Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2020

Open Access 01-12-2020 | Obesity | Research article

High body fat percentage is associated with primary aldosteronism: a cross-sectional study

Authors: Worapaka Manosroi, Pichitchai Atthakomol

Published in: BMC Endocrine Disorders | Issue 1/2020

Login to get access

Abstract

Background

Excess aldosterone has been shown to be associated with obesity; however, there is currently a lack of data regarding the relationship between percentage of body fat and primary aldosteronism (PA), particularly pertaining to Asian populations. Furthermore, essential hypertension may mimic the condition of PA and there needs to be differentiation between the two. This study aimed to assess the association between percentage of body fat and PA.

Methods

A cross-sectional study was conducted in the outpatient department of the Endocrine and Metabolism Unit of the tertiary care medical center in Thailand. Data was obtained from 79 patients who had been screened for PA due to hypertension in young-onset, hypokalemia, adrenal incidentaloma or resistance hypertension. Essential hypertension was defined as patients who had high blood pressure and were negative for PA screening. Body fat percentage was assessed by bioelectrical impedance analysis. The relationship between percentage of body fat and a diagnosis of PA was assessed using logistic regression analysis, including adjustment for confounding factors.

Results

The participants were divided into a PA group (n = 41) and an essential hypertension group (n = 38). After controlling for confounding variables (age, sex, body mass index, cholesterol and insulin resistance status), the odds ratio of having PA in males with a percentage of body fat > 25% and females with percentage > 30% was 1.82 (95%CI = 1.79–1.86, p < 0.001).

Conclusion

A higher percentage of body fat is associated with an increased risk of PA. Further studies need to be conducted to confirm the relationship between body fat percentage and PA.
Literature
1.
go back to reference Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.CrossRef Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.CrossRef
2.
go back to reference Sharabi Y, Grotto I, Huerta M, Grossman E. Susceptibility of the influence of weight on blood pressure in men versus women: lessons from a large-scale study of young adults. Am J Hypertens. 2004;17(5 Pt 1):404–8.CrossRef Sharabi Y, Grotto I, Huerta M, Grossman E. Susceptibility of the influence of weight on blood pressure in men versus women: lessons from a large-scale study of young adults. Am J Hypertens. 2004;17(5 Pt 1):404–8.CrossRef
3.
go back to reference Kawarazaki W, Fujita T. The role of aldosterone in obesity-related hypertension. Am J Hypertens. 2016;29(4):415–23.CrossRef Kawarazaki W, Fujita T. The role of aldosterone in obesity-related hypertension. Am J Hypertens. 2016;29(4):415–23.CrossRef
4.
go back to reference Byrd JB, Brook RD. A critical review of the evidence supporting aldosterone in the etiology and its blockade in the treatment of obesity-associated hypertension. J Hum Hypertens. 2014;28(1):3–9.CrossRef Byrd JB, Brook RD. A critical review of the evidence supporting aldosterone in the etiology and its blockade in the treatment of obesity-associated hypertension. J Hum Hypertens. 2014;28(1):3–9.CrossRef
5.
go back to reference Lamounier-Zepter V, Rotthoff T, Ansurudeen I, Kopprasch S, Scherbaum WA, Ehrhart-Bornstein M, et al. Increased aldosterone/renin quotient in obese hypertensive women: a novel role for low-density lipoproteins? Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2006;38(7):471–5.CrossRef Lamounier-Zepter V, Rotthoff T, Ansurudeen I, Kopprasch S, Scherbaum WA, Ehrhart-Bornstein M, et al. Increased aldosterone/renin quotient in obese hypertensive women: a novel role for low-density lipoproteins? Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2006;38(7):471–5.CrossRef
6.
go back to reference Torpy DJ, Stratakis CA, Chrousos GP. Hyper- and hypoaldosteronism. Vitam Horm. 1999;57:177–216.CrossRef Torpy DJ, Stratakis CA, Chrousos GP. Hyper- and hypoaldosteronism. Vitam Horm. 1999;57:177–216.CrossRef
7.
go back to reference Dudenbostel T, Ghazi L, Liu M, Li P, Oparil S, Calhoun DA. Body Mass Index Predicts 24-Hour Urinary Aldosterone Levels in Patients With Resistant Hypertension. Hypertension (Dallas, Tex : 1979). 2016;68(4):995–1003.CrossRef Dudenbostel T, Ghazi L, Liu M, Li P, Oparil S, Calhoun DA. Body Mass Index Predicts 24-Hour Urinary Aldosterone Levels in Patients With Resistant Hypertension. Hypertension (Dallas, Tex : 1979). 2016;68(4):995–1003.CrossRef
8.
go back to reference Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100(24):14211–6.CrossRef Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100(24):14211–6.CrossRef
9.
go back to reference Nagase M, Yoshida S, Shibata S, Nagase T, Gotoda T, Ando K, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17(12):3438–46.CrossRef Nagase M, Yoshida S, Shibata S, Nagase T, Gotoda T, Ando K, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17(12):3438–46.CrossRef
10.
go back to reference Hannemann A, Wallaschofski H. Prevalence of primary aldosteronism in patient's cohorts and in population-based studies--a review of the current literature. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2012;44(3):157–62.CrossRef Hannemann A, Wallaschofski H. Prevalence of primary aldosteronism in patient's cohorts and in population-based studies--a review of the current literature. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2012;44(3):157–62.CrossRef
11.
go back to reference Monticone S, D'Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diab Endocrinol. 2018;6(1):41–50.CrossRef Monticone S, D'Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diab Endocrinol. 2018;6(1):41–50.CrossRef
12.
go back to reference Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab. 2006;91(2):454–9.CrossRef Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab. 2006;91(2):454–9.CrossRef
13.
go back to reference Grundy SM, Williams C, Vega GL. Upper body fat predicts metabolic syndrome similarly in men and women. Eur J Clin Investig. 2018;48(7):e12941.CrossRef Grundy SM, Williams C, Vega GL. Upper body fat predicts metabolic syndrome similarly in men and women. Eur J Clin Investig. 2018;48(7):e12941.CrossRef
14.
go back to reference Shibayama Y, Wada N, Baba S, Miyano Y, Obara S, Iwasaki R, et al. Relationship between visceral fat and plasma aldosterone concentration in patients with primary Aldosteronism. J Endocr Soc. 2018;2(11):1236–45.CrossRef Shibayama Y, Wada N, Baba S, Miyano Y, Obara S, Iwasaki R, et al. Relationship between visceral fat and plasma aldosterone concentration in patients with primary Aldosteronism. J Endocr Soc. 2018;2(11):1236–45.CrossRef
15.
go back to reference Sawayama N, Hatano Y, Ebihara K, Ebihara C, Takahashi M, Nagashima S, et al. MON-210 Role of Female Gender and Subcutaneous Fat in the Positive Association of Obesity with Idiopathic Hyperaldosteronism. J Endocrine Soc. 2020;4(Suppl 1):MON-210.CrossRef Sawayama N, Hatano Y, Ebihara K, Ebihara C, Takahashi M, Nagashima S, et al. MON-210 Role of Female Gender and Subcutaneous Fat in the Positive Association of Obesity with Idiopathic Hyperaldosteronism. J Endocrine Soc. 2020;4(Suppl 1):MON-210.CrossRef
16.
go back to reference Zegarra-Lizana PA, Ramos-Orosco EJ, Guarnizo-Poma M, Pantoja-Torres B, Paico-Palacios S, Del Carmen R-SV, et al. Relationship between body fat percentage and insulin resistance in adults with Bmi values below 25 kg/M2 in a private clinic. Diabetes & metabolic syndrome. 2019;13(5):2855–9.CrossRef Zegarra-Lizana PA, Ramos-Orosco EJ, Guarnizo-Poma M, Pantoja-Torres B, Paico-Palacios S, Del Carmen R-SV, et al. Relationship between body fat percentage and insulin resistance in adults with Bmi values below 25 kg/M2 in a private clinic. Diabetes & metabolic syndrome. 2019;13(5):2855–9.CrossRef
17.
go back to reference Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obesity. 2010;34(5):791–9.CrossRef Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obesity. 2010;34(5):791–9.CrossRef
18.
go back to reference Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The Management of Primary Aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(5):1889–916.CrossRef Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The Management of Primary Aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(5):1889–916.CrossRef
19.
go back to reference Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and Management of High Blood Pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension (Dallas, Tex : 1979). 2018;71(6):1269–324.CrossRef Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and Management of High Blood Pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension (Dallas, Tex : 1979). 2018;71(6):1269–324.CrossRef
20.
go back to reference Pietrobelli A, Rubiano F, St-Onge MP, Heymsfield SB. New bioimpedance analysis system: improved phenotyping with whole-body analysis. Eur J Clin Nutr. 2004;58(11):1479–84.CrossRef Pietrobelli A, Rubiano F, St-Onge MP, Heymsfield SB. New bioimpedance analysis system: improved phenotyping with whole-body analysis. Eur J Clin Nutr. 2004;58(11):1479–84.CrossRef
21.
go back to reference Stowasser M, Taylor PJ, Pimenta E, Ahmed AHA-A, Gordon RD. Laboratory investigation of primary aldosteronism. Clin Biochem Rev. 2010;31(2):39–56.PubMedPubMedCentral Stowasser M, Taylor PJ, Pimenta E, Ahmed AHA-A, Gordon RD. Laboratory investigation of primary aldosteronism. Clin Biochem Rev. 2010;31(2):39–56.PubMedPubMedCentral
22.
go back to reference Licata G, Scaglione R, Ganguzza A, Corrao S, Donatelli M, Parrinello G, et al. Central obesity and hypertension. Relationship between fasting serum insulin, plasma renin activity, and diastolic blood pressure in young obese subjects. Am J Hypertens. 1994;7(4 Pt 1):314–20.CrossRef Licata G, Scaglione R, Ganguzza A, Corrao S, Donatelli M, Parrinello G, et al. Central obesity and hypertension. Relationship between fasting serum insulin, plasma renin activity, and diastolic blood pressure in young obese subjects. Am J Hypertens. 1994;7(4 Pt 1):314–20.CrossRef
23.
go back to reference Rossi GP, Belfiore A, Bernini G, Fabris B, Caridi G, Ferri C, et al. Body mass index predicts plasma aldosterone concentrations in overweight-obese primary hypertensive patients. J Clin Endocrinol Metab. 2008;93(7):2566–71.CrossRef Rossi GP, Belfiore A, Bernini G, Fabris B, Caridi G, Ferri C, et al. Body mass index predicts plasma aldosterone concentrations in overweight-obese primary hypertensive patients. J Clin Endocrinol Metab. 2008;93(7):2566–71.CrossRef
24.
go back to reference Suwannasrisuk P, Boonchaya-Anant P, Houngngam N, Udomsawaengsup S, Sunthornyothin S. Changes in plasma aldosterone level after weight loss by bariatric surgery in morbidly obese patients. BMC Endocr Disord. 2020;20(1):45.CrossRef Suwannasrisuk P, Boonchaya-Anant P, Houngngam N, Udomsawaengsup S, Sunthornyothin S. Changes in plasma aldosterone level after weight loss by bariatric surgery in morbidly obese patients. BMC Endocr Disord. 2020;20(1):45.CrossRef
25.
go back to reference Engeli S, Böhnke J, Gorzelniak K, Janke J, Schling P, Bader M, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension (Dallas, Tex : 1979). 2005;45(3):356–62.CrossRef Engeli S, Böhnke J, Gorzelniak K, Janke J, Schling P, Bader M, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension (Dallas, Tex : 1979). 2005;45(3):356–62.CrossRef
26.
go back to reference Tirosh A, Hannah-Shmouni F, Lyssikatos C, Belyavskaya E, Zilbermint M, Abraham SB, et al. Obesity and the diagnostic accuracy for primary aldosteronism. J Clin Hypertension (Greenwich, Conn). 2017;19(8):790–7.CrossRef Tirosh A, Hannah-Shmouni F, Lyssikatos C, Belyavskaya E, Zilbermint M, Abraham SB, et al. Obesity and the diagnostic accuracy for primary aldosteronism. J Clin Hypertension (Greenwich, Conn). 2017;19(8):790–7.CrossRef
27.
go back to reference Zennaro MC, Caprio M, Fève B. Mineralocorticoid receptors in the metabolic syndrome. Trends Endocrinol Metab. 2009;20(9):444–51.CrossRef Zennaro MC, Caprio M, Fève B. Mineralocorticoid receptors in the metabolic syndrome. Trends Endocrinol Metab. 2009;20(9):444–51.CrossRef
28.
go back to reference Dinh Cat AN, Friederich-Persson M, White A, Touyz RM. Adipocytes, aldosterone and obesity-related hypertension. J Mol Endocrinol. 2016;57(1):F7–f21.CrossRef Dinh Cat AN, Friederich-Persson M, White A, Touyz RM. Adipocytes, aldosterone and obesity-related hypertension. J Mol Endocrinol. 2016;57(1):F7–f21.CrossRef
29.
go back to reference Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, et al. Adipocyte-derived hormone Leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132(22):2134–45.CrossRef Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, et al. Adipocyte-derived hormone Leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132(22):2134–45.CrossRef
30.
go back to reference Degawa-Yamauchi M, Moss KA, Bovenkerk JE, Shankar SS, Morrison CL, Lelliott CJ, et al. Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. Obes Res. 2005;13(4):662–9.CrossRef Degawa-Yamauchi M, Moss KA, Bovenkerk JE, Shankar SS, Morrison CL, Lelliott CJ, et al. Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. Obes Res. 2005;13(4):662–9.CrossRef
31.
go back to reference Jeon JH, Kim KY, Kim JH, Baek A, Cho H, Lee YH, et al. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J. 2008;22(5):1502–11.CrossRef Jeon JH, Kim KY, Kim JH, Baek A, Cho H, Lee YH, et al. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J. 2008;22(5):1502–11.CrossRef
32.
go back to reference Fagugli RM, Taglioni C. Changes in the perceived epidemiology of primary hyperaldosteronism. Int J Hypertens. 2011;2011:162804.CrossRef Fagugli RM, Taglioni C. Changes in the perceived epidemiology of primary hyperaldosteronism. Int J Hypertens. 2011;2011:162804.CrossRef
33.
go back to reference Fallo F, Federspil G, Veglio F, Mulatero P. The metabolic syndrome in primary aldosteronism. Curr Hypertens Rep. 2007;9(2):106–11.CrossRef Fallo F, Federspil G, Veglio F, Mulatero P. The metabolic syndrome in primary aldosteronism. Curr Hypertens Rep. 2007;9(2):106–11.CrossRef
34.
go back to reference Akindele MO, Phillips JS, Igumbor EU. The relationship between body fat percentage and body mass index in overweight and obese individuals in an urban African setting. J Public Health Africa. 2016;7(1):515.PubMedCentral Akindele MO, Phillips JS, Igumbor EU. The relationship between body fat percentage and body mass index in overweight and obese individuals in an urban African setting. J Public Health Africa. 2016;7(1):515.PubMedCentral
35.
go back to reference Wulan SN, Westerterp KR, Plasqui G. Ethnic differences in body composition and the associated metabolic profile: a comparative study between Asians and Caucasians. Maturitas. 2010;65(4):315–9.CrossRef Wulan SN, Westerterp KR, Plasqui G. Ethnic differences in body composition and the associated metabolic profile: a comparative study between Asians and Caucasians. Maturitas. 2010;65(4):315–9.CrossRef
Metadata
Title
High body fat percentage is associated with primary aldosteronism: a cross-sectional study
Authors
Worapaka Manosroi
Pichitchai Atthakomol
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2020
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-020-00654-w

Other articles of this Issue 1/2020

BMC Endocrine Disorders 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.