Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Obesity | Research

Hesperetin attenuates the expression of markers of adipose tissue fibrosis in pre-adipocytes

Authors: Alemeh Taheri, Samira Ezzati Mobaser, Pegah Golpour, Mona Nourbakhsh, Masoumeh Tavakoli-Yaraki, Sahar Yarahmadi, Mitra Nourbakhsh

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Excessive extracellular matrix (ECM) deposition in adipose tissue is a hallmark of fibrosis, leading to disrupted adipose tissue homeostasis and metabolic dysfunction. Hesperetin, a flavonoid compound, has shown promising anti-inflammatory, anti-obesity and anti-diabetic properties. Therefore, we investigated the anti-fibrotic effects of hesperetin, through targeting ECM components and matrix metalloproteinase enzymes.

Methods

3T3-L1 cells were cultured in DMEM, containing 10% FBS and 1% penicillin/streptomycin. Cells were treated with a range of hesperetin concentrations, and the cell viability was determined using MTT assay. Subsequently, the expression of genes encoding collagen VI, osteopontin, matrix metalloproteinase-2 (Mmp-2) and Mmp-9 was analyzed using specific primers and real-time PCR technique. To evaluate protein levels of collagen VI and osteopontin, Western blotting was performed.

Results

Hesperetin affected the viability of 3T3-L1 adipocytes with IC50 of 447.4 µM, 339.2 µM and 258.8 µM (24 h, 48 and 72 h, respectively). Hesperetin significantly reduced the gene and protein expression of both collagen VI and osteopontin in 3T3-L1 pre-adipocytes, in a time- and dose-dependent manner. Hesperetin was also able to cause a remarkable decline in gene expression of Mmp2 and Mmp9.

Conclusion

Hesperetin could potently reduce the production of markers of adipose tissue fibrosis and might be considered a potential anti-fibrotic compound in obesity. Thus, hesperetin has the potency to be used for the treatment of obesity-associated fibrosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Collaboration NRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19· 2 million participants. The Lancet. 2016;387(10026):1377–96.CrossRef Collaboration NRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19· 2 million participants. The Lancet. 2016;387(10026):1377–96.CrossRef
2.
go back to reference Lemieux I, Després J-P. Metabolic syndrome: past, present and future. MDPI; 2020. p. 3501. Lemieux I, Després J-P. Metabolic syndrome: past, present and future. MDPI; 2020. p. 3501.
3.
go back to reference Aleksandrova K, Egea Rodrigues C, Floegel A, Ahrens W. Omics biomarkers in obesity: novel etiological insights and targets for precision prevention. Curr Obes Rep. 2020;9(3):219–30.CrossRefPubMedPubMedCentral Aleksandrova K, Egea Rodrigues C, Floegel A, Ahrens W. Omics biomarkers in obesity: novel etiological insights and targets for precision prevention. Curr Obes Rep. 2020;9(3):219–30.CrossRefPubMedPubMedCentral
5.
go back to reference Datta R, Podolsky MJ, Atabai K. Fat fibrosis: friend or foe? JCI Insight. 2018;3(19). Datta R, Podolsky MJ, Atabai K. Fat fibrosis: friend or foe? JCI Insight. 2018;3(19).
6.
go back to reference DeBari MK, Abbott RD. Adipose tissue fibrosis: mechanisms, models, and Importance. Int J Mol Sci [Internet]. 2020; 21(17). DeBari MK, Abbott RD. Adipose tissue fibrosis: mechanisms, models, and Importance. Int J Mol Sci [Internet]. 2020; 21(17).
7.
go back to reference DeBari MK, Abbott RD. Adipose tissue fibrosis: mechanisms, models, and Importance. Int J Mol Sci. 2020;21(17). DeBari MK, Abbott RD. Adipose tissue fibrosis: mechanisms, models, and Importance. Int J Mol Sci. 2020;21(17).
9.
go back to reference Hasegawa Y, Ikeda K, Chen Y, Alba DL, Stifler D, Shinoda K, et al. Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 Complex improves systemic glucose homeostasis. Cell Metabol. 2018;27(1):180–94e6.CrossRef Hasegawa Y, Ikeda K, Chen Y, Alba DL, Stifler D, Shinoda K, et al. Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 Complex improves systemic glucose homeostasis. Cell Metabol. 2018;27(1):180–94e6.CrossRef
10.
go back to reference Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29(6):1575–91.CrossRefPubMed Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29(6):1575–91.CrossRefPubMed
11.
go back to reference Sun K, Park J, Gupta OT, Holland WL, Auerbach P, Zhang N, et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat Commun. 2014;5:3485.CrossRefPubMed Sun K, Park J, Gupta OT, Holland WL, Auerbach P, Zhang N, et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat Commun. 2014;5:3485.CrossRefPubMed
12.
go back to reference Gómez-Ambrosi J, Catalan V, Ramírez B, Rodriguez A, Colina I, Silva C, et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metabolism. 2007;92(9):3719–27.CrossRef Gómez-Ambrosi J, Catalan V, Ramírez B, Rodriguez A, Colina I, Silva C, et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metabolism. 2007;92(9):3719–27.CrossRef
13.
go back to reference Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y, Heywood EB, et al. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Investig. 2007;117(10):2877–88.CrossRefPubMedPubMedCentral Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y, Heywood EB, et al. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Investig. 2007;117(10):2877–88.CrossRefPubMedPubMedCentral
14.
go back to reference Lancha A, Rodríguez A, Catalán V, Becerril S, Sáinz N, Ramírez B, et al. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice. PLoS ONE. 2014;9(5):e98398.CrossRefPubMedPubMedCentral Lancha A, Rodríguez A, Catalán V, Becerril S, Sáinz N, Ramírez B, et al. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice. PLoS ONE. 2014;9(5):e98398.CrossRefPubMedPubMedCentral
15.
go back to reference Kim HK, Jeong TS, Lee MK, Park YB, Choi MS. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin Chim Acta. 2003;327(1–2):129–37.CrossRefPubMed Kim HK, Jeong TS, Lee MK, Park YB, Choi MS. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin Chim Acta. 2003;327(1–2):129–37.CrossRefPubMed
16.
17.
go back to reference Jayaraman R, Subramani S, Sheik Abdullah SH, Udaiyar M. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2018;97:98–106.CrossRefPubMed Jayaraman R, Subramani S, Sheik Abdullah SH, Udaiyar M. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2018;97:98–106.CrossRefPubMed
18.
go back to reference Mosqueda-Solís A, Sánchez J, Portillo MP, Palou A, Picó C. Combination of Capsaicin and Hesperidin reduces the effectiveness of each compound to decrease the adipocyte size and to induce Browning features in adipose tissue of western Diet Fed rats. J Agric Food Chem. 2018;66(37):9679–89.CrossRefPubMed Mosqueda-Solís A, Sánchez J, Portillo MP, Palou A, Picó C. Combination of Capsaicin and Hesperidin reduces the effectiveness of each compound to decrease the adipocyte size and to induce Browning features in adipose tissue of western Diet Fed rats. J Agric Food Chem. 2018;66(37):9679–89.CrossRefPubMed
19.
go back to reference Kim JK, Jeong HW, Kim AY, Hong YD, Lee JH, Choi JK, et al. Green satsuma mandarin orange (Citrus unshiu) extract reduces adiposity and induces uncoupling protein expression in skeletal muscle of obese mice. Food Sci Biotechnol. 2019;28(3):873–9.CrossRefPubMed Kim JK, Jeong HW, Kim AY, Hong YD, Lee JH, Choi JK, et al. Green satsuma mandarin orange (Citrus unshiu) extract reduces adiposity and induces uncoupling protein expression in skeletal muscle of obese mice. Food Sci Biotechnol. 2019;28(3):873–9.CrossRefPubMed
20.
go back to reference Mosqueda-Solís A, Lasa A, Gómez-Zorita S, Eseberri I, Picó C, Portillo MP. Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3T3-L1 preadipocytes. Food Funct. 2017;8(10):3576–86.CrossRefPubMed Mosqueda-Solís A, Lasa A, Gómez-Zorita S, Eseberri I, Picó C, Portillo MP. Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3T3-L1 preadipocytes. Food Funct. 2017;8(10):3576–86.CrossRefPubMed
21.
go back to reference Serino A, Salazar G. Protective role of polyphenols against vascular inflammation, Aging and Cardiovascular Disease. Nutrients. 2018;11(1). Serino A, Salazar G. Protective role of polyphenols against vascular inflammation, Aging and Cardiovascular Disease. Nutrients. 2018;11(1).
22.
go back to reference Ezzati-Mobaser S, Malekpour-Dehkordi Z, Nourbakhsh M, Tavakoli-Yaraki M, Ahmadpour F, Golpour P, et al. The up-regulation of markers of adipose tissue fibrosis by visfatin in pre-adipocytes as well as obese children and adolescents. Cytokine. 2020;134:155193.CrossRefPubMed Ezzati-Mobaser S, Malekpour-Dehkordi Z, Nourbakhsh M, Tavakoli-Yaraki M, Ahmadpour F, Golpour P, et al. The up-regulation of markers of adipose tissue fibrosis by visfatin in pre-adipocytes as well as obese children and adolescents. Cytokine. 2020;134:155193.CrossRefPubMed
23.
go back to reference Derosa G, Ferrari I, D’Angelo A, Tinelli C, Salvadeo SA, Ciccarelli L, et al. Matrix metalloproteinase-2 and – 9 levels in obese patients. Endothelium. 2008;15(4):219–24.CrossRefPubMed Derosa G, Ferrari I, D’Angelo A, Tinelli C, Salvadeo SA, Ciccarelli L, et al. Matrix metalloproteinase-2 and – 9 levels in obese patients. Endothelium. 2008;15(4):219–24.CrossRefPubMed
24.
go back to reference Tinahones FJ, Coín-Aragüez L, Mayas MD, Garcia-Fuentes E, Hurtado-Del-Pozo C, Vendrell J, et al. Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels. BMC Physiol. 2012;12:4.CrossRefPubMedPubMedCentral Tinahones FJ, Coín-Aragüez L, Mayas MD, Garcia-Fuentes E, Hurtado-Del-Pozo C, Vendrell J, et al. Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels. BMC Physiol. 2012;12:4.CrossRefPubMedPubMedCentral
25.
go back to reference XUE M, WEICKERT M, RABBANI N. THORNALLEY P. 338-OR: reversal of insulin resistance by Resveratrol and Hesperetin combination in overweight and obese subjects correlates with decrease in expression of Thioredoxin interacting protein. Diabetes. 2021;70(Supplement_1). XUE M, WEICKERT M, RABBANI N. THORNALLEY P. 338-OR: reversal of insulin resistance by Resveratrol and Hesperetin combination in overweight and obese subjects correlates with decrease in expression of Thioredoxin interacting protein. Diabetes. 2021;70(Supplement_1).
26.
go back to reference Lee Y-J, Seo M-J, Lee O-H, Kim K-J, Lee B-Y. Hesperetin inhibits lipid accumulation and ROS production during adipocyte differentiation in 3T3-L1 cells. J Food Biochem. 2017;41(3):e12348.CrossRef Lee Y-J, Seo M-J, Lee O-H, Kim K-J, Lee B-Y. Hesperetin inhibits lipid accumulation and ROS production during adipocyte differentiation in 3T3-L1 cells. J Food Biochem. 2017;41(3):e12348.CrossRef
27.
go back to reference Rabbani N, Xue M, Weickert MO, Thornalley PJ. Reversal of insulin resistance in overweight and obese subjects by trans-resveratrol and hesperetin combination—link to Dysglycemia, blood pressure, Dyslipidemia, and Low-Grade inflammation. Nutrients. 2021;13(7):2374.CrossRefPubMedPubMedCentral Rabbani N, Xue M, Weickert MO, Thornalley PJ. Reversal of insulin resistance in overweight and obese subjects by trans-resveratrol and hesperetin combination—link to Dysglycemia, blood pressure, Dyslipidemia, and Low-Grade inflammation. Nutrients. 2021;13(7):2374.CrossRefPubMedPubMedCentral
28.
go back to reference Yoshida H, Takamura N, Shuto T, Ogata K, Tokunaga J, Kawai K, et al. The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-α in mouse adipocytes. Biochem Biophys Res Commun. 2010;394(3):728–32.CrossRefPubMed Yoshida H, Takamura N, Shuto T, Ogata K, Tokunaga J, Kawai K, et al. The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-α in mouse adipocytes. Biochem Biophys Res Commun. 2010;394(3):728–32.CrossRefPubMed
29.
go back to reference Nichols LA, Jackson DE, Manthey JA, Shukla SD, Holland LJ. Citrus flavonoids repress the mRNA for stearoyl-CoA desaturase, a key enzyme in lipid synthesis and obesity control, in rat primary hepatocytes. Lipids Health Dis. 2011;10(1):36.CrossRefPubMedPubMedCentral Nichols LA, Jackson DE, Manthey JA, Shukla SD, Holland LJ. Citrus flavonoids repress the mRNA for stearoyl-CoA desaturase, a key enzyme in lipid synthesis and obesity control, in rat primary hepatocytes. Lipids Health Dis. 2011;10(1):36.CrossRefPubMedPubMedCentral
30.
go back to reference Kim HY, Park M, Kim K, Lee YM, Rhyu MR. Hesperetin stimulates cholecystokinin secretion in Enteroendocrine STC-1 cells. Biomol Ther (Seoul). 2013;21(2):121–5.CrossRefPubMed Kim HY, Park M, Kim K, Lee YM, Rhyu MR. Hesperetin stimulates cholecystokinin secretion in Enteroendocrine STC-1 cells. Biomol Ther (Seoul). 2013;21(2):121–5.CrossRefPubMed
31.
go back to reference Ruiz-Ojeda FJ, Plaza-Díaz J, Anguita-Ruiz A, Méndez-Gutiérrez A, Aguilera CM. Adipose Extracellular Matrix Remodeling in Obesity and Insulin Resistance. Cellular and Biochemical Mechanisms of Obesity. 2021:215 – 29. Ruiz-Ojeda FJ, Plaza-Díaz J, Anguita-Ruiz A, Méndez-Gutiérrez A, Aguilera CM. Adipose Extracellular Matrix Remodeling in Obesity and Insulin Resistance. Cellular and Biochemical Mechanisms of Obesity. 2021:215 – 29.
32.
go back to reference Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J. 2022;289(13):3603–29.CrossRefPubMed Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J. 2022;289(13):3603–29.CrossRefPubMed
33.
go back to reference Vianello E, Kalousová M, Dozio E, Tacchini L, Zima T, Corsi Romanelli MM. Osteopontin: the molecular bridge between fat and cardiac–renal disorders. Int J Mol Sci. 2020;21(15):5568.CrossRefPubMedPubMedCentral Vianello E, Kalousová M, Dozio E, Tacchini L, Zima T, Corsi Romanelli MM. Osteopontin: the molecular bridge between fat and cardiac–renal disorders. Int J Mol Sci. 2020;21(15):5568.CrossRefPubMedPubMedCentral
34.
go back to reference Zeyda M, Gollinger K, Todoric J, Kiefer FW, Keck M, Aszmann O, et al. Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology. 2011;152(6):2219–27.CrossRefPubMed Zeyda M, Gollinger K, Todoric J, Kiefer FW, Keck M, Aszmann O, et al. Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology. 2011;152(6):2219–27.CrossRefPubMed
35.
go back to reference Wang P-y, Feng J-y, Zhang Z, Chen Y, Qin Z, Dai X-m, et al. The adipokine orosomucoid alleviates adipose tissue fibrosis via the AMPK pathway. Acta Pharmacol Sin. 2022;43(2):367–75.CrossRefPubMed Wang P-y, Feng J-y, Zhang Z, Chen Y, Qin Z, Dai X-m, et al. The adipokine orosomucoid alleviates adipose tissue fibrosis via the AMPK pathway. Acta Pharmacol Sin. 2022;43(2):367–75.CrossRefPubMed
36.
go back to reference Shen H, Huang X, Zhao Y, Wu D, Xue K, Yao J, et al. The Hippo pathway links adipocyte plasticity to adipose tissue fibrosis. Nat Commun. 2022;13(1):6030.CrossRefPubMedPubMedCentral Shen H, Huang X, Zhao Y, Wu D, Xue K, Yao J, et al. The Hippo pathway links adipocyte plasticity to adipose tissue fibrosis. Nat Commun. 2022;13(1):6030.CrossRefPubMedPubMedCentral
37.
go back to reference Zhu S, Chen X, Chen SY, Wang A, Wu S, Wu YY, et al. Hesperetin derivative decreases CCl(4) -induced hepatic fibrosis by Ptch1-dependent mechanisms. J Biochem Mol Toxicol. 2022;36(10):e23149.CrossRefPubMed Zhu S, Chen X, Chen SY, Wang A, Wu S, Wu YY, et al. Hesperetin derivative decreases CCl(4) -induced hepatic fibrosis by Ptch1-dependent mechanisms. J Biochem Mol Toxicol. 2022;36(10):e23149.CrossRefPubMed
38.
go back to reference Li JJ, Jiang HC, Wang A, Bu FT, Jia PC, Zhu S, et al. Hesperetin derivative-16 attenuates CCl(4)-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. Eur J Pharmacol. 2022;915:174530.CrossRefPubMed Li JJ, Jiang HC, Wang A, Bu FT, Jia PC, Zhu S, et al. Hesperetin derivative-16 attenuates CCl(4)-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. Eur J Pharmacol. 2022;915:174530.CrossRefPubMed
39.
go back to reference Li J, Wang T, Liu P, Yang F, Wang X, Zheng W, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021;12(9):3898–918.CrossRefPubMed Li J, Wang T, Liu P, Yang F, Wang X, Zheng W, et al. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021;12(9):3898–918.CrossRefPubMed
40.
go back to reference Chen X, Li XF, Chen Y, Zhu S, Li HD, Chen SY, et al. Hesperetin derivative attenuates CCl(4)-induced hepatic fibrosis and inflammation by gli-1-dependent mechanisms. Int Immunopharmacol. 2019;76:105838.CrossRefPubMed Chen X, Li XF, Chen Y, Zhu S, Li HD, Chen SY, et al. Hesperetin derivative attenuates CCl(4)-induced hepatic fibrosis and inflammation by gli-1-dependent mechanisms. Int Immunopharmacol. 2019;76:105838.CrossRefPubMed
41.
go back to reference Abdel-Rahman RF, Fayed HM, Ogaly HA, Hussein RA, Raslan MA. Phytoconstituents of Sansevieria suffruticosa N.E.Br. Leaves and its Hepatoprotective Effect via activation of the NRF2/ARE signaling pathway in an Experimentally Induced Liver Fibrosis Rat Model. Chem Biodivers. 2022;19(4):e202100960.CrossRefPubMed Abdel-Rahman RF, Fayed HM, Ogaly HA, Hussein RA, Raslan MA. Phytoconstituents of Sansevieria suffruticosa N.E.Br. Leaves and its Hepatoprotective Effect via activation of the NRF2/ARE signaling pathway in an Experimentally Induced Liver Fibrosis Rat Model. Chem Biodivers. 2022;19(4):e202100960.CrossRefPubMed
42.
go back to reference Hu X, Sun A, Chen H, Yan X, Ding F, Zheng P, et al. Saponins from Panax japonicus alleviate adipose tissue fibrosis and metabolic dysfunction in high-fat-diet-induced obese mice. Biomarkers. 2022;27(8):784–94.CrossRefPubMed Hu X, Sun A, Chen H, Yan X, Ding F, Zheng P, et al. Saponins from Panax japonicus alleviate adipose tissue fibrosis and metabolic dysfunction in high-fat-diet-induced obese mice. Biomarkers. 2022;27(8):784–94.CrossRefPubMed
43.
go back to reference Wang L, Ye X, Hua Y, Song Y. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed Pharmacother. 2018;105:121–9.CrossRefPubMed Wang L, Ye X, Hua Y, Song Y. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed Pharmacother. 2018;105:121–9.CrossRefPubMed
44.
go back to reference Yoshinori N, Yasuharu W, Hiroe H, Kiyoshi T, Isoliquiritigenin. A unique component that attenuates adipose tissue inflammation and fibrosis by targeting the Innate Immune Sensors. In: Hiroshi S, editor. Licorice ingredients. Rijeka: IntechOpen; 2017. Ch. 8. Yoshinori N, Yasuharu W, Hiroe H, Kiyoshi T, Isoliquiritigenin. A unique component that attenuates adipose tissue inflammation and fibrosis by targeting the Innate Immune Sensors. In: Hiroshi S, editor. Licorice ingredients. Rijeka: IntechOpen; 2017. Ch. 8.
45.
go back to reference Sezgin SBA, Bayoglu B, Ersoz F, Sarici M, Niyazoglu M, Dirican A, et al. Downregulation of MMP-2 and MMP-9 genes in obesity patients and their relation with obesity-related phenotypes. Turkish J Biochem. 2022;47(4):425–33.CrossRef Sezgin SBA, Bayoglu B, Ersoz F, Sarici M, Niyazoglu M, Dirican A, et al. Downregulation of MMP-2 and MMP-9 genes in obesity patients and their relation with obesity-related phenotypes. Turkish J Biochem. 2022;47(4):425–33.CrossRef
46.
go back to reference Boumiza S, Chahed K, Tabka Z, Jacob M-P, Norel X, Ozen G. MMPs and TIMPs levels are correlated with anthropometric parameters, blood pressure, and endothelial function in obesity. Sci Rep. 2021;11(1):20052.CrossRefPubMedPubMedCentral Boumiza S, Chahed K, Tabka Z, Jacob M-P, Norel X, Ozen G. MMPs and TIMPs levels are correlated with anthropometric parameters, blood pressure, and endothelial function in obesity. Sci Rep. 2021;11(1):20052.CrossRefPubMedPubMedCentral
47.
go back to reference Wu D, Li J, Hu X, Ma J, Dong W. Hesperetin inhibits Eca-109 cell proliferation and invasion by suppressing the PI3K/AKT signaling pathway and synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal cancer in vitro and in vivo. RSC Adv. 2018;8(43):24434–43.CrossRefPubMedPubMedCentral Wu D, Li J, Hu X, Ma J, Dong W. Hesperetin inhibits Eca-109 cell proliferation and invasion by suppressing the PI3K/AKT signaling pathway and synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal cancer in vitro and in vivo. RSC Adv. 2018;8(43):24434–43.CrossRefPubMedPubMedCentral
48.
go back to reference MAO C-M. Effect and mechanism of hesperetin on P-selectin mediated breast cancer MDA-MB-231 metastasis. Chin Traditional Herb Drugs. 2017:714–21. MAO C-M. Effect and mechanism of hesperetin on P-selectin mediated breast cancer MDA-MB-231 metastasis. Chin Traditional Herb Drugs. 2017:714–21.
Metadata
Title
Hesperetin attenuates the expression of markers of adipose tissue fibrosis in pre-adipocytes
Authors
Alemeh Taheri
Samira Ezzati Mobaser
Pegah Golpour
Mona Nourbakhsh
Masoumeh Tavakoli-Yaraki
Sahar Yarahmadi
Mitra Nourbakhsh
Publication date
01-12-2023
Publisher
BioMed Central
Keywords
Obesity
Obesity
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04152-z

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue