Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2021

Open Access 01-12-2021 | Research article

OASIS +: leveraging machine learning to improve the prognostic accuracy of OASIS severity score for predicting in-hospital mortality

Authors: Yasser EL-Manzalawy, Mostafa Abbas, Ian Hoaglund, Alvaro Ulloa Cerna, Thomas B. Morland, Christopher M. Haggerty, Eric S. Hall, Brandon K. Fornwalt

Published in: BMC Medical Informatics and Decision Making | Issue 1/2021

Login to get access

Abstract

Background

Severity scores assess the acuity of critical illness by penalizing for the deviation of physiologic measurements from normal and aggregating these penalties (also called “weights” or “subscores”) into a final score (or probability) for quantifying the severity of critical illness (or the likelihood of in-hospital mortality). Although these simple additive models are human readable and interpretable, their predictive performance needs to be further improved.

Methods

We present OASIS +, a variant of the Oxford Acute Severity of Illness Score (OASIS) in which an ensemble of 200 decision trees is used to predict in-hospital mortality based on the 10 same clinical variables in OASIS.

Results

Using a test set of 9566 admissions extracted from the MIMIC-III database, we show that OASIS + outperforms nine previously developed severity scoring methods (including OASIS) in predicting in-hospital mortality. Furthermore, our results show that the supervised learning algorithms considered in our experiments demonstrated higher predictive performance when trained using the observed clinical variables as opposed to OASIS subscores.

Conclusions

Our results suggest that there is room for improving the prognostic accuracy of the OASIS severity scores by replacing the simple linear additive scoring function with more sophisticated non-linear machine learning models such as RF and XGB.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bouch DC, Thompson JP. Severity scoring systems in the critically ill. Contin Educ Anaesth Crit Care Pain. 2008;8(5):181–5.CrossRef Bouch DC, Thompson JP. Severity scoring systems in the critically ill. Contin Educ Anaesth Crit Care Pain. 2008;8(5):181–5.CrossRef
2.
go back to reference Deliberato R, Ko S, Komorowski M, Armengol LHM, Frushicheva M, Raffa J, Johnson A, Celi L, Stone D. Severity of illness scores may misclassify critically ill obese patients. Crit Care Med. 2018;46(3):394.PubMedCrossRef Deliberato R, Ko S, Komorowski M, Armengol LHM, Frushicheva M, Raffa J, Johnson A, Celi L, Stone D. Severity of illness scores may misclassify critically ill obese patients. Crit Care Med. 2018;46(3):394.PubMedCrossRef
3.
go back to reference Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A. The APACHE III prognostic system: risk prediction of hospital mortality for critically III hospitalized adults. Chest. 1991;100(6):1619–36.PubMedCrossRef Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A. The APACHE III prognostic system: risk prediction of hospital mortality for critically III hospitalized adults. Chest. 1991;100(6):1619–36.PubMedCrossRef
4.
go back to reference Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981;9(8):591–7.PubMedCrossRef Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981;9(8):591–7.PubMedCrossRef
5.
go back to reference Wagner DP, Draper EA. Acute physiology and chronic health evaluation (APACHE II) and Medicare reimbursement. Health Care Financ Rev. 1984;1984(Suppl):91.PubMedCentral Wagner DP, Draper EA. Acute physiology and chronic health evaluation (APACHE II) and Medicare reimbursement. Health Care Financ Rev. 1984;1984(Suppl):91.PubMedCentral
6.
go back to reference Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34(5):1297–310.PubMedCrossRef Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34(5):1297–310.PubMedCrossRef
7.
go back to reference Le Gall J-R, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathieu D, Mercier P, Thomas R, Villers D. A simplified acute physiology score for ICU patients. Crit Care Med. 1984;12(11):975–7.PubMedCrossRef Le Gall J-R, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathieu D, Mercier P, Thomas R, Villers D. A simplified acute physiology score for ICU patients. Crit Care Med. 1984;12(11):975–7.PubMedCrossRef
8.
go back to reference Le Gall J-R, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.PubMedCrossRef Le Gall J-R, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–63.PubMedCrossRef
9.
go back to reference Metnitz PG, Moreno RP, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall J-R. SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 1: objectives, methods and cohort description. Intensive Care Med. 2005;31(10):1336–44.PubMedPubMedCentralCrossRef Metnitz PG, Moreno RP, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall J-R. SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 1: objectives, methods and cohort description. Intensive Care Med. 2005;31(10):1336–44.PubMedPubMedCentralCrossRef
10.
go back to reference Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall J-R. SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31(10):1345–55.PubMedPubMedCentralCrossRef Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall J-R. SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31(10):1345–55.PubMedPubMedCentralCrossRef
11.
go back to reference Le Gall J, Klar J, Lemeshow S. A new way to assess organ dysfunction in the intensive care unit. ICU scoring Group. JAMA. 1996;276(10):802–10.PubMedCrossRef Le Gall J, Klar J, Lemeshow S. A new way to assess organ dysfunction in the intensive care unit. ICU scoring Group. JAMA. 1996;276(10):802–10.PubMedCrossRef
12.
go back to reference Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101(6):1644–55.PubMedCrossRef Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101(6):1644–55.PubMedCrossRef
13.
go back to reference Vincent J-L, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart C, Suter P, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22(7):707–10.CrossRefPubMed Vincent J-L, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart C, Suter P, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22(7):707–10.CrossRefPubMed
14.
go back to reference Johnson AE, Kramer AA, Clifford GD. A new severity of illness scale using a subset of acute physiology and chronic health evaluation data elements shows comparable predictive accuracy. Crit Care Med. 2013;41(7):1711–8.PubMedCrossRef Johnson AE, Kramer AA, Clifford GD. A new severity of illness scale using a subset of acute physiology and chronic health evaluation data elements shows comparable predictive accuracy. Crit Care Med. 2013;41(7):1711–8.PubMedCrossRef
15.
go back to reference Le Gall J-R. The use of severity scores in the intensive care unit. Intensive Care Med. 2005;31(12):1618–23.PubMedCrossRef Le Gall J-R. The use of severity scores in the intensive care unit. Intensive Care Med. 2005;31(12):1618–23.PubMedCrossRef
16.
go back to reference Pirracchio R. Mortality prediction in the ICU based on MIMIC-II results from the super ICU learner algorithm (SICULA) project. In: Secondary analysis of electronic health records. Springer; 2016. p. 295–313. Pirracchio R. Mortality prediction in the ICU based on MIMIC-II results from the super ICU learner algorithm (SICULA) project. In: Secondary analysis of electronic health records. Springer; 2016. p. 295–313.
17.
go back to reference Awad A, Bader-El-Den M, McNicholas J, Briggs J. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Int J Med Inf. 2017;108:185–95.CrossRef Awad A, Bader-El-Den M, McNicholas J, Briggs J. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Int J Med Inf. 2017;108:185–95.CrossRef
18.
go back to reference Calvert J, Mao Q, Hoffman JL, Jay M, Desautels T, Mohamadlou H, Chettipally U, Das R. Using electronic health record collected clinical variables to predict medical intensive care unit mortality. Ann Med Surg. 2016;11:52–7.CrossRef Calvert J, Mao Q, Hoffman JL, Jay M, Desautels T, Mohamadlou H, Chettipally U, Das R. Using electronic health record collected clinical variables to predict medical intensive care unit mortality. Ann Med Surg. 2016;11:52–7.CrossRef
20.
go back to reference Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining: 2016; 2016. p. 785–794. Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining: 2016; 2016. p. 785–794.
21.
go back to reference Johnson AE, Pollard TJ, Shen L, Li-Wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3(1):1–9.CrossRef Johnson AE, Pollard TJ, Shen L, Li-Wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3(1):1–9.CrossRef
22.
go back to reference Shillan D, Sterne JA, Champneys A, Gibbison B. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Crit Care. 2019;23(1):1–11.CrossRef Shillan D, Sterne JA, Champneys A, Gibbison B. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Crit Care. 2019;23(1):1–11.CrossRef
24.
go back to reference Kong G, Lin K, Hu Y. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. BMC Med Inform Decis Mak. 2020;20(1):1–10.CrossRef Kong G, Lin K, Hu Y. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. BMC Med Inform Decis Mak. 2020;20(1):1–10.CrossRef
25.
go back to reference Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inf. 2019;125:55–61.CrossRef Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inf. 2019;125:55–61.CrossRef
26.
go back to reference Che Z, Purushotham S, Cho K, Sontag D, Liu Y. Recurrent neural networks for multivariate time series with missing values. Sci Rep. 2018;8(1):1–12.CrossRef Che Z, Purushotham S, Cho K, Sontag D, Liu Y. Recurrent neural networks for multivariate time series with missing values. Sci Rep. 2018;8(1):1–12.CrossRef
27.
go back to reference Zhang D, Yin C, Zeng J, Yuan X, Zhang P. Combining structured and unstructured data for predictive models: a deep learning approach. BMC Med Inform Decis Mak. 2020;20(1):1–11.CrossRef Zhang D, Yin C, Zeng J, Yuan X, Zhang P. Combining structured and unstructured data for predictive models: a deep learning approach. BMC Med Inform Decis Mak. 2020;20(1):1–11.CrossRef
28.
go back to reference Caicedo-Torres W, Gutierrez J. ISeeU: visually interpretable deep learning for mortality prediction inside the ICU. J Biomed Inf. 2019;98:103269.CrossRef Caicedo-Torres W, Gutierrez J. ISeeU: visually interpretable deep learning for mortality prediction inside the ICU. J Biomed Inf. 2019;98:103269.CrossRef
29.
go back to reference Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.PubMedPubMedCentralCrossRef Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.PubMedPubMedCentralCrossRef
30.
go back to reference Tang X, Du R-H, Wang R, Cao T-Z, Guan L-L, Yang C-Q, Zhu Q, Hu M, Li X-Y, Li Y. Comparison of hospitalized patients with ARDS caused by COVID-19 and H1N1. Chest. 2020;158(1):195–205.PubMedCrossRef Tang X, Du R-H, Wang R, Cao T-Z, Guan L-L, Yang C-Q, Zhu Q, Hu M, Li X-Y, Li Y. Comparison of hospitalized patients with ARDS caused by COVID-19 and H1N1. Chest. 2020;158(1):195–205.PubMedCrossRef
31.
go back to reference Llitjos JF, Leclerc M, Chochois C, Monsallier JM, Ramakers M, Auvray M, Merouani K. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(7):1743–6.PubMedCrossRef Llitjos JF, Leclerc M, Chochois C, Monsallier JM, Ramakers M, Auvray M, Merouani K. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(7):1743–6.PubMedCrossRef
32.
go back to reference Liu S, Yao N, Qiu Y, He C. Predictive performance of SOFA and qSOFA for in-hospital mortality in severe novel coronavirus disease. Am J Emerg Med. 2020;38(10):2074–80.PubMedPubMedCentralCrossRef Liu S, Yao N, Qiu Y, He C. Predictive performance of SOFA and qSOFA for in-hospital mortality in severe novel coronavirus disease. Am J Emerg Med. 2020;38(10):2074–80.PubMedPubMedCentralCrossRef
33.
go back to reference Raschke RA, Agarwal S, Rangan P, Heise CW, Curry SC. Discriminant accuracy of the SOFA score for determining the probable mortality of patients with COVID-19 pneumonia requiring mechanical ventilation. JAMA. 2021;325(14):1469–70.PubMedCrossRefPubMedCentral Raschke RA, Agarwal S, Rangan P, Heise CW, Curry SC. Discriminant accuracy of the SOFA score for determining the probable mortality of patients with COVID-19 pneumonia requiring mechanical ventilation. JAMA. 2021;325(14):1469–70.PubMedCrossRefPubMedCentral
34.
go back to reference Altschul DJ, Unda SR, Benton J, de la Garza RR, Cezayirli P, Mehler M, Eskandar EN. A novel severity score to predict inpatient mortality in COVID-19 patients. Sci Rep. 2020;10(1):1–8.CrossRef Altschul DJ, Unda SR, Benton J, de la Garza RR, Cezayirli P, Mehler M, Eskandar EN. A novel severity score to predict inpatient mortality in COVID-19 patients. Sci Rep. 2020;10(1):1–8.CrossRef
35.
go back to reference Goodacre S, Thomas B, Sutton L, Burnsall M, Lee E, Bradburn M, Loban A, Waterhouse S, Simmonds R, Biggs K. Derivation and validation of a clinical severity score for acutely ill adults with suspected COVID-19: the PRIEST observational cohort study. PLoS ONE. 2021;16(1):e0245840.PubMedPubMedCentralCrossRef Goodacre S, Thomas B, Sutton L, Burnsall M, Lee E, Bradburn M, Loban A, Waterhouse S, Simmonds R, Biggs K. Derivation and validation of a clinical severity score for acutely ill adults with suspected COVID-19: the PRIEST observational cohort study. PLoS ONE. 2021;16(1):e0245840.PubMedPubMedCentralCrossRef
36.
go back to reference Alfaro-Martínez J-J, Calbo Mayo J, Molina Cifuentes M, Abizanda Soler P, Guillén Martínez S, Rodríguez Marín Y, Esteban Sirvent A, Nuñez Ares A, Alcaraz Barcelona M, Paterna Mellinas G. Generation and validation of in-hospital mortality prediction score in COVID-19 patients: Alba-score. Curr Med Res Opin. 2021;37(5):719–26.PubMedCrossRef Alfaro-Martínez J-J, Calbo Mayo J, Molina Cifuentes M, Abizanda Soler P, Guillén Martínez S, Rodríguez Marín Y, Esteban Sirvent A, Nuñez Ares A, Alcaraz Barcelona M, Paterna Mellinas G. Generation and validation of in-hospital mortality prediction score in COVID-19 patients: Alba-score. Curr Med Res Opin. 2021;37(5):719–26.PubMedCrossRef
37.
go back to reference Poon AI, Sung JJ. Opening the black box of AI-Medicine. J Gastroenterol Hepatol. 2021;36(3):581–4.PubMedCrossRef Poon AI, Sung JJ. Opening the black box of AI-Medicine. J Gastroenterol Hepatol. 2021;36(3):581–4.PubMedCrossRef
38.
go back to reference Wainberg M, Merico D, Delong A, Frey BJ. Deep learning in biomedicine. Nat Biotechnol. 2018;36(9):829–38.PubMedCrossRef Wainberg M, Merico D, Delong A, Frey BJ. Deep learning in biomedicine. Nat Biotechnol. 2018;36(9):829–38.PubMedCrossRef
39.
go back to reference Boettiger C. An introduction to Docker for reproducible research. ACM SIGOPS Oper Syst Rev. 2015;49(1):71–9.CrossRef Boettiger C. An introduction to Docker for reproducible research. ACM SIGOPS Oper Syst Rev. 2015;49(1):71–9.CrossRef
40.
go back to reference Bennett CE, Wright RS, Jentzer J, Gajic O, Murphree DH, Murphy JG, Mankad SV, Wiley BM, Bell MR, Barsness GW. Severity of illness assessment with application of the APACHE IV predicted mortality and outcome trends analysis in an academic cardiac intensive care unit. J Crit Care. 2019;50:242–6.PubMedCrossRef Bennett CE, Wright RS, Jentzer J, Gajic O, Murphree DH, Murphy JG, Mankad SV, Wiley BM, Bell MR, Barsness GW. Severity of illness assessment with application of the APACHE IV predicted mortality and outcome trends analysis in an academic cardiac intensive care unit. J Crit Care. 2019;50:242–6.PubMedCrossRef
41.
go back to reference Johnson AE, Stone DJ, Celi LA, Pollard TJ. The MIMIC Code Repository: enabling reproducibility in critical care research. J Am Med Inform Assoc. 2018;25(1):32–9.PubMedCrossRef Johnson AE, Stone DJ, Celi LA, Pollard TJ. The MIMIC Code Repository: enabling reproducibility in critical care research. J Am Med Inform Assoc. 2018;25(1):32–9.PubMedCrossRef
42.
go back to reference Douglas K, Douglas S. PostgreSQL: a comprehensive guide to building, programming, and administering PostgresSQL databases: SAMS Publishing; 2003. Douglas K, Douglas S. PostgreSQL: a comprehensive guide to building, programming, and administering PostgresSQL databases: SAMS Publishing; 2003.
43.
go back to reference Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. J Roy Stat Soc Ser C (Appl Stat). 1992;41(1):191–201. Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. J Roy Stat Soc Ser C (Appl Stat). 1992;41(1):191–201.
44.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
45.
go back to reference Team RC: R: a language and environment for statistical computing. 2013. Team RC: R: a language and environment for statistical computing. 2013.
46.
go back to reference Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000;16(5):412–24.PubMedCrossRef Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000;16(5):412–24.PubMedCrossRef
47.
go back to reference Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997;30(7):1145–59.CrossRef Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997;30(7):1145–59.CrossRef
48.
go back to reference Niculescu-Mizil A, Caruana R. Predicting good probabilities with supervised learning. In: Proceedings of the 22nd international conference on machine learning: 2005; 2005. p. 625–632. Niculescu-Mizil A, Caruana R. Predicting good probabilities with supervised learning. In: Proceedings of the 22nd international conference on machine learning: 2005; 2005. p. 625–632.
49.
go back to reference Walsh CG, Sharman K, Hripcsak G. Beyond discrimination: a comparison of calibration methods and clinical usefulness of predictive models of readmission risk. J Biomed Inform. 2017;76:9–18.PubMedPubMedCentralCrossRef Walsh CG, Sharman K, Hripcsak G. Beyond discrimination: a comparison of calibration methods and clinical usefulness of predictive models of readmission risk. J Biomed Inform. 2017;76:9–18.PubMedPubMedCentralCrossRef
50.
go back to reference Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36(1):8–27.PubMedCrossRef Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36(1):8–27.PubMedCrossRef
52.
go back to reference Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem. 2008;54(1):17–23.PubMedCrossRef Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem. 2008;54(1):17–23.PubMedCrossRef
53.
go back to reference Silva I, Moody G, Scott DJ, Celi LA, Mark RG. Predicting in-hospital mortality of ICU patients: the physionet/computing in cardiology challenge 2012. In: 2012 Computing in Cardiology: 2012: IEEE; 2012: p. 245–248. Silva I, Moody G, Scott DJ, Celi LA, Mark RG. Predicting in-hospital mortality of ICU patients: the physionet/computing in cardiology challenge 2012. In: 2012 Computing in Cardiology: 2012: IEEE; 2012: p. 245–248.
54.
go back to reference Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explaining black box models. ACM Comput Surv (CSUR). 2018;51(5):1–42.CrossRef Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explaining black box models. ACM Comput Surv (CSUR). 2018;51(5):1–42.CrossRef
55.
go back to reference Wang J, Fujimaki R, Motohashi Y. Trading interpretability for accuracy: Oblique treed sparse additive models. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining: 2015; 2015. p. 1245–1254. Wang J, Fujimaki R, Motohashi Y. Trading interpretability for accuracy: Oblique treed sparse additive models. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining: 2015; 2015. p. 1245–1254.
56.
go back to reference Vellido A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput Appl. 2019;32:1–15. Vellido A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput Appl. 2019;32:1–15.
57.
go back to reference Bhatt U, Ravikumar P. Building human-machine trust via interpretability. In: Proceedings of the AAAI conference on artificial intelligence: 2019; 2019: p. 9919–9920. Bhatt U, Ravikumar P. Building human-machine trust via interpretability. In: Proceedings of the AAAI conference on artificial intelligence: 2019; 2019: p. 9919–9920.
58.
go back to reference Cadrin-Tourigny J, Shohoudi A, Roy D, Talajic M, Tadros R, Mondésert B, Dyrda K, Rivard L, Andrade JG, Macle L. Decreased mortality with beta-blockers in patients with heart failure and coexisting atrial fibrillation: an AF-CHF substudy. JACC Heart Fail. 2017;5(2):99–106.PubMedCrossRef Cadrin-Tourigny J, Shohoudi A, Roy D, Talajic M, Tadros R, Mondésert B, Dyrda K, Rivard L, Andrade JG, Macle L. Decreased mortality with beta-blockers in patients with heart failure and coexisting atrial fibrillation: an AF-CHF substudy. JACC Heart Fail. 2017;5(2):99–106.PubMedCrossRef
60.
go back to reference Kotecha D, Flather MD, Altman DG, Holmes J, Rosano G, Wikstrand J, Packer M, Coats AJ, Manzano L, Boehm M. Heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. J Am Coll Cardiol. 2017;69(24):2885–96.PubMedCrossRef Kotecha D, Flather MD, Altman DG, Holmes J, Rosano G, Wikstrand J, Packer M, Coats AJ, Manzano L, Boehm M. Heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. J Am Coll Cardiol. 2017;69(24):2885–96.PubMedCrossRef
Metadata
Title
OASIS +: leveraging machine learning to improve the prognostic accuracy of OASIS severity score for predicting in-hospital mortality
Authors
Yasser EL-Manzalawy
Mostafa Abbas
Ian Hoaglund
Alvaro Ulloa Cerna
Thomas B. Morland
Christopher M. Haggerty
Eric S. Hall
Brandon K. Fornwalt
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2021
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-021-01517-7

Other articles of this Issue 1/2021

BMC Medical Informatics and Decision Making 1/2021 Go to the issue