Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2021

Open Access 01-06-2021 | Research Article

On the reproducibility of hippocampal MEGA-sLASER GABA MRS at 7T using an optimized analysis pipeline

Authors: Yannik Völzke, Eberhard D. Pracht, Elke Hattingen, Desmond H. Y.Tse, Tony Stöcker

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 3/2021

Login to get access

Abstract

Objectives

GABA is the most important inhibitory neurotransmitter. Thus, variation in its concentration is connected to a wide variety of diseases. However, the low concentration and the overlap of more prominent resonances hamper GABA quantification using MR spectroscopy. The hippocampus plays a pivotal role in neurodegeneration. Susceptibility discontinuities in the vicinity of the hippocampus cause strong B0 inhomogeneities, impeding GABA spectroscopy. The aim of this work is to improve the reproducibility of hippocampal GABA+ MRS.

Methods

The GABA+/total creatine ratio in the hippocampus was measured using a MEGA-sLASER sequence at 7 Tesla. 10 young healthy volunteers participated in the study. A dedicated pre-processing approach was established. Spectral quantification was performed with Tarquin. The quantification parameters were carefully adjusted to ensure optimal quantification.

Results

An inter-subject coefficient of variation of the GABA+/total creatine of below 15% was achieved. Additional to spectral registration, which is essential to obtain reproducible GABA measures, eddy current compensation and additional difference artifact suppression improved the reproducibility. The mean FWHM was 23.1 Hz (0.078 ppm).

Conclusion

The increased spectral dispersion of ultra-high-field spectroscopy allows for reproducible spectral quantification, despite a very broad line width. The achieved reproducibility enables the routine use of hippocampal GABA spectroscopy at 7 Tesla.
Appendix
Available only for authorised users
Literature
1.
go back to reference McCormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027PubMedCrossRef McCormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027PubMedCrossRef
2.
go back to reference Rowland LM, Ph D, Krause BW et al (2016) Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with Macromolecule Suppression Study. Mol Psychiatry 21:198–204PubMedCrossRef Rowland LM, Ph D, Krause BW et al (2016) Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with Macromolecule Suppression Study. Mol Psychiatry 21:198–204PubMedCrossRef
3.
go back to reference Bhagwagar Z, Wylezinska M, Jezzard P et al (2007) Reduction in occipital cortex \(\gamma\)-aminobutyric acid concentrations in medication-free recovered unipolar Depressed and bipolar Subjects. Biol Psychiatry 61:806–812PubMed Bhagwagar Z, Wylezinska M, Jezzard P et al (2007) Reduction in occipital cortex \(\gamma\)-aminobutyric acid concentrations in medication-free recovered unipolar Depressed and bipolar Subjects. Biol Psychiatry 61:806–812PubMed
4.
go back to reference Emir UE, Tuite PJ, Öz G (2012) Elevated pontine and putamenal gaba levels in mild-moderate parkinson disease detected by 7 tesla proton mrs. PLoS One 7(1):e30918PubMedPubMedCentralCrossRef Emir UE, Tuite PJ, Öz G (2012) Elevated pontine and putamenal gaba levels in mild-moderate parkinson disease detected by 7 tesla proton mrs. PLoS One 7(1):e30918PubMedPubMedCentralCrossRef
5.
go back to reference Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272PubMedCrossRef Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272PubMedCrossRef
6.
go back to reference Wang H, Tan L, Wang HF et al (2015) Magnetic resonance spectroscopy in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimer’s Dis 46:1049–1070CrossRef Wang H, Tan L, Wang HF et al (2015) Magnetic resonance spectroscopy in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimer’s Dis 46:1049–1070CrossRef
7.
go back to reference Le Meur K, Mendizabal-Zubiaga J, Grandes P, Audinat E (2012) GABA release by hippocampal astrocytes. Front Comput Neurosci 6:1–10 Le Meur K, Mendizabal-Zubiaga J, Grandes P, Audinat E (2012) GABA release by hippocampal astrocytes. Front Comput Neurosci 6:1–10
8.
go back to reference Jo S, Yarishkin O, Hwang YJ et al (2014) GABA from reactive astrocytes impairs memory in mouse models of alzheimer’s disease. Nat Med 20:886EPCrossRef Jo S, Yarishkin O, Hwang YJ et al (2014) GABA from reactive astrocytes impairs memory in mouse models of alzheimer’s disease. Nat Med 20:886EPCrossRef
9.
go back to reference Wu Z, Guo Z, Gearing M, Chen G (2014) Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model. Nat Commun 5:1–25 Wu Z, Guo Z, Gearing M, Chen G (2014) Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model. Nat Commun 5:1–25
10.
go back to reference Steinke J, Gaser C, Langbein K et al (2017) Hippocampal metabolism and prefrontal brain structure: a combined 1H-MR spectroscopy, neuropsychological, and voxel-based morphometry (VBM) study. Brain Res 1677:14–19PubMedCrossRef Steinke J, Gaser C, Langbein K et al (2017) Hippocampal metabolism and prefrontal brain structure: a combined 1H-MR spectroscopy, neuropsychological, and voxel-based morphometry (VBM) study. Brain Res 1677:14–19PubMedCrossRef
11.
go back to reference Choi CG, Frahm J (1999) Localized proton MRS of the human hippocampus: metabolite concentrations and relaxation times. Magn Reson Med 41:204–207PubMedCrossRef Choi CG, Frahm J (1999) Localized proton MRS of the human hippocampus: metabolite concentrations and relaxation times. Magn Reson Med 41:204–207PubMedCrossRef
12.
go back to reference Allaïli N, Valabrègue R, Auerbach EJ et al (2015) Single-voxel 1H spectroscopy in the human hippocampus at 3 t using the laser sequence: characterization of neurochemical profile and reproducibility. NMR Biomed 28:1209–1217PubMedPubMedCentralCrossRef Allaïli N, Valabrègue R, Auerbach EJ et al (2015) Single-voxel 1H spectroscopy in the human hippocampus at 3 t using the laser sequence: characterization of neurochemical profile and reproducibility. NMR Biomed 28:1209–1217PubMedPubMedCentralCrossRef
13.
go back to reference Andreychenko A, Boer VO, Arteaga De Castro CS, Luijten PR, Klomp DWJ (2012) Efficient spectral editing at 7 T: GABA detection with MEGA-sLASER. Magn Reson Med 68:1018–1025PubMedCrossRef Andreychenko A, Boer VO, Arteaga De Castro CS, Luijten PR, Klomp DWJ (2012) Efficient spectral editing at 7 T: GABA detection with MEGA-sLASER. Magn Reson Med 68:1018–1025PubMedCrossRef
14.
go back to reference Tkáč I, Starčuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656PubMedCrossRef Tkáč I, Starčuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656PubMedCrossRef
15.
go back to reference Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP rage: a three-dimensional, t1-weighted, gradient-echo sequence-initial experience in the brain. Radiology 182:769–775PubMedCrossRef Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP rage: a three-dimensional, t1-weighted, gradient-echo sequence-initial experience in the brain. Radiology 182:769–775PubMedCrossRef
16.
go back to reference Ehses P, Brenner D, Stirnberg R, Pracht ED, Stöcker T (2019) Whole-brain B1-mapping using three-dimensional DREAM. Magn Reson Med 82(3):924–934PubMed Ehses P, Brenner D, Stirnberg R, Pracht ED, Stöcker T (2019) Whole-brain B1-mapping using three-dimensional DREAM. Magn Reson Med 82(3):924–934PubMed
17.
go back to reference Andronesi OC, Ramadan S, Ratai E-M, Jennings D, Mountford CE, Sorensen AG (2010) Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners. J Magn Reson (San Diego, Calif. : 1997) 203:283–93CrossRef Andronesi OC, Ramadan S, Ratai E-M, Jennings D, Mountford CE, Sorensen AG (2010) Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners. J Magn Reson (San Diego, Calif. : 1997) 203:283–93CrossRef
19.
go back to reference Fang L, Wu M, Ke H, Kumar A, Yang S (2015) Adaptively optimized combination (AOC) of magnetic resonance spectroscopy data from phased array coils. Magn Reson Med 2244:2235–2244 Fang L, Wu M, Ke H, Kumar A, Yang S (2015) Adaptively optimized combination (AOC) of magnetic resonance spectroscopy data from phased array coils. Magn Reson Med 2244:2235–2244
20.
21.
go back to reference Near J, Edden R, Evans CJ, Paquin R, Harris A, Jezzard P (2015) Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain. Magn Reson Med 73:44–50PubMedCrossRef Near J, Edden R, Evans CJ, Paquin R, Harris A, Jezzard P (2015) Frequency and phase drift correction of magnetic resonance spectroscopy data by spectral registration in the time domain. Magn Reson Med 73:44–50PubMedCrossRef
22.
go back to reference Cleve M, Krämer M, Gussew A, Reichenbach JR (2017) Difference optimization: automatic correction of relative frequency and phase for mean non-edited and edited GABA1H MEGA-PRESS spectra. J Magn Reson 279:16–21PubMedCrossRef Cleve M, Krämer M, Gussew A, Reichenbach JR (2017) Difference optimization: automatic correction of relative frequency and phase for mean non-edited and edited GABA1H MEGA-PRESS spectra. J Magn Reson 279:16–21PubMedCrossRef
23.
go back to reference Stefan D, Cesare FD, Andrasescu A et al (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Measur Sci Technol 20 Stefan D, Cesare FD, Andrasescu A et al (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Measur Sci Technol 20
24.
go back to reference Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC (2011) A constrained least-squares approach to the automated quantitation of in vivo ¹H magnetic resonance spectroscopy data. Magn Reson Med 65:1–12PubMedCrossRef Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC (2011) A constrained least-squares approach to the automated quantitation of in vivo ¹H magnetic resonance spectroscopy data. Magn Reson Med 65:1–12PubMedCrossRef
25.
26.
go back to reference Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381PubMedCrossRef Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381PubMedCrossRef
27.
go back to reference Rothman DL, Petroff O a, Behar KL, Mattson RH (1993) Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 90:5662–5666PubMedCrossRef Rothman DL, Petroff O a, Behar KL, Mattson RH (1993) Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 90:5662–5666PubMedCrossRef
28.
go back to reference Henry P-G, Dautry C, Hantraye P, Bloch G (2001) Brain GABA editing without macromolecule contamination. Magn Reson Med 45(3):517–520PubMedCrossRef Henry P-G, Dautry C, Hantraye P, Bloch G (2001) Brain GABA editing without macromolecule contamination. Magn Reson Med 45(3):517–520PubMedCrossRef
29.
go back to reference Intrapiromkul J, Zhu H, Cheng Y, Barker PB, Edden RAE (2013) Determining the in vivo transverse relaxation time of GABA in the human brain at 7T. J Magn Reson Imaging 38(5):1224–1229PubMedCrossRef Intrapiromkul J, Zhu H, Cheng Y, Barker PB, Edden RAE (2013) Determining the in vivo transverse relaxation time of GABA in the human brain at 7T. J Magn Reson Imaging 38(5):1224–1229PubMedCrossRef
30.
go back to reference Andreychenko A, Klomp DW, De Graaf RA, Luijten PR, Boer VO (2013) In vivo GABA T2determination with J-refocused echo time extension at 7 T. NMR Biomed 26:1596–1601PubMedCrossRef Andreychenko A, Klomp DW, De Graaf RA, Luijten PR, Boer VO (2013) In vivo GABA T2determination with J-refocused echo time extension at 7 T. NMR Biomed 26:1596–1601PubMedCrossRef
31.
go back to reference Edden RAE, Intrapiromkul J, Zhu H, Cheng Y, Barker PB (2012) Measuring T 2 in vivo with J-difference editing: Application to GABA at 3 tesla. J Magn Reson Imaging 35:229–234PubMedCrossRef Edden RAE, Intrapiromkul J, Zhu H, Cheng Y, Barker PB (2012) Measuring T 2 in vivo with J-difference editing: Application to GABA at 3 tesla. J Magn Reson Imaging 35:229–234PubMedCrossRef
32.
go back to reference Evans CJ, McGonigle DJ, Edden RAE (2010) Diurnal stability of \(\gamma\)-aminobutyric acid concentration in visual and sensorimotor cortex. J Magn Reson Imaging 31:204–209PubMed Evans CJ, McGonigle DJ, Edden RAE (2010) Diurnal stability of \(\gamma\)-aminobutyric acid concentration in visual and sensorimotor cortex. J Magn Reson Imaging 31:204–209PubMed
33.
go back to reference Saleh MG, Near J, Alhamud A, Robertson F, van der Kouwe AJ, Meintjes EM (2016) Reproducibility of macromolecule suppressed GABA measurement using motion and shim navigated MEGA-SPECIAL with LCModel, jMRUI and GANNET. Magn Reson Mater Phy 29:863–874CrossRef Saleh MG, Near J, Alhamud A, Robertson F, van der Kouwe AJ, Meintjes EM (2016) Reproducibility of macromolecule suppressed GABA measurement using motion and shim navigated MEGA-SPECIAL with LCModel, jMRUI and GANNET. Magn Reson Mater Phy 29:863–874CrossRef
34.
go back to reference Shungu DC, Mao X, Gonzales R et al (2016) Brain \(\gamma\)-aminobutyric acid (GABA) detection in vivo with the J -editing 1H MRS technique: a comprehensive methodological evaluation of sensitivity enhancement, macromolecule contamination and test-retest reliability. NMR Biomed 29(7):932–942PubMedPubMedCentral Shungu DC, Mao X, Gonzales R et al (2016) Brain \(\gamma\)-aminobutyric acid (GABA) detection in vivo with the J -editing 1H MRS technique: a comprehensive methodological evaluation of sensitivity enhancement, macromolecule contamination and test-retest reliability. NMR Biomed 29(7):932–942PubMedPubMedCentral
35.
go back to reference Wijtenburg SA, Rowland LM, Edden R a E, Barker PB (2013) Reproducibility of brain spectroscopy at 7T using conventional localization and spectral editing techniques. J Magn Reson Imaging 38:460–467PubMedPubMedCentralCrossRef Wijtenburg SA, Rowland LM, Edden R a E, Barker PB (2013) Reproducibility of brain spectroscopy at 7T using conventional localization and spectral editing techniques. J Magn Reson Imaging 38:460–467PubMedPubMedCentralCrossRef
36.
go back to reference Prinsen H, de Graaf RA, Mason GF, Pelletier D, Juchem C (2017) Reproducibility measurement of glutathione, gaba, and glutamate: towards in vivo neurochemical profiling of multiple sclerosis with mr spectroscopy at 7 tesla. J Magn Reson Imaging 45(1):187–198PubMedCrossRef Prinsen H, de Graaf RA, Mason GF, Pelletier D, Juchem C (2017) Reproducibility measurement of glutathione, gaba, and glutamate: towards in vivo neurochemical profiling of multiple sclerosis with mr spectroscopy at 7 tesla. J Magn Reson Imaging 45(1):187–198PubMedCrossRef
37.
go back to reference Juchem C, de Graaf RA (2017) B0 magnetic field homogeneity and shimming for in vivo magnetic resonance spectroscopy. Anal Biochem 529:17–29PubMedCrossRef Juchem C, de Graaf RA (2017) B0 magnetic field homogeneity and shimming for in vivo magnetic resonance spectroscopy. Anal Biochem 529:17–29PubMedCrossRef
38.
go back to reference Van Den Berg CA, Van Den Bergen B, Van De Kamer JB et al (2007) Simultaneous B1+ homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 57:577–586PubMedCrossRef Van Den Berg CA, Van Den Bergen B, Van De Kamer JB et al (2007) Simultaneous B1+ homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 57:577–586PubMedCrossRef
39.
go back to reference Zhang Y, Brady M, Smith S (2001) Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57PubMedCrossRef Zhang Y, Brady M, Smith S (2001) Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57PubMedCrossRef
40.
go back to reference Braak H, Braak E (1996) Evolution of the neuropathology of alzheimer’s disease. Acta Neurol Scand 94:3–12CrossRef Braak H, Braak E (1996) Evolution of the neuropathology of alzheimer’s disease. Acta Neurol Scand 94:3–12CrossRef
41.
go back to reference Snyder J, Haas M, Hennig J, Zaitsev M (2012) Selective excitation of two-dimensional arbitrarily shaped voxels with parallel excitation in spectroscopy. Magn Reson Med 67:300–309PubMedCrossRef Snyder J, Haas M, Hennig J, Zaitsev M (2012) Selective excitation of two-dimensional arbitrarily shaped voxels with parallel excitation in spectroscopy. Magn Reson Med 67:300–309PubMedCrossRef
Metadata
Title
On the reproducibility of hippocampal MEGA-sLASER GABA MRS at 7T using an optimized analysis pipeline
Authors
Yannik Völzke
Eberhard D. Pracht
Elke Hattingen
Desmond H. Y.Tse
Tony Stöcker
Publication date
01-06-2021
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 3/2021
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-020-00879-9

Other articles of this Issue 3/2021

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2021 Go to the issue