Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Obesity | Research

Association between adiposity and facial aging: results from a Mendelian randomization study

Authors: Meiqi Liu, Jingwei Feng

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

Skin, as a sociologically meaningful interface, has psychological implications different from other organs, particularly in the context of the global population aging. Growing evidence suggests that facial aging is associated with an increased risk of adiposity. Existing research, however, were observational, and while they may find some correlations, it is difficult to simply disentangle non-causal or reverse-causal links because these associations may be confounded or fail to accurately reflect true causative linkages.

Objectives

We conducted a 2-sample Mendelian randomization (MR) study to examine the potential effect of facial aging on the risk of broad obesity and its three major adiposity indicators, including body mass index (BMI), body fat percentage (BF%) and waist circumference (WC).

Methods

Genetic instruments from IEU OpenGWAS project, one of the largest available genome-wide association studies (GWAS) for facial aging (423,999 samples) were used to investigate the relation to broad obesity (32,858 cases, 65,839 controls). Using the inverse-variance weighted (IVW) technique, single nucleotide polymorphisms (SNPs) associated with adiposity indicators (BMI (461,460 samples), BF% (454,633 samples), and WC (462,166 samples)) were investigated in relationship to facial aging. Further sensitivity analyses were performed, including Mendelian randomization-Egger (MR-Egger), weighted median estimates, and leave-one-out analysis, to evaluate the consistency of the results and related potential issues in MR studies.

Results

We identified strong and significant correlations between adiposity and facial aging in the 17 broad obesity-associated SNPs (IVW estimate of odds ratio OR = 1.020, 95% CI 1.010–1.029, P = 7.303e − 05), 458 BMI-associated SNPs (IVW estimate of odds ratio OR = 1.047, 95% CI 1.0357–1.058, P = 1.154e − 16),for the 395 BF%-associated SNPs (OR = 1.056, 95%CI 1.040–1.072,P = 7.617e − 12), or for the 374 WC-associated SNPs (OR = 1.072, 95% CI 1057–1.087,P = 1.229e − 23). A range of complementary methodologies have been employed to evaluate horizontal pleiotropy and related potential caveats occurring in MR research.

Conclusions

Using Mendelian randomization as an alternative approach to investigate causality, we found a causal relationship between adiposity and facial aging, which was statistically strong and significant.
Appendix
Available only for authorised users
Literature
2.
go back to reference Von Bank H, Kirsh C, Simcox J. Aging adipose: Depot location dictates age-associated expansion and dysfunction. Ageing Res Rev. 2021;67: 101259.CrossRef Von Bank H, Kirsh C, Simcox J. Aging adipose: Depot location dictates age-associated expansion and dysfunction. Ageing Res Rev. 2021;67: 101259.CrossRef
3.
go back to reference Reyes-Farias M, Fos-Domenech J, Serra D, et al. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol. 2021;192: 114723.PubMedCrossRef Reyes-Farias M, Fos-Domenech J, Serra D, et al. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol. 2021;192: 114723.PubMedCrossRef
4.
go back to reference Vijay J, Gauthier MF, Biswell RL, et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab. 2020;2(1):97–109.PubMedCrossRef Vijay J, Gauthier MF, Biswell RL, et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab. 2020;2(1):97–109.PubMedCrossRef
5.
go back to reference Hirt PA, Castillo DE, Yosipovitch G, et al. Skin changes in the obese patient. J Am Acad Dermatol. 2019;81(5):1037–57.PubMedCrossRef Hirt PA, Castillo DE, Yosipovitch G, et al. Skin changes in the obese patient. J Am Acad Dermatol. 2019;81(5):1037–57.PubMedCrossRef
6.
go back to reference Bourassa KJ, Moffitt TE, Ambler A, et al. Association of treatable health conditions during adolescence with accelerated aging at midlife. JAMA Pediatr. 2022;176(4):392–9.PubMedPubMedCentralCrossRef Bourassa KJ, Moffitt TE, Ambler A, et al. Association of treatable health conditions during adolescence with accelerated aging at midlife. JAMA Pediatr. 2022;176(4):392–9.PubMedPubMedCentralCrossRef
7.
8.
go back to reference Santos AL, Sinha S. Obesity and aging: molecular mechanisms and therapeutic approaches. Ageing Res Rev. 2021;67: 101268.PubMedCrossRef Santos AL, Sinha S. Obesity and aging: molecular mechanisms and therapeutic approaches. Ageing Res Rev. 2021;67: 101268.PubMedCrossRef
9.
go back to reference Wang L, Yi Z. Obesity paradox and aging: visceral adiposity index and all-cause mortality in older individuals: a prospective cohort study. Front Endocrinol. 2022;13: 975209.CrossRef Wang L, Yi Z. Obesity paradox and aging: visceral adiposity index and all-cause mortality in older individuals: a prospective cohort study. Front Endocrinol. 2022;13: 975209.CrossRef
10.
go back to reference Yosipovitch G, Devore A, Dawn A. Obesity and the skin: skin physiology and skin manifestations of obesity. J Am Acad Dermatol. 2007;56(6):901–16.PubMedCrossRef Yosipovitch G, Devore A, Dawn A. Obesity and the skin: skin physiology and skin manifestations of obesity. J Am Acad Dermatol. 2007;56(6):901–16.PubMedCrossRef
11.
go back to reference Valente DS, Braga Da Silva J, Cora Mottin C, et al. Influence of massive weight loss on the perception of facial age: the facial age perceptions cohort. Plast Reconstr Surg. 2018;142(4):481e–8e.PubMedCrossRef Valente DS, Braga Da Silva J, Cora Mottin C, et al. Influence of massive weight loss on the perception of facial age: the facial age perceptions cohort. Plast Reconstr Surg. 2018;142(4):481e–8e.PubMedCrossRef
12.
go back to reference Davey Smith G, Phillips AN. Correlation without a cause: an epidemiological odyssey. Int J Epidemiol. 2020;49(1):4–14.PubMedCrossRef Davey Smith G, Phillips AN. Correlation without a cause: an epidemiological odyssey. Int J Epidemiol. 2020;49(1):4–14.PubMedCrossRef
13.
go back to reference Hu X, Zhao J, Lin Z, et al. Mendelian randomization for causal inference accounting for pleiotropy and sample structure using genome-wide summary statistics. Proc Natl Acad Sci USA. 2022;119(28): e2106858119.PubMedPubMedCentralCrossRef Hu X, Zhao J, Lin Z, et al. Mendelian randomization for causal inference accounting for pleiotropy and sample structure using genome-wide summary statistics. Proc Natl Acad Sci USA. 2022;119(28): e2106858119.PubMedPubMedCentralCrossRef
14.
go back to reference Burgess S, Foley CN, Zuber V. Inferring causal relationships between risk factors and outcomes from genome-wide association study data. Annu Rev Genom Hum Genet. 2018;19:303–27.CrossRef Burgess S, Foley CN, Zuber V. Inferring causal relationships between risk factors and outcomes from genome-wide association study data. Annu Rev Genom Hum Genet. 2018;19:303–27.CrossRef
15.
go back to reference Davey Smith G, Holmes MV, Davies NM, et al. Mendel’s laws, Mendelian randomization and causal inference in observational data: substantive and nomenclatural issues. Eur J Epidemiol. 2020;35(2):99–111.PubMedPubMedCentralCrossRef Davey Smith G, Holmes MV, Davies NM, et al. Mendel’s laws, Mendelian randomization and causal inference in observational data: substantive and nomenclatural issues. Eur J Epidemiol. 2020;35(2):99–111.PubMedPubMedCentralCrossRef
16.
17.
go back to reference Lu Y, Day FR, Gustafsson S, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 2016;7:10495.PubMedPubMedCentralCrossRef Lu Y, Day FR, Gustafsson S, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 2016;7:10495.PubMedPubMedCentralCrossRef
18.
go back to reference Lyon MS, Andrews SJ, Elsworth B, et al. The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol. 2021;22(1):32.PubMedPubMedCentralCrossRef Lyon MS, Andrews SJ, Elsworth B, et al. The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol. 2021;22(1):32.PubMedPubMedCentralCrossRef
20.
go back to reference Ruth Mitchell E, BL, Mitchell, R, Raistrick, CA, Paternoster, L, Hemani, G, Gaunt, TR. MRC IEU UK Biobank GWAS pipeline version 2 [DS]. 2019, Ruth Mitchell E, BL, Mitchell, R, Raistrick, CA, Paternoster, L, Hemani, G, Gaunt, TR. MRC IEU UK Biobank GWAS pipeline version 2 [DS]. 2019,
21.
go back to reference Zhan Y, Hagg S. Association between genetically predicted telomere length and facial skin aging in the UK biobank: a mendelian randomization study. Geroscience. 2021;43(3):1519–25.PubMedCrossRef Zhan Y, Hagg S. Association between genetically predicted telomere length and facial skin aging in the UK biobank: a mendelian randomization study. Geroscience. 2021;43(3):1519–25.PubMedCrossRef
22.
go back to reference Jiang L, Zheng Z, Fang H, et al. A generalized linear mixed model association tool for biobank-scale data. Nat Genet. 2021;53(11):1616–21.PubMedCrossRef Jiang L, Zheng Z, Fang H, et al. A generalized linear mixed model association tool for biobank-scale data. Nat Genet. 2021;53(11):1616–21.PubMedCrossRef
23.
go back to reference Sekula P, Del Greco MF, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. 2016;27(11):3253–65.PubMedPubMedCentralCrossRef Sekula P, Del Greco MF, Pattaro C, et al. Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol. 2016;27(11):3253–65.PubMedPubMedCentralCrossRef
24.
go back to reference Hartwig FP, Borges MC, Horta BL, et al. Inflammatory biomarkers and risk of schizophrenia: a 2-sample mendelian randomization study. JAMA Psychiat. 2017;74(12):1226–33.CrossRef Hartwig FP, Borges MC, Horta BL, et al. Inflammatory biomarkers and risk of schizophrenia: a 2-sample mendelian randomization study. JAMA Psychiat. 2017;74(12):1226–33.CrossRef
25.
go back to reference Burgess S, Scott RA, Timpson NJ, et al. Using published data in mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.PubMedPubMedCentralCrossRef Burgess S, Scott RA, Timpson NJ, et al. Using published data in mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.PubMedPubMedCentralCrossRef
26.
go back to reference Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.PubMedPubMedCentralCrossRef
27.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentralCrossRef
28.
go back to reference Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentralCrossRef Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentralCrossRef
30.
32.
go back to reference Wang HY, Chang SC, Lin WY, et al. Machine learning-based method for obesity risk evaluation using single-nucleotide polymorphisms derived from next-generation sequencing. J Comput Biol. 2018;25(12):1347–60.PubMedCrossRef Wang HY, Chang SC, Lin WY, et al. Machine learning-based method for obesity risk evaluation using single-nucleotide polymorphisms derived from next-generation sequencing. J Comput Biol. 2018;25(12):1347–60.PubMedCrossRef
33.
go back to reference Zou X, Wang L, Xiao L, et al. Deciphering the irregular risk of stroke increased by obesity classes: a stratified mendelian randomization study. Front Endocrinol. 2021;12: 750999.CrossRef Zou X, Wang L, Xiao L, et al. Deciphering the irregular risk of stroke increased by obesity classes: a stratified mendelian randomization study. Front Endocrinol. 2021;12: 750999.CrossRef
34.
go back to reference Bell CG, Gao F, Yuan W, et al. Obligatory and facilitative allelic variation in the DNA methylome within common disease-associated loci. Nat Commun. 2018;9(1):8.PubMedPubMedCentralCrossRef Bell CG, Gao F, Yuan W, et al. Obligatory and facilitative allelic variation in the DNA methylome within common disease-associated loci. Nat Commun. 2018;9(1):8.PubMedPubMedCentralCrossRef
36.
go back to reference Nanda V, Gutman B, Bar E, et al. Quantitative analysis of 3-dimensional facial soft tissue photographic images: technical methods and clinical application. Prog Orthod. 2015;16:21.PubMedPubMedCentralCrossRef Nanda V, Gutman B, Bar E, et al. Quantitative analysis of 3-dimensional facial soft tissue photographic images: technical methods and clinical application. Prog Orthod. 2015;16:21.PubMedPubMedCentralCrossRef
37.
go back to reference Dykiert D, Bates TC, Gow AJ, et al. Predicting mortality from human faces. Psychosom Med. 2012;74(6):560–6.PubMedCrossRef Dykiert D, Bates TC, Gow AJ, et al. Predicting mortality from human faces. Psychosom Med. 2012;74(6):560–6.PubMedCrossRef
38.
go back to reference Tomlinson DJ, Erskine RM, Morse CI, et al. The combined effects of obesity and ageing on skeletal muscle function and tendon properties in vivo in men. Endocrine. 2021;72(2):411–22.PubMedPubMedCentralCrossRef Tomlinson DJ, Erskine RM, Morse CI, et al. The combined effects of obesity and ageing on skeletal muscle function and tendon properties in vivo in men. Endocrine. 2021;72(2):411–22.PubMedPubMedCentralCrossRef
39.
go back to reference Rexbye H, Petersen I, Johansens M, et al. Influence of environmental factors on facial ageing. Age Ageing. 2006;35(2):110–5.PubMedCrossRef Rexbye H, Petersen I, Johansens M, et al. Influence of environmental factors on facial ageing. Age Ageing. 2006;35(2):110–5.PubMedCrossRef
40.
go back to reference Shook BA, Wasko RR, Mano O, et al. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair. Cell Stem Cell. 2020;26(6):880–95.PubMedPubMedCentralCrossRef Shook BA, Wasko RR, Mano O, et al. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair. Cell Stem Cell. 2020;26(6):880–95.PubMedPubMedCentralCrossRef
41.
go back to reference Crowley JS, Kream E, Fabi S, et al. Facial rejuvenation with fat grafting and fillers. Aesthet Surg J. 2021;41(Suppl 1):S31–8.PubMedCrossRef Crowley JS, Kream E, Fabi S, et al. Facial rejuvenation with fat grafting and fillers. Aesthet Surg J. 2021;41(Suppl 1):S31–8.PubMedCrossRef
42.
43.
go back to reference Yan B, Yang J, Zhao B, et al. Causal effect of visceral adipose tissue accumulation on the human longevity: a mendelian randomization study. Front Endocrinol. 2021;12: 722187.CrossRef Yan B, Yang J, Zhao B, et al. Causal effect of visceral adipose tissue accumulation on the human longevity: a mendelian randomization study. Front Endocrinol. 2021;12: 722187.CrossRef
44.
go back to reference Rogers NH, Landa A, Park S, et al. Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue. Aging Cell. 2012;11(6):1074–83.PubMedCrossRef Rogers NH, Landa A, Park S, et al. Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue. Aging Cell. 2012;11(6):1074–83.PubMedCrossRef
45.
go back to reference Marcangeli V, Youssef L, Dulac M, et al. Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults. J Cachexia Sarcopenia Muscle. 2022;13(3):1526–40.PubMedPubMedCentralCrossRef Marcangeli V, Youssef L, Dulac M, et al. Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults. J Cachexia Sarcopenia Muscle. 2022;13(3):1526–40.PubMedPubMedCentralCrossRef
47.
go back to reference Zhou Q, Wan Q, Jiang Y, et al. A landscape of murine long non-coding RNAs reveals the leading transcriptome alterations in adipose tissue during aging. Cell Rep. 2020;31(8): 107694.PubMedPubMedCentralCrossRef Zhou Q, Wan Q, Jiang Y, et al. A landscape of murine long non-coding RNAs reveals the leading transcriptome alterations in adipose tissue during aging. Cell Rep. 2020;31(8): 107694.PubMedPubMedCentralCrossRef
48.
go back to reference Trim WV, Walhin JP, Koumanov F, et al. Divergent immunometabolic changes in adipose tissue and skeletal muscle with ageing in healthy humans. J Physiol. 2022;600(4):921–47.PubMedCrossRef Trim WV, Walhin JP, Koumanov F, et al. Divergent immunometabolic changes in adipose tissue and skeletal muscle with ageing in healthy humans. J Physiol. 2022;600(4):921–47.PubMedCrossRef
49.
go back to reference Srivastava A, Barth E, Ermolaeva MA, et al. Tissue-specific gene expression changes are associated with aging in mice. Genom Proteom Bioinform. 2020;18(4):430–42.CrossRef Srivastava A, Barth E, Ermolaeva MA, et al. Tissue-specific gene expression changes are associated with aging in mice. Genom Proteom Bioinform. 2020;18(4):430–42.CrossRef
50.
go back to reference Millard LAC, Munafo MR, Tilling K, et al. MR-pheWAS with stratification and interaction: searching for the causal effects of smoking heaviness identified an effect on facial aging. PLoS Genet. 2019;15(10): e1008353.PubMedPubMedCentralCrossRef Millard LAC, Munafo MR, Tilling K, et al. MR-pheWAS with stratification and interaction: searching for the causal effects of smoking heaviness identified an effect on facial aging. PLoS Genet. 2019;15(10): e1008353.PubMedPubMedCentralCrossRef
51.
go back to reference Topiwala A, Taschler B, Ebmeier KP, et al. Alcohol consumption and telomere length: mendelian randomization clarifies alcohol’s effects. Mol Psychiatry. 2022;27(10):4001–8.PubMedPubMedCentralCrossRef Topiwala A, Taschler B, Ebmeier KP, et al. Alcohol consumption and telomere length: mendelian randomization clarifies alcohol’s effects. Mol Psychiatry. 2022;27(10):4001–8.PubMedPubMedCentralCrossRef
Metadata
Title
Association between adiposity and facial aging: results from a Mendelian randomization study
Authors
Meiqi Liu
Jingwei Feng
Publication date
01-12-2023
Publisher
BioMed Central
Keywords
Obesity
Obesity
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01236-x

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue