8: 19-10.1186/1471-2202-8-19.PubMedCentralPubMed
21.
go back to reference Barron KD, Dentinger MP, Krohel G, Easton SK, Mankes R: Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush. J Neurocytol. 1986, 15 (3): 345-362. 10.1007/BF01611437.PubMed Barron KD, Dentinger MP, Krohel G, Easton SK, Mankes R: Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush. J Neurocytol. 1986, 15 (3): 345-362. 10.1007/BF01611437.PubMed
22.
go back to reference Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, 10: 90-10.1186/1471-2202-10-90.PubMedCentralPubMed Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, 10: 90-10.1186/1471-2202-10-90.PubMedCentralPubMed
23.
go back to reference Misantone LJ, Gershenbaum M, Murray M: Viability of retinal ganglion cells after optic nerve crush in adult rats. J Neurocytol. 1984, 13 (3): 449-465. 10.1007/BF01148334.PubMed Misantone LJ, Gershenbaum M, Murray M: Viability of retinal ganglion cells after optic nerve crush in adult rats. J Neurocytol. 1984, 13 (3): 449-465. 10.1007/BF01148334.PubMed
24.
go back to reference Bahr M: Live or let die - retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci. 2000, 23 (10): 483-490. 10.1016/S0166-2236(00)01637-4.PubMed Bahr M: Live or let die - retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci. 2000, 23 (10): 483-490. 10.1016/S0166-2236(00)01637-4.PubMed
25.
go back to reference Klocker N, Zerfowski M, Gellrich NC, Bahr M: Morphological and functional analysis of an incomplete CNS fiber tract lesion: graded crush of the rat optic nerve. J Neurosci Methods. 2001, 110 (1–2): 147-153.PubMed Klocker N, Zerfowski M, Gellrich NC, Bahr M: Morphological and functional analysis of an incomplete CNS fiber tract lesion: graded crush of the rat optic nerve. J Neurosci Methods. 2001, 110 (1–2): 147-153.PubMed
26.
go back to reference Agudo M, Perez-Marin MC, Lonngren U, Sobrado P, Conesa A, Canovas I, Salinas-Navarro M, Miralles-Imperial J, Hallbook F, Vidal-Sanz M: Time course profiling of the retinal transcriptome after optic nerve transection and optic nerve crush. Mol Vis. 2008, 14: 1050-1063.PubMedCentralPubMed Agudo M, Perez-Marin MC, Lonngren U, Sobrado P, Conesa A, Canovas I, Salinas-Navarro M, Miralles-Imperial J, Hallbook F, Vidal-Sanz M: Time course profiling of the retinal transcriptome after optic nerve transection and optic nerve crush. Mol Vis. 2008, 14: 1050-1063.PubMedCentralPubMed
27.
go back to reference Tang Z, Arjunan P, Lee C, Li Y, Kumar A, Hou X, Wang B, Wardega P, Zhang F, Dong L, Zhang Y, Zhang SZ, Ding H, Fariss RN, Becker KG, Lennartsson J, Nagai N, Cao Y, Li X: Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by regulating GSK3beta phosphorylation. J Exp Med. 2010, 207 (4): 867-880. 10.1084/jem.20091704.PubMedCentralPubMed Tang Z, Arjunan P, Lee C, Li Y, Kumar A, Hou X, Wang B, Wardega P, Zhang F, Dong L, Zhang Y, Zhang SZ, Ding H, Fariss RN, Becker KG, Lennartsson J, Nagai N, Cao Y, Li X: Survival effect of PDGF-CC rescues neurons from apoptosis in both brain and retina by regulating GSK3beta phosphorylation. J Exp Med. 2010, 207 (4): 867-880. 10.1084/jem.20091704.PubMedCentralPubMed
28.
go back to reference Lukas TJ, Wang AL, Yuan M, Neufeld AH: Early cellular signaling responses to axonal injury. Cell Commun Signal: CCS. 2009, 7: 5-10.1186/1478-811X-7-5.PubMedCentralPubMed Lukas TJ, Wang AL, Yuan M, Neufeld AH: Early cellular signaling responses to axonal injury. Cell Commun Signal: CCS. 2009, 7: 5-10.1186/1478-811X-7-5.PubMedCentralPubMed
29.
go back to reference Qu J, Jakobs TC: The time course of gene expression during reactive gliosis in the optic nerve. PLoS One. 2013, 8 (6): e67094-10.1371/journal.pone.0067094.PubMedCentralPubMed Qu J, Jakobs TC: The time course of gene expression during reactive gliosis in the optic nerve. PLoS One. 2013, 8 (6): e67094-10.1371/journal.pone.0067094.PubMedCentralPubMed
30.
go back to reference Sharma A, Pollett MA, Plant GW, Harvey AR: Changes in mRNA expression of class 3 semaphorins and their receptors in the adult rat retino-collicular system after unilateral optic nerve injury. Invest Ophthalmol Vis Sci. 2012, 53 (13): 8367-8377. 10.1167/iovs.12-10799.PubMed Sharma A, Pollett MA, Plant GW, Harvey AR: Changes in mRNA expression of class 3 semaphorins and their receptors in the adult rat retino-collicular system after unilateral optic nerve injury. Invest Ophthalmol Vis Sci. 2012, 53 (13): 8367-8377. 10.1167/iovs.12-10799.PubMed
31.
go back to reference Blaugrund E, Lavie V, Cohen I, Solomon A, Schreyer DJ, Schwartz M: Axonal regeneration is associated with glial migration: comparison between the injured optic nerves of fish and rats. J Comp Neurol. 1993, 330 (1): 105-112. 10.1002/cne.903300109.PubMed Blaugrund E, Lavie V, Cohen I, Solomon A, Schreyer DJ, Schwartz M: Axonal regeneration is associated with glial migration: comparison between the injured optic nerves of fish and rats. J Comp Neurol. 1993, 330 (1): 105-112. 10.1002/cne.903300109.PubMed
32.
go back to reference Doster SK, Lozano AM, Aguayo AJ, Willard MB: Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axon injury. Neuron. 1991, 6 (4): 635-647. 10.1016/0896-6273(91)90066-9.PubMed Doster SK, Lozano AM, Aguayo AJ, Willard MB: Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axon injury. Neuron. 1991, 6 (4): 635-647. 10.1016/0896-6273(91)90066-9.PubMed
33.
go back to reference Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI: Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci. 2000, 20 (12): 4615-4626.PubMed Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI: Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci. 2000, 20 (12): 4615-4626.PubMed
34.
go back to reference Ridet JL, Malhotra SK, Privat A, Gage FH: Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997, 20 (12): 570-577. 10.1016/S0166-2236(97)01139-9.PubMed Ridet JL, Malhotra SK, Privat A, Gage FH: Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997, 20 (12): 570-577. 10.1016/S0166-2236(97)01139-9.PubMed
35.
go back to reference Dibas A, Oku H, Fukuhara M, Kurimoto T, Ikeda T, Patil RV, Sharif NA, Yorio T: Changes in ocular aquaporin expression following optic nerve crush. Mol Vis. 2010, 16: 330-340.PubMedCentralPubMed Dibas A, Oku H, Fukuhara M, Kurimoto T, Ikeda T, Patil RV, Sharif NA, Yorio T: Changes in ocular aquaporin expression following optic nerve crush. Mol Vis. 2010, 16: 330-340.PubMedCentralPubMed
36.
go back to reference Woldemussie E, Wijono M, Ruiz G: Muller cell response to laser-induced increase in intraocular pressure in rats. Glia. 2004, 47 (2): 109-119. 10.1002/glia.20000.PubMed Woldemussie E, Wijono M, Ruiz G: Muller cell response to laser-induced increase in intraocular pressure in rats. Glia. 2004, 47 (2): 109-119. 10.1002/glia.20000.PubMed
37.
go back to reference Parrilla-Reverter G, Agudo M, Nadal-Nicolas F, Alarcon-Martinez L, Jimenez-Lopez M, Salinas-Navarro M, Sobrado-Calvo P, Bernal-Garro JM, Villegas-Perez MP, Vidal-Sanz M: Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: a comparative study. Vis Res. 2009, 49 (23): 2808-2825. 10.1016/j.visres.2009.08.020.PubMed Parrilla-Reverter G, Agudo M, Nadal-Nicolas F, Alarcon-Martinez L, Jimenez-Lopez M, Salinas-Navarro M, Sobrado-Calvo P, Bernal-Garro JM, Villegas-Perez MP, Vidal-Sanz M: Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: a comparative study. Vis Res. 2009, 49 (23): 2808-2825. 10.1016/j.visres.2009.08.020.PubMed
38.
go back to reference Koeberle PD, Bahr M: Growth and guidance cues for regenerating axons: where have they gone?. J Neurobiol. 2004, 59 (1): 162-180. 10.1002/neu.10345.PubMed Koeberle PD, Bahr M: Growth and guidance cues for regenerating axons: where have they gone?. J Neurobiol. 2004, 59 (1): 162-180. 10.1002/neu.10345.PubMed
39.
go back to reference Kermer P, Klocker N, Bahr M: Neuronal death after brain injury. Models, mechanisms, and therapeutic strategies in vivo. Cell Tissue Res. 1999, 298 (3): 383-395. 10.1007/s004410050061.PubMed Kermer P, Klocker N, Bahr M: Neuronal death after brain injury. Models, mechanisms, and therapeutic strategies in vivo. Cell Tissue Res. 1999, 298 (3): 383-395. 10.1007/s004410050061.PubMed
40.
go back to reference Koeberle PD, Gauldie J, Ball AK: Effects of adenoviral-mediated gene transfer of interleukin-10, interleukin-4, and transforming growth factor-beta on the survival of axotomized retinal ganglion cells. Neuroscience. 2004, 125 (4): 903-920. 10.1016/S0306-4522(03)00398-1.PubMed Koeberle PD, Gauldie J, Ball AK: Effects of adenoviral-mediated gene transfer of interleukin-10, interleukin-4, and transforming growth factor-beta on the survival of axotomized retinal ganglion cells. Neuroscience. 2004, 125 (4): 903-920. 10.1016/S0306-4522(03)00398-1.PubMed
41.
go back to reference Kipnis J, Yoles E, Schori H, Hauben E, Shaked I, Schwartz M: Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci. 2001, 21 (13): 4564-4571.PubMed Kipnis J, Yoles E, Schori H, Hauben E, Shaked I, Schwartz M: Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci. 2001, 21 (13): 4564-4571.PubMed
42.
go back to reference Isenmann S, Wahl C, Krajewski S, Reed JC, Bahr M: Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. Eur J Neurosci. 1997, 9 (8): 1763-1772. 10.1111/j.1460-9568.1997.tb01534.x.PubMed Isenmann S, Wahl C, Krajewski S, Reed JC, Bahr M: Up-regulation of Bax protein in degenerating retinal ganglion cells precedes apoptotic cell death after optic nerve lesion in the rat. Eur J Neurosci. 1997, 9 (8): 1763-1772. 10.1111/j.1460-9568.1997.tb01534.x.PubMed
43.
go back to reference Kermer P, Ankerhold R, Klocker N, Krajewski S, Reed JC, Bahr M: Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res Mol Brain Res. 2000, 85 (1–2): 144-150.PubMed Kermer P, Ankerhold R, Klocker N, Krajewski S, Reed JC, Bahr M: Caspase-9: involvement in secondary death of axotomized rat retinal ganglion cells in vivo. Brain Res Mol Brain Res. 2000, 85 (1–2): 144-150.PubMed
44.
go back to reference Kermer P, Klocker N, Labes M, Bahr M: Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J Neurosci. 1998, 18 (12): 4656-4662.PubMed Kermer P, Klocker N, Labes M, Bahr M: Inhibition of CPP32-like proteases rescues axotomized retinal ganglion cells from secondary cell death in vivo. J Neurosci. 1998, 18 (12): 4656-4662.PubMed
45.
go back to reference Kikuchi M, Tenneti L, Lipton SA: Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci. 2000, 20 (13): 5037-5044.PubMed Kikuchi M, Tenneti L, Lipton SA: Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci. 2000, 20 (13): 5037-5044.PubMed
46.
go back to reference Galindo-Romero C, Aviles-Trigueros M, Jimenez-Lopez M, Valiente-Soriano FJ, Salinas-Navarro M, Nadal-Nicolas F, Villegas-Perez MP, Vidal-Sanz M, Agudo-Barriuso M: Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp Eye Res. 2011, 92 (5): 377-387. 10.1016/j.exer.2011.02.008.PubMed Galindo-Romero C, Aviles-Trigueros M, Jimenez-Lopez M, Valiente-Soriano FJ, Salinas-Navarro M, Nadal-Nicolas F, Villegas-Perez MP, Vidal-Sanz M, Agudo-Barriuso M: Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp Eye Res. 2011, 92 (5): 377-387. 10.1016/j.exer.2011.02.008.PubMed
47.
go back to reference Kim BJ, Braun TA, Wordinger RJ, Clark AF: Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol Neurodegener. 2013, 8: 21-10.1186/1750-1326-8-21.PubMedCentralPubMed Kim BJ, Braun TA, Wordinger RJ, Clark AF: Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol Neurodegener. 2013, 8: 21-10.1186/1750-1326-8-21.PubMedCentralPubMed
48.
go back to reference Xia Y, Chen J, Xiong L, Liu J, Liu X, Ma L, Zhang Q, You C, Chen J, Liu X, Wang X, Ju Y: Retinal whole genome microarray analysis and early morphological changes in the optic nerves of monkeys after an intraorbital nerve irradiated injury. Mol Vis. 2011, 17: 2920-2933.PubMedCentralPubMed Xia Y, Chen J, Xiong L, Liu J, Liu X, Ma L, Zhang Q, You C, Chen J, Liu X, Wang X, Ju Y: Retinal whole genome microarray analysis and early morphological changes in the optic nerves of monkeys after an intraorbital nerve irradiated injury. Mol Vis. 2011, 17: 2920-2933.PubMedCentralPubMed
49.
go back to reference Jehle T, Dimitriu C, Auer S, Knoth R, Vidal-Sanz M, Gozes I, Lagreze WA: The neuropeptide NAP provides neuroprotection against retinal ganglion cell damage after retinal ischemia and optic nerve crush. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2008, 246 (9): 1255-1263. 10.1007/s00417-007-0746-7. Jehle T, Dimitriu C, Auer S, Knoth R, Vidal-Sanz M, Gozes I, Lagreze WA: The neuropeptide NAP provides neuroprotection against retinal ganglion cell damage after retinal ischemia and optic nerve crush. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2008, 246 (9): 1255-1263. 10.1007/s00417-007-0746-7.
50.
go back to reference Agudo M, Perez-Marin MC, Sobrado-Calvo P, Lonngren U, Salinas-Navarro M, Canovas I, Nadal-Nicolas FM, Miralles-Imperial J, Hallbook F, Vidal-Sanz M: Immediate upregulation of proteins belonging to different branches of the apoptotic cascade in the retina after optic nerve transection and optic nerve crush. Invest Ophthalmol Vis Sci. 2009, 50 (1): 424-431.PubMed Agudo M, Perez-Marin MC, Sobrado-Calvo P, Lonngren U, Salinas-Navarro M, Canovas I, Nadal-Nicolas FM, Miralles-Imperial J, Hallbook F, Vidal-Sanz M: Immediate upregulation of proteins belonging to different branches of the apoptotic cascade in the retina after optic nerve transection and optic nerve crush. Invest Ophthalmol Vis Sci. 2009, 50 (1): 424-431.PubMed
51.
go back to reference Goldenberg-Cohen N, Dratviman-Storobinsky O, El Dadon Bar S, Cheporko Y, Hochhauser E: Protective effect of bax ablation against cell loss in the retinal ganglion layer induced by optic nerve crush in transgenic mice. J Neuroophthalmol. 2011, 31 (4): 331-338. 10.1097/WNO.0b013e318227e4fb.PubMed Goldenberg-Cohen N, Dratviman-Storobinsky O, El Dadon Bar S, Cheporko Y, Hochhauser E: Protective effect of bax ablation against cell loss in the retinal ganglion layer induced by optic nerve crush in transgenic mice. J Neuroophthalmol. 2011, 31 (4): 331-338. 10.1097/WNO.0b013e318227e4fb.PubMed
52.
go back to reference Haverkamp S, Inta D, Monyer H, Wassle H: Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines. Neuroscience. 2009, 160 (1): 126-139. 10.1016/j.neuroscience.2009.01.081.PubMed Haverkamp S, Inta D, Monyer H, Wassle H: Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines. Neuroscience. 2009, 160 (1): 126-139. 10.1016/j.neuroscience.2009.01.081.PubMed
53.
go back to reference Raymond ID, Vila A, Huynh UC, Brecha NC: Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Mol Vis. 2008, 14: 1559-1574.PubMedCentralPubMed Raymond ID, Vila A, Huynh UC, Brecha NC: Cyan fluorescent protein expression in ganglion and amacrine cells in a thy1-CFP transgenic mouse retina. Mol Vis. 2008, 14: 1559-1574.PubMedCentralPubMed
54.
go back to reference Masland RH: Neuronal diversity in the retina. Curr Opin Neurobiol. 2001, 11 (4): 431-436. 10.1016/S0959-4388(00)00230-0.PubMed Masland RH: Neuronal diversity in the retina. Curr Opin Neurobiol. 2001, 11 (4): 431-436. 10.1016/S0959-4388(00)00230-0.PubMed
55.
go back to reference Kim CY, Kuehn MH, Clark AF, Kwon YH: Gene expression profile of the adult human retinal ganglion cell layer. Mol Vis. 2006, 12: 1640-1648.PubMed Kim CY, Kuehn MH, Clark AF, Kwon YH: Gene expression profile of the adult human retinal ganglion cell layer. Mol Vis. 2006, 12: 1640-1648.PubMed
56.
go back to reference Villegas-Perez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ: Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J Neurobiol. 1993, 24 (1): 23-36. 10.1002/neu.480240103.PubMed Villegas-Perez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ: Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J Neurobiol. 1993, 24 (1): 23-36. 10.1002/neu.480240103.PubMed
57.
go back to reference Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M: Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci. 2009, 50 (8): 3860-3868. 10.1167/iovs.08-3267.PubMed Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M: Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci. 2009, 50 (8): 3860-3868. 10.1167/iovs.08-3267.PubMed
58.
go back to reference Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ: Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci. 1994, 14 (7): 4368-4374.PubMed Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ: Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci. 1994, 14 (7): 4368-4374.PubMed
59.
go back to reference Aryee MJ, Gutierrez-Pabello JA, Kramnik I, Maiti T, Quackenbush J: An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinforma. 2009, 10: 409-10.1186/1471-2105-10-409. Aryee MJ, Gutierrez-Pabello JA, Kramnik I, Maiti T, Quackenbush J: An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinforma. 2009, 10: 409-10.1186/1471-2105-10-409.
60.
go back to reference Cantallops I, Haas K, Cline HT: Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat Neurosci. 2000, 3 (10): 1004-1011. 10.1038/79823.PubMed Cantallops I, Haas K, Cline HT: Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat Neurosci. 2000, 3 (10): 1004-1011. 10.1038/79823.PubMed
61.
go back to reference Carpenter S: Proximal axonal enlargement in motor neuron disease. Neurology. 1968, 18 (9): 841-851. 10.1212/WNL.18.9.841.PubMed Carpenter S: Proximal axonal enlargement in motor neuron disease. Neurology. 1968, 18 (9): 841-851. 10.1212/WNL.18.9.841.PubMed
62.
go back to reference Delisle MB, Carpenter S: Neurofibrillary axonal swellings and amyotrophic lateral sclerosis. J Neurol Sci. 1984, 63 (2): 241-250. 10.1016/0022-510X(84)90199-0.PubMed Delisle MB, Carpenter S: Neurofibrillary axonal swellings and amyotrophic lateral sclerosis. J Neurol Sci. 1984, 63 (2): 241-250. 10.1016/0022-510X(84)90199-0.PubMed
63.
go back to reference Ishii T, Haga S, Tokutake S: Presence of neurofilament protein in Alzheimer’s neurofibrillary tangles (ANT). An immunofluorescent study. Acta Neuropathol. 1979, 48 (2): 105-112. 10.1007/BF00691151.PubMed Ishii T, Haga S, Tokutake S: Presence of neurofilament protein in Alzheimer’s neurofibrillary tangles (ANT). An immunofluorescent study. Acta Neuropathol. 1979, 48 (2): 105-112. 10.1007/BF00691151.PubMed
64.
go back to reference Nukina N, Kosik KS, Selkoe DJ: Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to crossreaction with tau protein. Proc Natl Acad Sci U S A. 1987, 84 (10): 3415-3419. 10.1073/pnas.84.10.3415.PubMedCentralPubMed Nukina N, Kosik KS, Selkoe DJ: Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to crossreaction with tau protein. Proc Natl Acad Sci U S A. 1987, 84 (10): 3415-3419. 10.1073/pnas.84.10.3415.PubMedCentralPubMed
65.
go back to reference Hill WD, Arai M, Cohen JA, Trojanowski JQ: Neurofilament mRNA is reduced in Parkinson’s disease substantia nigra pars compacta neurons. J Comp Neurol. 1993, 329 (3): 328-336. 10.1002/cne.903290304.PubMed Hill WD, Arai M, Cohen JA, Trojanowski JQ: Neurofilament mRNA is reduced in Parkinson’s disease substantia nigra pars compacta neurons. J Comp Neurol. 1993, 329 (3): 328-336. 10.1002/cne.903290304.PubMed
66.
go back to reference Fabrizi GM, Cavallaro T, Angiari C, Bertolasi L, Cabrini I, Ferrarini M, Rizzuto N: Giant axon and neurofilament accumulation in Charcot-Marie-Tooth disease type 2E. Neurology. 2004, 62 (8): 1429-1431. 10.1212/01.WNL.0000120664.07186.3C.PubMed Fabrizi GM, Cavallaro T, Angiari C, Bertolasi L, Cabrini I, Ferrarini M, Rizzuto N: Giant axon and neurofilament accumulation in Charcot-Marie-Tooth disease type 2E. Neurology. 2004, 62 (8): 1429-1431. 10.1212/01.WNL.0000120664.07186.3C.PubMed
67.
go back to reference Bigio EH, Lipton AM, White CL, Dickson DW, Hirano A: Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathol Appl Neurobiol. 2003, 29 (3): 239-253. 10.1046/j.1365-2990.2003.00466.x.PubMed Bigio EH, Lipton AM, White CL, Dickson DW, Hirano A: Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathol Appl Neurobiol. 2003, 29 (3): 239-253. 10.1046/j.1365-2990.2003.00466.x.PubMed
68.
go back to reference Cairns NJ, Perry RH, Jaros E, Burn D, McKeith IG, Lowe JS, Holton J, Rossor MN, Skullerud K, Duyckaerts C, Cruz-Sanchez FF, Lantos PL: Patients with a novel neurofilamentopathy: dementia with neurofilament inclusions. Neurosci Lett. 2003, 341 (3): 177-180. 10.1016/S0304-3940(03)00100-9.PubMed Cairns NJ, Perry RH, Jaros E, Burn D, McKeith IG, Lowe JS, Holton J, Rossor MN, Skullerud K, Duyckaerts C, Cruz-Sanchez FF, Lantos PL: Patients with a novel neurofilamentopathy: dementia with neurofilament inclusions. Neurosci Lett. 2003, 341 (3): 177-180. 10.1016/S0304-3940(03)00100-9.PubMed
69.
go back to reference Josephs KA, Holton JL, Rossor MN, Braendgaard H, Ozawa T, Fox NC, Petersen RC, Pearl GS, Ganguly M, Rosa P, Laursen H, Parisi JE, Waldemar G, Quinn NP, Dickson DW, Revesz T: Neurofilament inclusion body disease: a new proteinopathy?. Brain. 2003, 126 (Pt 10): 2291-2303.PubMed Josephs KA, Holton JL, Rossor MN, Braendgaard H, Ozawa T, Fox NC, Petersen RC, Pearl GS, Ganguly M, Rosa P, Laursen H, Parisi JE, Waldemar G, Quinn NP, Dickson DW, Revesz T: Neurofilament inclusion body disease: a new proteinopathy?. Brain. 2003, 126 (Pt 10): 2291-2303.PubMed
70.
go back to reference Asbury AK, Gale MK, Cox SC, Baringer JR, Berg BO: Giant axonal neuropathy–a unique case with segmental neurofilamentous masses. Acta Neuropathol. 1972, 20 (3): 237-247. 10.1007/BF00686905.PubMed Asbury AK, Gale MK, Cox SC, Baringer JR, Berg BO: Giant axonal neuropathy–a unique case with segmental neurofilamentous masses. Acta Neuropathol. 1972, 20 (3): 237-247. 10.1007/BF00686905.PubMed
71.
go back to reference Medori R, Autilio-Gambetti L, Monaco S, Gambetti P: Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc Natl Acad Sci U S A. 1985, 82 (22): 7716-7720. 10.1073/pnas.82.22.7716.PubMedCentralPubMed Medori R, Autilio-Gambetti L, Monaco S, Gambetti P: Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc Natl Acad Sci U S A. 1985, 82 (22): 7716-7720. 10.1073/pnas.82.22.7716.PubMedCentralPubMed
72.
go back to reference Medori R, Jenich H, Autilio-Gambetti L, Gambetti P: Experimental diabetic neuropathy: similar changes of slow axonal transport and axonal size in different animal models. J Neurosci. 1988, 8 (5): 1814-1821.PubMed Medori R, Jenich H, Autilio-Gambetti L, Gambetti P: Experimental diabetic neuropathy: similar changes of slow axonal transport and axonal size in different animal models. J Neurosci. 1988, 8 (5): 1814-1821.PubMed
73.
go back to reference Perrot R, Berges R, Bocquet A, Eyer J: Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol. 2008, 38 (1): 27-65. 10.1007/s12035-008-8033-0.PubMed Perrot R, Berges R, Bocquet A, Eyer J: Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol. 2008, 38 (1): 27-65. 10.1007/s12035-008-8033-0.PubMed
74.
go back to reference Huang X, Kong W, Zhou Y, Gregori G: Distortion of axonal cytoskeleton: an early sign of glaucomatous damage. Invest Ophthalmol Vis Sci. 2011, 52 (6): 2879-2888. 10.1167/iovs.10-5929.PubMedCentralPubMed Huang X, Kong W, Zhou Y, Gregori G: Distortion of axonal cytoskeleton: an early sign of glaucomatous damage. Invest Ophthalmol Vis Sci. 2011, 52 (6): 2879-2888. 10.1167/iovs.10-5929.PubMedCentralPubMed
75.
go back to reference Ivanov D, Dvoriantchikova G, Nathanson L, McKinnon SJ, Shestopalov VI: Microarray analysis of gene expression in adult retinal ganglion cells. FEBS Lett. 2006, 580 (1): 331-335. 10.1016/j.febslet.2005.12.017.PubMed Ivanov D, Dvoriantchikova G, Nathanson L, McKinnon SJ, Shestopalov VI: Microarray analysis of gene expression in adult retinal ganglion cells. FEBS Lett. 2006, 580 (1): 331-335. 10.1016/j.febslet.2005.12.017.PubMed
76.
go back to reference Farkas RH, Qian J, Goldberg JL, Quigley HA, Zack DJ: Gene expression profiling of purified rat retinal ganglion cells. Invest Ophthalmol Vis Sci. 2004, 45 (8): 2503-2513. 10.1167/iovs.03-1391.PubMed Farkas RH, Qian J, Goldberg JL, Quigley HA, Zack DJ: Gene expression profiling of purified rat retinal ganglion cells. Invest Ophthalmol Vis Sci. 2004, 45 (8): 2503-2513. 10.1167/iovs.03-1391.PubMed
77.
go back to reference Grabs D, Bergmann M, Schuster T, Fox PA, Brich M, Gratz M: Differential expression of synaptophysin and synaptoporin during pre- and postnatal development of the rat hippocampal network. Eur J Neurosci. 1994, 6 (11): 1765-1771. 10.1111/j.1460-9568.1994.tb00569.x.PubMed Grabs D, Bergmann M, Schuster T, Fox PA, Brich M, Gratz M: Differential expression of synaptophysin and synaptoporin during pre- and postnatal development of the rat hippocampal network. Eur J Neurosci. 1994, 6 (11): 1765-1771. 10.1111/j.1460-9568.1994.tb00569.x.PubMed
78.
go back to reference Singec I, Knoth R, Ditter M, Hagemeyer CE, Rosenbrock H, Frotscher M, Volk B: Synaptic vesicle protein synaptoporin is differently expressed by subpopulations of mouse hippocampal neurons. J Comp Neurol. 2002, 452 (2): 139-153. 10.1002/cne.10371.PubMed Singec I, Knoth R, Ditter M, Hagemeyer CE, Rosenbrock H, Frotscher M, Volk B: Synaptic vesicle protein synaptoporin is differently expressed by subpopulations of mouse hippocampal neurons. J Comp Neurol. 2002, 452 (2): 139-153. 10.1002/cne.10371.PubMed
79.
go back to reference Sun T, Xiao HS, Zhou PB, Lu YJ, Bao L, Zhang X: Differential expression of synaptoporin and synaptophysin in primary sensory neurons and up-regulation of synaptoporin after peripheral nerve injury. Neuroscience. 2006, 141 (3): 1233-1245. 10.1016/j.neuroscience.2006.05.010.PubMed Sun T, Xiao HS, Zhou PB, Lu YJ, Bao L, Zhang X: Differential expression of synaptoporin and synaptophysin in primary sensory neurons and up-regulation of synaptoporin after peripheral nerve injury. Neuroscience. 2006, 141 (3): 1233-1245. 10.1016/j.neuroscience.2006.05.010.PubMed
80.
go back to reference Greif KF, Asabere N, Lutz GJ, Gallo G: Synaptotagmin-1 promotes the formation of axonal filopodia and branches along the developing axons of forebrain neurons. Dev Neurobiol. 2013, 73 (1): 27-44. 10.1002/dneu.22033.PubMed Greif KF, Asabere N, Lutz GJ, Gallo G: Synaptotagmin-1 promotes the formation of axonal filopodia and branches along the developing axons of forebrain neurons. Dev Neurobiol. 2013, 73 (1): 27-44. 10.1002/dneu.22033.PubMed
81.
go back to reference Malarkey EB, Parpura V: Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol. 2011, 589 (Pt 17): 4271-4300.PubMedCentralPubMed Malarkey EB, Parpura V: Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol. 2011, 589 (Pt 17): 4271-4300.PubMedCentralPubMed
82.
go back to reference Jeon CJ, Strettoi E, Masland RH: The major cell populations of the mouse retina. J Neurosci. 1998, 18 (21): 8936-8946.PubMed Jeon CJ, Strettoi E, Masland RH: The major cell populations of the mouse retina. J Neurosci. 1998, 18 (21): 8936-8946.PubMed
83.
go back to reference Quina LA, Pak W, Lanier J, Banwait P, Gratwick K, Liu Y, Velasquez T, O’Leary DD, Goulding M, Turner EE: Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J Neurosci. 2005, 25 (50): 11595-11604. 10.1523/JNEUROSCI.2837-05.2005.PubMed Quina LA, Pak W, Lanier J, Banwait P, Gratwick K, Liu Y, Velasquez T, O’Leary DD, Goulding M, Turner EE: Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J Neurosci. 2005, 25 (50): 11595-11604. 10.1523/JNEUROSCI.2837-05.2005.PubMed
84.
go back to reference Johnson TV, Martin KR: Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci. 2008, 49 (8): 3503-3512. 10.1167/iovs.07-1601.PubMed Johnson TV, Martin KR: Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci. 2008, 49 (8): 3503-3512. 10.1167/iovs.07-1601.PubMed
85.
go back to reference Fujino T, Wu Z, Lin WC, Phillips MA, Nedivi E: cpg15 and cpg15-2 constitute a family of activity-regulated ligands expressed differentially in the nervous system to promote neurite growth and neuronal survival. J Comp Neurol. 2008, 507 (5): 1831-1845. 10.1002/cne.21649.PubMedCentralPubMed Fujino T, Wu Z, Lin WC, Phillips MA, Nedivi E: cpg15 and cpg15-2 constitute a family of activity-regulated ligands expressed differentially in the nervous system to promote neurite growth and neuronal survival. J Comp Neurol. 2008, 507 (5): 1831-1845. 10.1002/cne.21649.PubMedCentralPubMed
86.
go back to reference Kigerl KA, McGaughy VM, Popovich PG: Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol. 2006, 494 (4): 578-594. 10.1002/cne.20827.PubMedCentralPubMed Kigerl KA, McGaughy VM, Popovich PG: Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol. 2006, 494 (4): 578-594. 10.1002/cne.20827.PubMedCentralPubMed
87.
go back to reference Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, John SW: Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 2005, 1 (1): 17-26. 10.1371/journal.pgen.0010017.PubMed Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, John SW: Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 2005, 1 (1): 17-26. 10.1371/journal.pgen.0010017.PubMed
88.
go back to reference Montalban-Soler L, Alarcon-Martinez L, Jimenez-Lopez M, Salinas-Navarro M, Galindo-Romero C, Bezerra de Sa F, Garcia-Ayuso D, Aviles-Trigueros M, Vidal-Sanz M, Agudo-Barriuso M, Villegas-Pérez MP: Retinal compensatory changes after light damage in albino mice. Mol Vis. 2012, 18: 675-693.PubMedCentralPubMed Montalban-Soler L, Alarcon-Martinez L, Jimenez-Lopez M, Salinas-Navarro M, Galindo-Romero C, Bezerra de Sa F, Garcia-Ayuso D, Aviles-Trigueros M, Vidal-Sanz M, Agudo-Barriuso M, Villegas-Pérez MP: Retinal compensatory changes after light damage in albino mice. Mol Vis. 2012, 18: 675-693.PubMedCentralPubMed
89.
go back to reference Garcia-Ayuso D, Salinas-Navarro M, Agudo-Barriuso M, Alarcon-Martinez L, Vidal-Sanz M, Villegas-Perez MP: Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration. Mol Vis. 2011, 17: 1716-1733.PubMedCentralPubMed Garcia-Ayuso D, Salinas-Navarro M, Agudo-Barriuso M, Alarcon-Martinez L, Vidal-Sanz M, Villegas-Perez MP: Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration. Mol Vis. 2011, 17: 1716-1733.PubMedCentralPubMed
90.
go back to reference McCurley AT, Callard GV: Time course analysis of gene expression patterns in zebrafish eye during optic nerve regeneration. J Exp Neurosci. 2010, 2010 (4): 17-33.PubMedCentralPubMed McCurley AT, Callard GV: Time course analysis of gene expression patterns in zebrafish eye during optic nerve regeneration. J Exp Neurosci. 2010, 2010 (4): 17-33.PubMedCentralPubMed
91.
go back to reference Agudo-Barriuso M, Lahoz A, Nadal-Nicolas FM, Sobrado-Calvo P, Piquer-Gil M, Diaz-Llopis M, Vidal-Sanz M, Mullor JL: Metabolomic changes in the rat retina after optic nerve crush. Invest Ophthalmol Vis Sci. 2013, 54 (6): 4249-4259. 10.1167/iovs.12-11451.PubMed Agudo-Barriuso M, Lahoz A, Nadal-Nicolas FM, Sobrado-Calvo P, Piquer-Gil M, Diaz-Llopis M, Vidal-Sanz M, Mullor JL: Metabolomic changes in the rat retina after optic nerve crush. Invest Ophthalmol Vis Sci. 2013, 54 (6): 4249-4259. 10.1167/iovs.12-11451.PubMed
92.
go back to reference Liedtke T, Naskar R, Eisenacher M, Thanos S: Transformation of adult retina from the regenerative to the axonogenesis state activates specific genes in various subsets of neurons and glial cells. Glia. 2007, 55 (2): 189-201. 10.1002/glia.20447.PubMed Liedtke T, Naskar R, Eisenacher M, Thanos S: Transformation of adult retina from the regenerative to the axonogenesis state activates specific genes in various subsets of neurons and glial cells. Glia. 2007, 55 (2): 189-201. 10.1002/glia.20447.PubMed
93.
go back to reference Munguba GC, Geisert EE, Williams RW, Tapia ML, Lam DK, Bhattacharya SK, Lee RK: Effects of glaucoma on Chrna6 expression in the retina. Curr Eye Res. 2013, 38 (1): 150-157. 10.3109/02713683.2012.724512.PubMed Munguba GC, Geisert EE, Williams RW, Tapia ML, Lam DK, Bhattacharya SK, Lee RK: Effects of glaucoma on Chrna6 expression in the retina. Curr Eye Res. 2013, 38 (1): 150-157. 10.3109/02713683.2012.724512.PubMed
94.
go back to reference Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna , Liem RK, Eyer J, Peterson AC, Julien JP, Nixon RA: Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci. 2006, 26 (39): 10006-10019. 10.1523/JNEUROSCI.2580-06.2006.PubMed Yuan A, Rao MV, Sasaki T, Chen Y, Kumar A, Veeranna , Liem RK, Eyer J, Peterson AC, Julien JP, Nixon RA: Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci. 2006, 26 (39): 10006-10019. 10.1523/JNEUROSCI.2580-06.2006.PubMed
95.
go back to reference Kielczewski JL, Pease ME, Quigley HA: The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest Ophthalmol Vis Sci. 2005, 46 (9): 3188-3196. 10.1167/iovs.05-0321.PubMedCentralPubMed Kielczewski JL, Pease ME, Quigley HA: The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest Ophthalmol Vis Sci. 2005, 46 (9): 3188-3196. 10.1167/iovs.05-0321.PubMedCentralPubMed
96.
go back to reference Kirsch M, Trautmann N, Ernst M, Hofmann HD: Involvement of gp130-associated cytokine signaling in Muller cell activation following optic nerve lesion. Glia. 2010, 58 (7): 768-779. 10.1002/glia.20961.PubMed Kirsch M, Trautmann N, Ernst M, Hofmann HD: Involvement of gp130-associated cytokine signaling in Muller cell activation following optic nerve lesion. Glia. 2010, 58 (7): 768-779. 10.1002/glia.20961.PubMed
97.
go back to reference Aldskogius H, Kozlova EN: Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol. 1998, 55 (1): 1-26. 10.1016/S0301-0082(97)00093-2.PubMed Aldskogius H, Kozlova EN: Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol. 1998, 55 (1): 1-26. 10.1016/S0301-0082(97)00093-2.PubMed
98.
go back to reference Bernstein HG, Baumann B, Danos P, Diekmann S, Bogerts B, Gundelfinger ED, Braunewell KH: Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain. J Neurocytol. 1999, 28 (8): 655-662. 10.1023/A:1007056731551.PubMed Bernstein HG, Baumann B, Danos P, Diekmann S, Bogerts B, Gundelfinger ED, Braunewell KH: Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain. J Neurocytol. 1999, 28 (8): 655-662. 10.1023/A:1007056731551.PubMed
99.
go back to reference Braunewell KH, Klein-Szanto AJ: Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2 + − sensor proteins. Cell Tissue Res. 2009, 335 (2): 301-316. 10.1007/s00441-008-0716-3.PubMedCentralPubMed Braunewell KH, Klein-Szanto AJ: Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2 + − sensor proteins. Cell Tissue Res. 2009, 335 (2): 301-316. 10.1007/s00441-008-0716-3.PubMedCentralPubMed
100.
go back to reference De Raad S, Comte M, Nef P, Lenz SE, Gundelfinger ED, Cox JA: Distribution pattern of three neural calcium-binding proteins (NCS-1, VILIP and recoverin) in chicken, bovine and rat retina. Histochem J. 1995, 27 (7): 524-535. 10.1007/BF02388752.PubMed De Raad S, Comte M, Nef P, Lenz SE, Gundelfinger ED, Cox JA: Distribution pattern of three neural calcium-binding proteins (NCS-1, VILIP and recoverin) in chicken, bovine and rat retina. Histochem J. 1995, 27 (7): 524-535. 10.1007/BF02388752.PubMed
101.
go back to reference Yao JJ, Gao XF, Chow CW, Zhan XQ, Hu CL, Mei YA: Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K + current in rat cerebellar granule neurons. J Biol Chem. 2012, 287 (49): 41534-41545. 10.1074/jbc.M112.390260.PubMedCentralPubMed Yao JJ, Gao XF, Chow CW, Zhan XQ, Hu CL, Mei YA: Neuritin activates insulin receptor pathway to up-regulate Kv4.2-mediated transient outward K + current in rat cerebellar granule neurons. J Biol Chem. 2012, 287 (49): 41534-41545. 10.1074/jbc.M112.390260.PubMedCentralPubMed
102.
go back to reference Nedivi E, Wu GY, Cline HT: Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science. 1998, 281 (5384): 1863-1866.PubMedCentralPubMed Nedivi E, Wu GY, Cline HT: Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science. 1998, 281 (5384): 1863-1866.PubMedCentralPubMed
103.
go back to reference Fujino T, Leslie JH, Eavri R, Chen JL, Lin WC, Flanders GH, Borok E, Horvath TL, Nedivi E: CPG15 regulates synapse stability in the developing and adult brain. Genes Dev. 2011, 25 (24): 2674-2685. 10.1101/gad.176172.111.PubMedCentralPubMed Fujino T, Leslie JH, Eavri R, Chen JL, Lin WC, Flanders GH, Borok E, Horvath TL, Nedivi E: CPG15 regulates synapse stability in the developing and adult brain. Genes Dev. 2011, 25 (24): 2674-2685. 10.1101/gad.176172.111.PubMedCentralPubMed
104.
go back to reference Naeve GS, Ramakrishnan M, Kramer R, Hevroni D, Citri Y, Theill LE: Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc Natl Acad Sci U S A. 1997, 94 (6): 2648-2653. 10.1073/pnas.94.6.2648.PubMedCentralPubMed Naeve GS, Ramakrishnan M, Kramer R, Hevroni D, Citri Y, Theill LE: Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc Natl Acad Sci U S A. 1997, 94 (6): 2648-2653. 10.1073/pnas.94.6.2648.PubMedCentralPubMed
105.
go back to reference Nedivi E, Fieldust S, Theill LE, Hevron D: A set of genes expressed in response to light in the adult cerebral cortex and regulated during development. Proc Natl Acad Sci U S A. 1996, 93 (5): 2048-2053. 10.1073/pnas.93.5.2048.PubMedCentralPubMed Nedivi E, Fieldust S, Theill LE, Hevron D: A set of genes expressed in response to light in the adult cerebral cortex and regulated during development. Proc Natl Acad Sci U S A. 1996, 93 (5): 2048-2053. 10.1073/pnas.93.5.2048.PubMedCentralPubMed
106.
go back to reference Javaherian A, Cline HT: Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo. Neuron. 2005, 45 (4): 505-512. 10.1016/j.neuron.2004.12.051.PubMed Javaherian A, Cline HT: Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo. Neuron. 2005, 45 (4): 505-512. 10.1016/j.neuron.2004.12.051.PubMed
107.
go back to reference Cappelletti G, Galbiati M, Ronchi C, Maggioni MG, Onesto E, Poletti A: Neuritin (cpg15) enhances the differentiating effect of NGF on neuronal PC12 cells. J Neurosci Res. 2007, 85 (12): 2702-2713. 10.1002/jnr.21235.PubMed Cappelletti G, Galbiati M, Ronchi C, Maggioni MG, Onesto E, Poletti A: Neuritin (cpg15) enhances the differentiating effect of NGF on neuronal PC12 cells. J Neurosci Res. 2007, 85 (12): 2702-2713. 10.1002/jnr.21235.PubMed
108.
go back to reference Fainzilber M, Budnik V, Segal RA, Kreutz MR: From synapse to nucleus and back again–communication over distance within neurons. J Neurosci. 2011, 31 (45): 16045-16048. 10.1523/JNEUROSCI.4006-11.2011.PubMedCentralPubMed Fainzilber M, Budnik V, Segal RA, Kreutz MR: From synapse to nucleus and back again–communication over distance within neurons. J Neurosci. 2011, 31 (45): 16045-16048. 10.1523/JNEUROSCI.4006-11.2011.PubMedCentralPubMed
109.
go back to reference Li JY, Dahlstrom A: Axonal transport of synaptic vesicle proteins in the rat optic nerve. J Neurobiol. 1997, 32 (2): 237-250. 10.1002/(SICI)1097-4695(199702)32:2<237::AID-NEU8>3.0.CO;2-9.PubMed Li JY, Dahlstrom A: Axonal transport of synaptic vesicle proteins in the rat optic nerve. J Neurobiol. 1997, 32 (2): 237-250. 10.1002/(SICI)1097-4695(199702)32:2<237::AID-NEU8>3.0.CO;2-9.PubMed
110.
go back to reference Kwon KB, Kim JS, Chang BJ: Translocational changes of localization of synapsin in axonal sprouts of regenerating rat sciatic nerves after ligation crush injury. J Vet Sci. 2000, 1 (1): 1-9.PubMed Kwon KB, Kim JS, Chang BJ: Translocational changes of localization of synapsin in axonal sprouts of regenerating rat sciatic nerves after ligation crush injury. J Vet Sci. 2000, 1 (1): 1-9.PubMed
111.
go back to reference Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST: Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 2002, 21 (3): 281-293. 10.1093/emboj/21.3.281.PubMedCentralPubMed Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST: Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J. 2002, 21 (3): 281-293. 10.1093/emboj/21.3.281.PubMedCentralPubMed
112.
go back to reference Kochubey O, Lou X, Schneggenburger R: Regulation of transmitter release by Ca(2+) and synaptotagmin: insights from a large CNS synapse. Trends Neurosci. 2011, 34 (5): 237-246. 10.1016/j.tins.2011.02.006.PubMed Kochubey O, Lou X, Schneggenburger R: Regulation of transmitter release by Ca(2+) and synaptotagmin: insights from a large CNS synapse. Trends Neurosci. 2011, 34 (5): 237-246. 10.1016/j.tins.2011.02.006.PubMed
113.
go back to reference Chen YA, Scheller RH: SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001, 2 (2): 98-106. 10.1038/35052017.PubMed Chen YA, Scheller RH: SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001, 2 (2): 98-106. 10.1038/35052017.PubMed
114.
go back to reference Martens S, Kozlov MM, McMahon HT: How synaptotagmin promotes membrane fusion. Science. 2007, 316 (5828): 1205-1208. 10.1126/science.1142614.PubMed Martens S, Kozlov MM, McMahon HT: How synaptotagmin promotes membrane fusion. Science. 2007, 316 (5828): 1205-1208. 10.1126/science.1142614.PubMed
115.
go back to reference Vrljic M, Strop P, Ernst JA, Sutton RB, Chu S, Brunger AT: Molecular mechanism of the synaptotagmin-SNARE interaction in Ca2 + −triggered vesicle fusion. Nat Struct Mol Biol. 2010, 17 (3): 325-331. 10.1038/nsmb.1764.PubMedCentralPubMed Vrljic M, Strop P, Ernst JA, Sutton RB, Chu S, Brunger AT: Molecular mechanism of the synaptotagmin-SNARE interaction in Ca2 + −triggered vesicle fusion. Nat Struct Mol Biol. 2010, 17 (3): 325-331. 10.1038/nsmb.1764.PubMedCentralPubMed
116.
go back to reference Vennekate W, Schroder S, Lin CC, van den Bogaart G, Grunwald M, Jahn R, Walla PJ: Cis- and trans-membrane interactions of synaptotagmin-1. Proc Natl Acad Sci U S A. 2012, 109 (27): 11037-11042. 10.1073/pnas.1116326109.PubMedCentralPubMed Vennekate W, Schroder S, Lin CC, van den Bogaart G, Grunwald M, Jahn R, Walla PJ: Cis- and trans-membrane interactions of synaptotagmin-1. Proc Natl Acad Sci U S A. 2012, 109 (27): 11037-11042. 10.1073/pnas.1116326109.PubMedCentralPubMed
117.
go back to reference Marqueze-Pouey B, Wisden W, Malosio ML, Betz H: Differential expression of synaptophysin and synaptoporin mRNAs in the postnatal rat central nervous system. J Neurosci. 1991, 11 (11): 3388-3397.PubMed Marqueze-Pouey B, Wisden W, Malosio ML, Betz H: Differential expression of synaptophysin and synaptoporin mRNAs in the postnatal rat central nervous system. J Neurosci. 1991, 11 (11): 3388-3397.PubMed
118.
go back to reference Bergmann M, Schuster T, Grabs D, Marqueze-Pouey B, Betz H, Traurig H, Mayerhofer A, Gratzl M: Synaptophysin and synaptoporin expression in the developing rat olfactory system. Brain Res Dev Brain Res. 1993, 74 (2): 235-244. 10.1016/0165-3806(93)90009-Y.PubMed Bergmann M, Schuster T, Grabs D, Marqueze-Pouey B, Betz H, Traurig H, Mayerhofer A, Gratzl M: Synaptophysin and synaptoporin expression in the developing rat olfactory system. Brain Res Dev Brain Res. 1993, 74 (2): 235-244. 10.1016/0165-3806(93)90009-Y.PubMed
119.
go back to reference Brandstatter JH, Lohrke S, Morgans CW, Wassle H: Distributions of two homologous synaptic vesicle proteins, synaptoporin and synaptophysin, in the mammalian retina. J Comp Neurol. 1996, 370 (1): 1-10. 10.1002/(SICI)1096-9861(19960617)370:1<1::AID-CNE1>3.0.CO;2-7.PubMed Brandstatter JH, Lohrke S, Morgans CW, Wassle H: Distributions of two homologous synaptic vesicle proteins, synaptoporin and synaptophysin, in the mammalian retina. J Comp Neurol. 1996, 370 (1): 1-10. 10.1002/(SICI)1096-9861(19960617)370:1<1::AID-CNE1>3.0.CO;2-7.PubMed
120.
go back to reference Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J, Steigele S, Do HH, Weiss G, Enard W, Heissig F, Arendt T, Nieselt-Struwe K, Eichler EE, Pääbo S: Regional patterns of gene expression in human and chimpanzee brains. Genome Res. 2004, 14 (8): 1462-1473. 10.1101/gr.2538704.PubMedCentralPubMed Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J, Steigele S, Do HH, Weiss G, Enard W, Heissig F, Arendt T, Nieselt-Struwe K, Eichler EE, Pääbo S: Regional patterns of gene expression in human and chimpanzee brains. Genome Res. 2004, 14 (8): 1462-1473. 10.1101/gr.2538704.PubMedCentralPubMed
121.
go back to reference Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W, Muetzel B, Wirkner U, Ansorge W, Pääbo S: A neutral model of transcriptome evolution. PLoS Biol. 2004, 2 (5): E132-10.1371/journal.pbio.0020132.PubMedCentralPubMed Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W, Muetzel B, Wirkner U, Ansorge W, Pääbo S: A neutral model of transcriptome evolution. PLoS Biol. 2004, 2 (5): E132-10.1371/journal.pbio.0020132.PubMedCentralPubMed
122.
go back to reference Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, Mayford M, Lockhart DJ, Barlow C: Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci U S A. 2000, 97 (20): 11038-11043. 10.1073/pnas.97.20.11038.PubMedCentralPubMed Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L, Mayford M, Lockhart DJ, Barlow C: Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci U S A. 2000, 97 (20): 11038-11043. 10.1073/pnas.97.20.11038.PubMedCentralPubMed
123.
go back to reference Dietz JA, Li Y, Chung LM, Yandell BS, Schlamp CL, Nickells RW: Rgcs1, a dominant QTL that affects retinal ganglion cell death after optic nerve crush in mice. BMC Neurosci. 2008, 9: 74-10.1186/1471-2202-9-74.PubMedCentralPubMed Dietz JA, Li Y, Chung LM, Yandell BS, Schlamp CL, Nickells RW: Rgcs1, a dominant QTL that affects retinal ganglion cell death after optic nerve crush in mice. BMC Neurosci. 2008, 9: 74-10.1186/1471-2202-9-74.PubMedCentralPubMed
124.
go back to reference Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4 (5): 3-10.1186/gb-2003-4-5-p3. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4 (5): 3-10.1186/gb-2003-4-5-p3.
125.
go back to reference Ryan JC, Morey JS, Bottein MY, Ramsdell JS, Van Dolah FM: Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response. BMC Neurosci. 2010, 11: 107-10.1186/1471-2202-11-107.PubMedCentralPubMed Ryan JC, Morey JS, Bottein MY, Ramsdell JS, Van Dolah FM: Gene expression profiling in brain of mice exposed to the marine neurotoxin ciguatoxin reveals an acute anti-inflammatory, neuroprotective response. BMC Neurosci. 2010, 11: 107-10.1186/1471-2202-11-107.PubMedCentralPubMed
Metadata
Title
Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice
Authors
Tasneem P Sharma
Colleen M McDowell
Yang Liu
Alex H Wagner
David Thole
Benjamin P Faga
Robert J Wordinger
Terry A Braun
Abbot F Clark
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2014
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/1750-1326-9-14

Other articles of this Issue 1/2014

Molecular Neurodegeneration 1/2014 Go to the issue