Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2015

Open Access 01-12-2015 | Research article

Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice

Authors: Steven J Conrad, Mohamed El-Aswad, Esaw Kurban, David Jeng, Brian C Tripp, Charles Nutting, Robert Eversole, Charles Mackenzie, Karim Essani

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2015

Login to get access

Abstract

Colorectal cancers are significant causes of morbidity and mortality and existing therapies often perform poorly for individuals afflicted with advanced disease. Oncolytic virotherapy is an emerging therapeutic modality with great promise for addressing this medical need. Herein we describe the in vivo testing of recombinant variants of the tanapoxvirus (TPV). Recombinant viruses were made ablated for either the 66R gene (encoding a thymidine kinase), the 2L gene (encoding a TNF-binding protein), or both. Some of the recombinants were armed to express mouse chemotactic protein 1 (mCCL2/mMCP-1), mouse granulocyte-monocyte colony stimulating factor (mGM-CSF), or bacterial flagellin (FliC). Tumors were induced in athymic nude mice by implantation of HCT 116 cells and subsequently treated by a single intratumoral injection of one of the recombinant TPVs. Histological examination showed a common neoplastic cell type and a range of immune cell infiltration, necrosis, and tumor cell organization. Significant regression was seen in tumors treated with virus TPV/Δ2L66R/fliC, and to a lesser extent the recombinants TPV/Δ2L and TPV/Δ66R. Our results suggest that oncolytic recombinants of the TPV armed with activators of the innate immune response may be effective virotherapeutic agents for colorectal cancers in humans and should be explored further to fully realize their potential.
Literature
1.
go back to reference American Cancer Society. Cancer Facts & Figures 2014. Atlanta: American Cancer Society; 2014. p. 2014. American Cancer Society. Cancer Facts & Figures 2014. Atlanta: American Cancer Society; 2014. p. 2014.
2.
go back to reference Siegel R, Jiemin R, Zhaohui Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;63:11–30.CrossRef Siegel R, Jiemin R, Zhaohui Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;63:11–30.CrossRef
3.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
4.
go back to reference Taylor I. Liver metastases from colorectal cancer: lessons from past and present clinical studies. Br J Surg. 1996;83:456–60.CrossRefPubMed Taylor I. Liver metastases from colorectal cancer: lessons from past and present clinical studies. Br J Surg. 1996;83:456–60.CrossRefPubMed
5.
go back to reference Weiss L, Grundmann E, Torhorst J, Hartveit F, Moberg I, Eder M, et al. Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J Pathol. 1986;150:195–203.CrossRefPubMed Weiss L, Grundmann E, Torhorst J, Hartveit F, Moberg I, Eder M, et al. Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J Pathol. 1986;150:195–203.CrossRefPubMed
6.
go back to reference Society AC. Colorectal Cancer Facts & Figures 2011–2013. Atlanta: American Cancer Society; 2011. p. 2011. Society AC. Colorectal Cancer Facts & Figures 2011–2013. Atlanta: American Cancer Society; 2011. p. 2011.
7.
go back to reference Sinkovics J, Horvath J. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch Immunol Ther Exp (Warsz). 2008;56 Suppl 1:3s–59s. Sinkovics J, Horvath J. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch Immunol Ther Exp (Warsz). 2008;56 Suppl 1:3s–59s.
8.
go back to reference Martuza R, Malick A, Markert J, Ruffner K, Coen D. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–6.CrossRefPubMed Martuza R, Malick A, Markert J, Ruffner K, Coen D. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252:854–6.CrossRefPubMed
9.
go back to reference Guan M, Romano G, Coroniti R, Henderson EE. Progress in oncolytic virotherapy for the treatment of thyroid malignant neoplasm. J Exp Clin Cancer Res. 2014;33:91.PubMedCentralPubMed Guan M, Romano G, Coroniti R, Henderson EE. Progress in oncolytic virotherapy for the treatment of thyroid malignant neoplasm. J Exp Clin Cancer Res. 2014;33:91.PubMedCentralPubMed
10.
go back to reference Kirn D. Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther. 2000;8:89–98.CrossRef Kirn D. Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther. 2000;8:89–98.CrossRef
11.
go back to reference Toyoda E, Doi R, Kami K, Mori T, Ito D, Koizumi M, et al. Midkine promoter-based conditionally replicative adenovirus therapy for midkine-expressing human pancreatic cancer. J Exp Clin Cancer Res. 2008;27:30.CrossRefPubMedCentralPubMed Toyoda E, Doi R, Kami K, Mori T, Ito D, Koizumi M, et al. Midkine promoter-based conditionally replicative adenovirus therapy for midkine-expressing human pancreatic cancer. J Exp Clin Cancer Res. 2008;27:30.CrossRefPubMedCentralPubMed
12.
go back to reference Kemeny N, Brown K, Covey A, Kim T, Bhargava A, Brody L, et al. Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver. Hum Gene Ther. 2006;17:1214–24.CrossRefPubMed Kemeny N, Brown K, Covey A, Kim T, Bhargava A, Brody L, et al. Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver. Hum Gene Ther. 2006;17:1214–24.CrossRefPubMed
13.
go back to reference Geevarghese S, Geller D, de Haan H, Hörer M, Knoll A, Mescheder A, et al. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther. 2010;21:1119–28.CrossRefPubMedCentralPubMed Geevarghese S, Geller D, de Haan H, Hörer M, Knoll A, Mescheder A, et al. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther. 2010;21:1119–28.CrossRefPubMedCentralPubMed
14.
go back to reference Breitbach C, Burke J, Jonker D, Stephenson J, Haas A, Chow L, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477:99–102.CrossRefPubMed Breitbach C, Burke J, Jonker D, Stephenson J, Haas A, Chow L, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477:99–102.CrossRefPubMed
15.
go back to reference Kirn D, Wang Y, Liang W, Contag C, Thorne S. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res. 2008;68:2071–5.CrossRefPubMed Kirn D, Wang Y, Liang W, Contag C, Thorne S. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res. 2008;68:2071–5.CrossRefPubMed
16.
go back to reference Maitra R, Ghalib M, Goel S. Reovirus: a targeted therapeutic–progress and potential. Mol Cancer Res. 2012;10:1514–25.CrossRefPubMed Maitra R, Ghalib M, Goel S. Reovirus: a targeted therapeutic–progress and potential. Mol Cancer Res. 2012;10:1514–25.CrossRefPubMed
17.
go back to reference Le Boeuf F, Bell J. United virus: the oncolytic tag-team against cancer! Cytokine Growth Factor Rev. 2009;21:205–11.CrossRef Le Boeuf F, Bell J. United virus: the oncolytic tag-team against cancer! Cytokine Growth Factor Rev. 2009;21:205–11.CrossRef
18.
go back to reference Smith G, Moss B. Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene. 1983;25:21–8.CrossRefPubMed Smith G, Moss B. Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene. 1983;25:21–8.CrossRefPubMed
20.
go back to reference Isaacs S, Kotwal G, Moss B. Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. Proc Natl Acad Sci U S A. 1992;89:628–32.CrossRefPubMedCentralPubMed Isaacs S, Kotwal G, Moss B. Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. Proc Natl Acad Sci U S A. 1992;89:628–32.CrossRefPubMedCentralPubMed
21.
go back to reference Paulose M, Bennett B, Manning A, Essani K. Selective inhibition of TNF-alpha induced cell adhesion molecule gene expression by tanapox virus. Microb Pathog. 1998;25:33–41.CrossRefPubMed Paulose M, Bennett B, Manning A, Essani K. Selective inhibition of TNF-alpha induced cell adhesion molecule gene expression by tanapox virus. Microb Pathog. 1998;25:33–41.CrossRefPubMed
22.
go back to reference Brunetti C, Paulose-Murphy M, Singh R, Qin J, Barrett J, Tardivel A, et al. A secreted high-affinity inhibitor of human TNF from Tanapox virus. Proc Natl Acad Sci U S A. 2003;100:4831–6.CrossRefPubMedCentralPubMed Brunetti C, Paulose-Murphy M, Singh R, Qin J, Barrett J, Tardivel A, et al. A secreted high-affinity inhibitor of human TNF from Tanapox virus. Proc Natl Acad Sci U S A. 2003;100:4831–6.CrossRefPubMedCentralPubMed
23.
go back to reference Rahman M, Jeng D, Singh R, Coughlin J, Essani K, McFadden G. Interaction of human TNF and beta2-microglobulin with Tanapox virus-encoded TNF inhibitor, TPV-2L. Virology. 2009;386:462–8.CrossRefPubMed Rahman M, Jeng D, Singh R, Coughlin J, Essani K, McFadden G. Interaction of human TNF and beta2-microglobulin with Tanapox virus-encoded TNF inhibitor, TPV-2L. Virology. 2009;386:462–8.CrossRefPubMed
24.
go back to reference Shimamura T, Jeng D, Lucas A, Essani K. Suppression of neointimal hyperplasia following angioplasty-induced vascular injury in pigs infected with swinepox virus. The open virology journal. 2011;6:91–6.CrossRef Shimamura T, Jeng D, Lucas A, Essani K. Suppression of neointimal hyperplasia following angioplasty-induced vascular injury in pigs infected with swinepox virus. The open virology journal. 2011;6:91–6.CrossRef
25.
go back to reference Nazarian S, Barrett J, Stanford M, Johnston J, Essani K, McFadden G. Tropism of Tanapox virus infection in primary human cells. Virology. 2007;368:32–40.CrossRefPubMed Nazarian S, Barrett J, Stanford M, Johnston J, Essani K, McFadden G. Tropism of Tanapox virus infection in primary human cells. Virology. 2007;368:32–40.CrossRefPubMed
26.
go back to reference Downie A, Taylor-Robinson CH, Caunt AE, Nelson GS, Manson-Bahr PE, Matthews TC. Tanapox: a new disease caused by a pox virus. Br Med J. 1971;1:363–8.CrossRefPubMedCentralPubMed Downie A, Taylor-Robinson CH, Caunt AE, Nelson GS, Manson-Bahr PE, Matthews TC. Tanapox: a new disease caused by a pox virus. Br Med J. 1971;1:363–8.CrossRefPubMedCentralPubMed
27.
go back to reference Jezek Z, Arita I, Szczeniowski M, Paluku KM, Ruti K, Nakano JH. Human tanapox in Zaire: clinical and epidemiological observations on cases confirmed by laboratory studies. Bull World Health Organ. 1985;63:1027–35.PubMedCentralPubMed Jezek Z, Arita I, Szczeniowski M, Paluku KM, Ruti K, Nakano JH. Human tanapox in Zaire: clinical and epidemiological observations on cases confirmed by laboratory studies. Bull World Health Organ. 1985;63:1027–35.PubMedCentralPubMed
28.
go back to reference Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9:533–42.CrossRefPubMed Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9:533–42.CrossRefPubMed
29.
go back to reference Hengstschläger M, Knöfler M, Müllner EW, Ogris E, Wintersberger E, Wawra E. Different Regulation of Thymidine Kinase during the Cell Cycle of Normal Versus DNA Tumor Virus-Transformed Cells. J Biol Chem. 1994;269:13836–42.PubMed Hengstschläger M, Knöfler M, Müllner EW, Ogris E, Wintersberger E, Wawra E. Different Regulation of Thymidine Kinase during the Cell Cycle of Normal Versus DNA Tumor Virus-Transformed Cells. J Biol Chem. 1994;269:13836–42.PubMed
30.
go back to reference Alegre, M., Robison, R., and K. O’Neill. Thymidine kinase 1 upregulation is an early event in breast tumor formation. J Oncol. 2012. doi. doi:10.1155/2012/575647 Alegre, M., Robison, R., and K. O’Neill. Thymidine kinase 1 upregulation is an early event in breast tumor formation. J Oncol. 2012. doi. doi:10.1155/2012/575647
31.
go back to reference Broët P, Romain S, Daver A, Ricolleau G, Quillien V, Rallet A, et al. Thymidine kinase as a proliferative marker: clinical relevance in 1,692 primary breast cancer patients. J Clin Oncol. 2001;19:2778–87.PubMed Broët P, Romain S, Daver A, Ricolleau G, Quillien V, Rallet A, et al. Thymidine kinase as a proliferative marker: clinical relevance in 1,692 primary breast cancer patients. J Clin Oncol. 2001;19:2778–87.PubMed
32.
go back to reference Ehrig K, Kilinc MO, Chen NG, Stritzker J, Buckel L, Zhang Q, et al. Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1 h68. J Transl Med. 2012;11:79–15.CrossRef Ehrig K, Kilinc MO, Chen NG, Stritzker J, Buckel L, Zhang Q, et al. Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1 h68. J Transl Med. 2012;11:79–15.CrossRef
33.
go back to reference Merrick A, Ilett E, Melcher A. JX-594, a targeted oncolytic poxvirus for the treatment of cancer. Current opinion in investigational drugs (London, England: 2000). 2009;10:1372–82. Merrick A, Ilett E, Melcher A. JX-594, a targeted oncolytic poxvirus for the treatment of cancer. Current opinion in investigational drugs (London, England: 2000). 2009;10:1372–82.
34.
go back to reference Cattaneo R, Miest T, Shashkova E, Barry M. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol. 2008;6:529–40.CrossRefPubMedCentralPubMed Cattaneo R, Miest T, Shashkova E, Barry M. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol. 2008;6:529–40.CrossRefPubMedCentralPubMed
35.
go back to reference Kaur B, Cripe T. E. Chiocca E. ‘Buy one get one free’: armed viruses for the treatment of cancer cells and their microenvironment. Curr Gene Ther. 2009;9:341–55.CrossRefPubMedCentralPubMed Kaur B, Cripe T. E. Chiocca E. ‘Buy one get one free’: armed viruses for the treatment of cancer cells and their microenvironment. Curr Gene Ther. 2009;9:341–55.CrossRefPubMedCentralPubMed
36.
go back to reference Kennedy JD, Pierce CW, Lake JP. Extrathymic T cell maturation. Phenotypic analysis of T cell subsets in nude mice as a function of age. J Immunol. 1992;148:1620–9.PubMed Kennedy JD, Pierce CW, Lake JP. Extrathymic T cell maturation. Phenotypic analysis of T cell subsets in nude mice as a function of age. J Immunol. 1992;148:1620–9.PubMed
37.
go back to reference Rahimi P, Wang CY, Stashenko P, Lee SK, Lorenzo JA, Graves DT. Monocyte chemoattractant protein-1 expression and monocyte recruitment in osseous inflammation in the mouse. Endocrinology. 1995;136:2752–9.PubMed Rahimi P, Wang CY, Stashenko P, Lee SK, Lorenzo JA, Graves DT. Monocyte chemoattractant protein-1 expression and monocyte recruitment in osseous inflammation in the mouse. Endocrinology. 1995;136:2752–9.PubMed
38.
go back to reference Homey B, Steinhoff M, Ruzicka T, Leung D. Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol. 2006;118:178–89.CrossRefPubMed Homey B, Steinhoff M, Ruzicka T, Leung D. Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol. 2006;118:178–89.CrossRefPubMed
39.
go back to reference Nickel R, Beck L, Stellato C, Schleimer R. Chemokines and allergic disease. J Allergy Clin Immunol. 1999;104:723–42.CrossRefPubMed Nickel R, Beck L, Stellato C, Schleimer R. Chemokines and allergic disease. J Allergy Clin Immunol. 1999;104:723–42.CrossRefPubMed
40.
go back to reference Parker J, Meleth S, Hughes KB, Gillespie GY, Whitley RJ, Markert JM. Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12. Cancer Gene Ther. 2005;12:359–68.CrossRefPubMed Parker J, Meleth S, Hughes KB, Gillespie GY, Whitley RJ, Markert JM. Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12. Cancer Gene Ther. 2005;12:359–68.CrossRefPubMed
41.
go back to reference Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol. 2007;18:226–32.CrossRefPubMed Parmiani G, Castelli C, Pilla L, Santinami M, Colombo MP, Rivoltini L. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol. 2007;18:226–32.CrossRefPubMed
42.
44.
go back to reference Hege K, Jooss K, Pardoll D. GM-CSF gene-modified cancer cell immunotherapies: of mice and men. Int Rev Immunol. 2005;25:321–52.CrossRef Hege K, Jooss K, Pardoll D. GM-CSF gene-modified cancer cell immunotherapies: of mice and men. Int Rev Immunol. 2005;25:321–52.CrossRef
45.
go back to reference Higano CS, Corman JM, Smith DC, Centeno AS, Steidle CP, Gittleman M, et al. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer. 2008;113:975–84.CrossRefPubMed Higano CS, Corman JM, Smith DC, Centeno AS, Steidle CP, Gittleman M, et al. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer. 2008;113:975–84.CrossRefPubMed
46.
go back to reference Janke M, Peeters B, de Leeuw O, Moorman R, Arnold A, Fournier P, et al. Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy. Gene Ther. 2007;14:1639–49.CrossRefPubMed Janke M, Peeters B, de Leeuw O, Moorman R, Arnold A, Fournier P, et al. Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy. Gene Ther. 2007;14:1639–49.CrossRefPubMed
47.
go back to reference Varghese S, Rabkin S. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002;9:967–78.CrossRefPubMed Varghese S, Rabkin S. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002;9:967–78.CrossRefPubMed
48.
go back to reference Kim J, Oh J, Park B, Lee D, Kim J, Park H, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 2006. doi:10.1016/j.ymthe.2006.05.008 Kim J, Oh J, Park B, Lee D, Kim J, Park H, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 2006. doi:10.1016/j.ymthe.2006.05.008
49.
go back to reference Burke J, Lamm D, Meng M, Nemunaitis J, Stephenson J, Arseneau J, et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol. 2012. doi:10.1016/j.juro.2012.07.097 Burke J, Lamm D, Meng M, Nemunaitis J, Stephenson J, Arseneau J, et al. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol. 2012. doi:10.1016/j.juro.2012.07.097
50.
go back to reference McQuiston J, Parrenas R, Ortiz-Rivera M, Gheesling L, Brenner F, Fields PI. Sequencing and comparative analysis of flagellin genes fliC, fljB, and flpA from Salmonella. J Clin Microbiol. 2004;42:1923–32.CrossRefPubMedCentralPubMed McQuiston J, Parrenas R, Ortiz-Rivera M, Gheesling L, Brenner F, Fields PI. Sequencing and comparative analysis of flagellin genes fliC, fljB, and flpA from Salmonella. J Clin Microbiol. 2004;42:1923–32.CrossRefPubMedCentralPubMed
51.
go back to reference Beatson S, Minamino T, Pallen M. Variation in bacterial flagellins: from sequence to structure. Trends Microbiol. 2006;14:151–5.CrossRefPubMed Beatson S, Minamino T, Pallen M. Variation in bacterial flagellins: from sequence to structure. Trends Microbiol. 2006;14:151–5.CrossRefPubMed
52.
go back to reference Yoon S, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, et al. Structural basis of TLR5-flagellin recognition and signaling. Science. 2012;335:859–64.CrossRefPubMedCentralPubMed Yoon S, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, et al. Structural basis of TLR5-flagellin recognition and signaling. Science. 2012;335:859–64.CrossRefPubMedCentralPubMed
53.
go back to reference Sun YH, Rolán H, Tsolis R. Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem. 2007;282:33897–901.CrossRefPubMed Sun YH, Rolán H, Tsolis R. Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem. 2007;282:33897–901.CrossRefPubMed
55.
go back to reference Rhee SH, Im E, Pothoulakis C. Toll-Like receptor 5 engagement modulates tumor development and growth in a mouse xenografts model of human colon cancer. Gastroenterology. 2008;135:518–28.CrossRefPubMed Rhee SH, Im E, Pothoulakis C. Toll-Like receptor 5 engagement modulates tumor development and growth in a mouse xenografts model of human colon cancer. Gastroenterology. 2008;135:518–28.CrossRefPubMed
56.
go back to reference Chakrabarti S, Sisler JR, Moss B. Compact, Synthetic, Vaccinia Virus Early/Late Promoter for Protein Expression. Biotechniques. 1997;23:1094–7.PubMed Chakrabarti S, Sisler JR, Moss B. Compact, Synthetic, Vaccinia Virus Early/Late Promoter for Protein Expression. Biotechniques. 1997;23:1094–7.PubMed
57.
go back to reference Boyle D, Coupar B, Both G. Multiple-cloning-site plasmids for the rapid construction of recombinant poxviruses. Gene. 1984;35:169–77.CrossRef Boyle D, Coupar B, Both G. Multiple-cloning-site plasmids for the rapid construction of recombinant poxviruses. Gene. 1984;35:169–77.CrossRef
58.
go back to reference Mackett M, Smith G, Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J Virol. 1984;49:857–64.PubMedCentralPubMed Mackett M, Smith G, Moss B. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J Virol. 1984;49:857–64.PubMedCentralPubMed
59.
go back to reference Isaacs SN. Vaccinia Virus and Poxvirology: Methods and Protocols. (Methods in Molecular Biology). New Your, New York, USA: Humana Press; 2012.CrossRef Isaacs SN. Vaccinia Virus and Poxvirology: Methods and Protocols. (Methods in Molecular Biology). New Your, New York, USA: Humana Press; 2012.CrossRef
60.
go back to reference Mediratta S, Essani K. The replication cycle of tanapox virus in owl monkey kidney cells. Can J Microbiol. 1998;45:92–6.CrossRef Mediratta S, Essani K. The replication cycle of tanapox virus in owl monkey kidney cells. Can J Microbiol. 1998;45:92–6.CrossRef
61.
go back to reference Everts B, van der Poel H. Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther. 2005;12:141–61.CrossRefPubMed Everts B, van der Poel H. Replication-selective oncolytic viruses in the treatment of cancer. Cancer Gene Ther. 2005;12:141–61.CrossRefPubMed
62.
go back to reference Vähä-Koskela M, Heikkilä J, Hinkkanen A. Oncolytic viruses in cancer therapy. Cancer Lett. 2007;254:178–216.CrossRefPubMed Vähä-Koskela M, Heikkilä J, Hinkkanen A. Oncolytic viruses in cancer therapy. Cancer Lett. 2007;254:178–216.CrossRefPubMed
63.
go back to reference Coffey M, Strong J, Forsyth P, Lee P. Reovirus therapy of tumors with activated Ras pathway. Science (New York, NY). 1998;282:1332–4. Coffey M, Strong J, Forsyth P, Lee P. Reovirus therapy of tumors with activated Ras pathway. Science (New York, NY). 1998;282:1332–4.
64.
go back to reference Comins C, Heinemann L, Harrington K, Melcher A, De Bono J, Pandha H. Reovirus: viral therapy for cancer “as nature intended”. Clinical oncology (Royal College of Radiologists (Great Britain)). 2008;20:548–54. Comins C, Heinemann L, Harrington K, Melcher A, De Bono J, Pandha H. Reovirus: viral therapy for cancer “as nature intended”. Clinical oncology (Royal College of Radiologists (Great Britain)). 2008;20:548–54.
65.
go back to reference Barber G. Vesicular stomatitis virus as an oncolytic vector. Viral Immunol. 2003;17:516–27.CrossRef Barber G. Vesicular stomatitis virus as an oncolytic vector. Viral Immunol. 2003;17:516–27.CrossRef
66.
67.
go back to reference Fiola C, Peeters B, Fournier P, Arnold A, Bucur M, Schirrmacher V. Tumor selective replication of Newcastle disease virus: association with defects of tumor cells in antiviral defense. Int J Cancer. 2006;119:328–38.CrossRefPubMed Fiola C, Peeters B, Fournier P, Arnold A, Bucur M, Schirrmacher V. Tumor selective replication of Newcastle disease virus: association with defects of tumor cells in antiviral defense. Int J Cancer. 2006;119:328–38.CrossRefPubMed
68.
go back to reference Critchley-Thorne R, Simons D, Yan N, Miyahira AK, Dirbas FM, Johnson DL, et al. Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci U S A. 2009;106:9010–5.CrossRefPubMedCentralPubMed Critchley-Thorne R, Simons D, Yan N, Miyahira AK, Dirbas FM, Johnson DL, et al. Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci U S A. 2009;106:9010–5.CrossRefPubMedCentralPubMed
69.
go back to reference Kelly K, Woo Y, Brader P, Yu Z, Riedl C, Lin SF, et al. Novel oncolytic agent GLV-1 h68 is effective against malignant pleural mesothelioma. Hum Gene Ther. 2008;19:774–82.CrossRefPubMedCentralPubMed Kelly K, Woo Y, Brader P, Yu Z, Riedl C, Lin SF, et al. Novel oncolytic agent GLV-1 h68 is effective against malignant pleural mesothelioma. Hum Gene Ther. 2008;19:774–82.CrossRefPubMedCentralPubMed
70.
go back to reference Zeh H, Bartlett D. Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther. 2002;9:1001–12.CrossRefPubMed Zeh H, Bartlett D. Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther. 2002;9:1001–12.CrossRefPubMed
71.
go back to reference Parato K, Breitbach C, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012;20:749–58.CrossRefPubMedCentralPubMed Parato K, Breitbach C, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012;20:749–58.CrossRefPubMedCentralPubMed
72.
73.
go back to reference Tsuchiyama T, Nakamoto Y, Sakai Y, Mukaida N, Kaneko S. Optimal amount of monocyte chemoattractant protein-1 enhances antitumor effects of suicide gene therapy against hepatocellular carcinoma by M1 macrophage activation. Cancer Sci. 2008;99:2075–82.CrossRefPubMed Tsuchiyama T, Nakamoto Y, Sakai Y, Mukaida N, Kaneko S. Optimal amount of monocyte chemoattractant protein-1 enhances antitumor effects of suicide gene therapy against hepatocellular carcinoma by M1 macrophage activation. Cancer Sci. 2008;99:2075–82.CrossRefPubMed
74.
go back to reference Weibel S, Raab V, Yu YA, Worschech A, Wang E, Marincola FM, et al. Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection. BMC Cancer. 2010;11:68.CrossRef Weibel S, Raab V, Yu YA, Worschech A, Wang E, Marincola FM, et al. Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection. BMC Cancer. 2010;11:68.CrossRef
75.
go back to reference Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA, et al. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther. 2009;20:1119–32.CrossRefPubMedCentralPubMed Prestwich RJ, Errington F, Diaz RM, Pandha HS, Harrington KJ, Melcher AA, et al. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther. 2009;20:1119–32.CrossRefPubMedCentralPubMed
76.
go back to reference Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila P, Ugolini M, et al. Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res. 2010;70:4297–309.CrossRefPubMed Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila P, Ugolini M, et al. Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res. 2010;70:4297–309.CrossRefPubMed
77.
go back to reference Zhao L, Kwon MJ, Huang S, Lee JY, Fukase K, Inohara N, et al. Differential modulation of Nods signaling pathways by fatty acids in human colonic epithelial HCT116 cells. J Biol Chem. 2007;282:11618–28.CrossRefPubMed Zhao L, Kwon MJ, Huang S, Lee JY, Fukase K, Inohara N, et al. Differential modulation of Nods signaling pathways by fatty acids in human colonic epithelial HCT116 cells. J Biol Chem. 2007;282:11618–28.CrossRefPubMed
78.
go back to reference Céspedes MV, Espina C, Garcia-Cabezas AM, Trias M, Gomez de Pulgar MT, et al. Orthotopic Microinjection of Human Colon Cancer Cells in Nude Mice Induces Tumor Foci in All Clinically Relevant Metastatic Sites. Am J Pathol. 2007;170:1077–85.CrossRefPubMedCentralPubMed Céspedes MV, Espina C, Garcia-Cabezas AM, Trias M, Gomez de Pulgar MT, et al. Orthotopic Microinjection of Human Colon Cancer Cells in Nude Mice Induces Tumor Foci in All Clinically Relevant Metastatic Sites. Am J Pathol. 2007;170:1077–85.CrossRefPubMedCentralPubMed
79.
go back to reference Wang Z, Cook T, Alber S, Liu K, Kovesdi I, Watkins SK, et al. Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity. Cancer Res. 2004;64:1386–95.CrossRefPubMed Wang Z, Cook T, Alber S, Liu K, Kovesdi I, Watkins SK, et al. Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity. Cancer Res. 2004;64:1386–95.CrossRefPubMed
80.
go back to reference Wang J, Sun L, Myeroff L, Wang X, Gentry L, Yang J, et al. Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem. 1995;270:22044–9.CrossRefPubMed Wang J, Sun L, Myeroff L, Wang X, Gentry L, Yang J, et al. Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem. 1995;270:22044–9.CrossRefPubMed
81.
go back to reference Rajput A. Dominguez San Martin I, Rose R, Beko A, Levea C, Sharratt E, et al. Characterization of HCT116 human colon cancer cells in an orthotopic model. J Surg Res. 2008;147:276–81.CrossRefPubMed Rajput A. Dominguez San Martin I, Rose R, Beko A, Levea C, Sharratt E, et al. Characterization of HCT116 human colon cancer cells in an orthotopic model. J Surg Res. 2008;147:276–81.CrossRefPubMed
83.
go back to reference Miao E, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7:569–75.CrossRefPubMed Miao E, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7:569–75.CrossRefPubMed
84.
go back to reference Rolli J, Loukili N, Levrand S, Rosenblat-Velen N, Rignault-Clerc S, Waeber B, et al. Bacterial flagellin elicits widespread innate immune defense mechanisms, apoptotic signaling, and a sepsis-like systemic inflammatory response in mice. Critical care (London, England). 2009;14:R160. Rolli J, Loukili N, Levrand S, Rosenblat-Velen N, Rignault-Clerc S, Waeber B, et al. Bacterial flagellin elicits widespread innate immune defense mechanisms, apoptotic signaling, and a sepsis-like systemic inflammatory response in mice. Critical care (London, England). 2009;14:R160.
85.
go back to reference Eveno C, Mojica K, Ady JW, Thorek DL, Longo V, Belin LJ, et al. Gene therapy using therapeutic and diagnostic recombinant oncolytic vaccinia virus GLV-1 h153 for management of colorectal peritoneal carcinomatosis. Surgery. 2015;157(2):331–7.CrossRefPubMed Eveno C, Mojica K, Ady JW, Thorek DL, Longo V, Belin LJ, et al. Gene therapy using therapeutic and diagnostic recombinant oncolytic vaccinia virus GLV-1 h153 for management of colorectal peritoneal carcinomatosis. Surgery. 2015;157(2):331–7.CrossRefPubMed
Metadata
Title
Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice
Authors
Steven J Conrad
Mohamed El-Aswad
Esaw Kurban
David Jeng
Brian C Tripp
Charles Nutting
Robert Eversole
Charles Mackenzie
Karim Essani
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2015
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-015-0131-z

Other articles of this Issue 1/2015

Journal of Experimental & Clinical Cancer Research 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine