Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2020

Open Access 01-12-2020 | Septicemia | Research article

Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU

Authors: Guilan Kong, Ke Lin, Yonghua Hu

Published in: BMC Medical Informatics and Decision Making | Issue 1/2020

Login to get access

Abstract

Background

Early and accurate identification of sepsis patients with high risk of in-hospital death can help physicians in intensive care units (ICUs) make optimal clinical decisions. This study aimed to develop machine learning-based tools to predict the risk of hospital death of patients with sepsis in ICUs.

Methods

The source database used for model development and validation is the medical information mart for intensive care (MIMIC) III. We identified adult sepsis patients using the new sepsis definition Sepsis-3. A total of 86 predictor variables consisting of demographics, laboratory tests and comorbidities were used. We employed the least absolute shrinkage and selection operator (LASSO), random forest (RF), gradient boosting machine (GBM) and the traditional logistic regression (LR) method to develop prediction models. In addition, the prediction performance of the four developed models was evaluated and compared with that of an existent scoring tool – simplified acute physiology score (SAPS) II – using five different performance measures: the area under the receiver operating characteristic curve (AUROC), Brier score, sensitivity, specificity and calibration plot.

Results

The records of 16,688 sepsis patients in MIMIC III were used for model training and test. Amongst them, 2949 (17.7%) patients had in-hospital death. The average AUROCs of the LASSO, RF, GBM, LR and SAPS II models were 0.829, 0.829, 0.845, 0.833 and 0.77, respectively. The Brier scores of the LASSO, RF, GBM, LR and SAPS II models were 0.108, 0.109, 0.104, 0.107 and 0.146, respectively. The calibration plots showed that the GBM, LASSO and LR models had good calibration; the RF model underestimated high-risk patients; and SAPS II had the poorest calibration.

Conclusion

The machine learning-based models developed in this study had good prediction performance. Amongst them, the GBM model showed the best performance in predicting the risk of in-hospital death. It has the potential to assist physicians in the ICU to perform appropriate clinical interventions for critically ill sepsis patients and thus may help improve the prognoses of sepsis patients in the ICU.
Literature
1.
go back to reference Singer M, Deutschman CS, Seymour CW, Shankarhari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J, Coopersmith CM. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef Singer M, Deutschman CS, Seymour CW, Shankarhari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J, Coopersmith CM. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef
3.
go back to reference Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–72.PubMedCrossRef Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–72.PubMedCrossRef
4.
go back to reference Ou L, Chen J, Hillman K, Flabouris A, Parr M, Assareh H, Bellomo R. The impact of post-operative sepsis on mortality after hospital discharge among elective surgical patients: a population-based cohort study. Crit Care. 2017;21(1):34.PubMedPubMedCentralCrossRef Ou L, Chen J, Hillman K, Flabouris A, Parr M, Assareh H, Bellomo R. The impact of post-operative sepsis on mortality after hospital discharge among elective surgical patients: a population-based cohort study. Crit Care. 2017;21(1):34.PubMedPubMedCentralCrossRef
5.
go back to reference Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):1546–54.PubMedCrossRef Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):1546–54.PubMedCrossRef
6.
go back to reference Sheetrit E, Nissim N, Klimov D, Fuchs L, Elovici Y, Shahar Y. Temporal pattern discovery for accurate sepsis diagnosis in ICU patients. arXiv:170901720; 2017. Sheetrit E, Nissim N, Klimov D, Fuchs L, Elovici Y, Shahar Y. Temporal pattern discovery for accurate sepsis diagnosis in ICU patients. arXiv:170901720; 2017.
7.
go back to reference Dremsizov T, Kellum J, Angus D. Incidence and definition of sepsis and associated organ dysfunction. Int J Artif Organs. 2004;27(5):352–9.PubMedCrossRef Dremsizov T, Kellum J, Angus D. Incidence and definition of sepsis and associated organ dysfunction. Int J Artif Organs. 2004;27(5):352–9.PubMedCrossRef
8.
go back to reference Andaluz-Ojeda D, Iglesias V, Bobillo F, Almansa R, Rico L, Gandía F, Loma AM, Nieto C, Diego R, Ramos E. Early natural killer cell counts in blood predict mortality in severe sepsis. Crit Care. 2011;15(5):R243.PubMedPubMedCentralCrossRef Andaluz-Ojeda D, Iglesias V, Bobillo F, Almansa R, Rico L, Gandía F, Loma AM, Nieto C, Diego R, Ramos E. Early natural killer cell counts in blood predict mortality in severe sepsis. Crit Care. 2011;15(5):R243.PubMedPubMedCentralCrossRef
9.
go back to reference Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RMH, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101(6):1644–55.PubMedCrossRef Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RMH, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101(6):1644–55.PubMedCrossRef
10.
go back to reference Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent J-L, Ramsay G, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international Sepsis definitions conference. Intensive Care Med. 2003;29(4):530–8.PubMedCrossRef Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent J-L, Ramsay G, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international Sepsis definitions conference. Intensive Care Med. 2003;29(4):530–8.PubMedCrossRef
11.
go back to reference Vincent J-L, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart C, Suter P, Thijs L. The SOFA (Sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.PubMedCrossRef Vincent J-L, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart C, Suter P, Thijs L. The SOFA (Sepsis-related organ failure assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.PubMedCrossRef
12.
go back to reference Le Gall J-R, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/north American multicenter study. JAMA. 1993;270(24):2957–63.PubMedCrossRef Le Gall J-R, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/north American multicenter study. JAMA. 1993;270(24):2957–63.PubMedCrossRef
13.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.PubMedCrossRef Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.PubMedCrossRef
14.
go back to reference Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A. The APACHE III prognostic system: risk prediction of hospital mortality for critically III hospitalized adults. Chest. 1991;100(6):1619–36.PubMedCrossRef Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A. The APACHE III prognostic system: risk prediction of hospital mortality for critically III hospitalized adults. Chest. 1991;100(6):1619–36.PubMedCrossRef
15.
go back to reference Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34(5):1297–310.PubMedCrossRef Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34(5):1297–310.PubMedCrossRef
16.
go back to reference Zygun DA, Laupland KB, Fick GH, Sandham JD, Doig CJ. Limited ability of SOFA and MOD scores to discriminate outcome: a prospective evaluation in 1,436 patients. Can J Anesth. 2005;52(3):302–8.PubMedCrossRef Zygun DA, Laupland KB, Fick GH, Sandham JD, Doig CJ. Limited ability of SOFA and MOD scores to discriminate outcome: a prospective evaluation in 1,436 patients. Can J Anesth. 2005;52(3):302–8.PubMedCrossRef
17.
go back to reference Khwannimit B, Bhurayanontachai R, Vattanavanit V. Validation of the sepsis severity score compared with updated severity scores in predicting hospital mortality in sepsis patients. Shock. 2017;47(6):720–5.PubMedCrossRef Khwannimit B, Bhurayanontachai R, Vattanavanit V. Validation of the sepsis severity score compared with updated severity scores in predicting hospital mortality in sepsis patients. Shock. 2017;47(6):720–5.PubMedCrossRef
18.
go back to reference Osborn TM, Phillips G, Lemeshow S, Townsend S, Schorr CA, Levy MM, Dellinger RP. Sepsis severity score: an internationally derived scoring system from the surviving sepsis campaign database. Crit Care Med. 2014;42(9):1969–76.PubMedCrossRef Osborn TM, Phillips G, Lemeshow S, Townsend S, Schorr CA, Levy MM, Dellinger RP. Sepsis severity score: an internationally derived scoring system from the surviving sepsis campaign database. Crit Care Med. 2014;42(9):1969–76.PubMedCrossRef
19.
go back to reference Masson S, Caironi P, Spanuth E, Thomae R, Panigada M, Sangiorgi G, Fumagalli R, Mauri T, Isgrò S, Fanizza C. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the albumin Italian outcome Sepsis trial. Crit Care. 2014;18(1):R6.PubMedPubMedCentralCrossRef Masson S, Caironi P, Spanuth E, Thomae R, Panigada M, Sangiorgi G, Fumagalli R, Mauri T, Isgrò S, Fanizza C. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the albumin Italian outcome Sepsis trial. Crit Care. 2014;18(1):R6.PubMedPubMedCentralCrossRef
20.
go back to reference Adrie C, Francais A, Alvarez-Gonzalez A, Mounier R, Azoulay E, Zahar J-R, Clec'h C, Goldgran-Toledano D, Hammer L, Descorps-Declere A. Model for predicting short-term mortality of severe sepsis. Crit Care. 2009;13(3):R72.PubMedPubMedCentralCrossRef Adrie C, Francais A, Alvarez-Gonzalez A, Mounier R, Azoulay E, Zahar J-R, Clec'h C, Goldgran-Toledano D, Hammer L, Descorps-Declere A. Model for predicting short-term mortality of severe sepsis. Crit Care. 2009;13(3):R72.PubMedPubMedCentralCrossRef
21.
go back to reference Ripoll VJR, Vellido A, Romero E, Ruiz-Rodríguez JC. Sepsis mortality prediction with the quotient basis kernel. Artif Intell Med. 2014;61(1):45–52.CrossRef Ripoll VJR, Vellido A, Romero E, Ruiz-Rodríguez JC. Sepsis mortality prediction with the quotient basis kernel. Artif Intell Med. 2014;61(1):45–52.CrossRef
22.
go back to reference Fang W-F, Douglas IS, Chen Y-M, Lin C-Y, Kao H-C, Fang Y-T, Huang C-H, Chang Y-T, Huang K-T, Wang Y-H. Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients. PLoS One. 2017;12(10):e0187088.PubMedPubMedCentralCrossRef Fang W-F, Douglas IS, Chen Y-M, Lin C-Y, Kao H-C, Fang Y-T, Huang C-H, Chang Y-T, Huang K-T, Wang Y-H. Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients. PLoS One. 2017;12(10):e0187088.PubMedPubMedCentralCrossRef
23.
go back to reference Xie Y, Yabes J, Parker R, Clermont G. 1485: using clinical features and biomarkers to predict 60-day mortality of sepsis patients. Crit Care Med. 2018;46(1):726.CrossRef Xie Y, Yabes J, Parker R, Clermont G. 1485: using clinical features and biomarkers to predict 60-day mortality of sepsis patients. Crit Care Med. 2018;46(1):726.CrossRef
24.
go back to reference Richards G, Rayward-Smith VJ, Sönksen P, Carey S, Weng C. Data mining for indicators of early mortality in a database of clinical records. Artif Intell Med. 2001;22(3):215–31.PubMedCrossRef Richards G, Rayward-Smith VJ, Sönksen P, Carey S, Weng C. Data mining for indicators of early mortality in a database of clinical records. Artif Intell Med. 2001;22(3):215–31.PubMedCrossRef
25.
go back to reference Mahdi MA, Al_Janabi S. A novel software to improve healthcare base on predictive analytics and mobile services for cloud data centers, vol. 2020. Cham: Springer International Publishing; 2020. p. 320–39. Mahdi MA, Al_Janabi S. A novel software to improve healthcare base on predictive analytics and mobile services for cloud data centers, vol. 2020. Cham: Springer International Publishing; 2020. p. 320–39.
26.
go back to reference Al-Janabi S, Mahdi MA. Evaluation prediction techniques to achievement an optimal biomedical analysis. Int J Grid Utility Comput. 2019;10(5):512–27.CrossRef Al-Janabi S, Mahdi MA. Evaluation prediction techniques to achievement an optimal biomedical analysis. Int J Grid Utility Comput. 2019;10(5):512–27.CrossRef
28.
go back to reference Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2000;29(5):1189–232. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2000;29(5):1189–232.
29.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 1996;58(1):267–88. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 1996;58(1):267–88.
30.
go back to reference Gurm HS, Kooiman J, LaLonde T, Grines C, Share D, Seth M. A random forest based risk model for reliable and accurate prediction of receipt of transfusion in patients undergoing percutaneous coronary intervention. PLoS One. 2014;9(5):e96385.PubMedPubMedCentralCrossRef Gurm HS, Kooiman J, LaLonde T, Grines C, Share D, Seth M. A random forest based risk model for reliable and accurate prediction of receipt of transfusion in patients undergoing percutaneous coronary intervention. PLoS One. 2014;9(5):e96385.PubMedPubMedCentralCrossRef
31.
go back to reference Van Poucke S, Zhang Z, Schmitz M, Vukicevic M, Laenen MV, Celi LA, De Deyne C. Scalable predictive analysis in critically ill patients using a visual open data analysis platform. PLoS One. 2016;11(1):e0145791.PubMedPubMedCentralCrossRef Van Poucke S, Zhang Z, Schmitz M, Vukicevic M, Laenen MV, Celi LA, De Deyne C. Scalable predictive analysis in critically ill patients using a visual open data analysis platform. PLoS One. 2016;11(1):e0145791.PubMedPubMedCentralCrossRef
32.
go back to reference Zhang Z, Hong Y. Development of a novel score for the prediction of hospital mortality in patients with severe sepsis: the use of electronic healthcare records with LASSO regression. Oncotarget. 2017;8(30):49637–45.PubMedPubMedCentralCrossRef Zhang Z, Hong Y. Development of a novel score for the prediction of hospital mortality in patients with severe sepsis: the use of electronic healthcare records with LASSO regression. Oncotarget. 2017;8(30):49637–45.PubMedPubMedCentralCrossRef
33.
go back to reference Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035.PubMedPubMedCentralCrossRef Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035.PubMedPubMedCentralCrossRef
34.
go back to reference Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, Hall MK. Prediction of in-hospital mortality in emergency department patients with Sepsis: a local big data-driven, Machine Learning Approach. Acad Emerg Med. 2016;23(3):269–78.PubMedPubMedCentralCrossRef Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, Hall MK. Prediction of in-hospital mortality in emergency department patients with Sepsis: a local big data-driven, Machine Learning Approach. Acad Emerg Med. 2016;23(3):269–78.PubMedPubMedCentralCrossRef
35.
go back to reference Pregernig A, Müller M, Held U, Beck-Schimmer B. Prediction of mortality in adult patients with sepsis using six biomarkers: a systematic review and meta-analysis. Ann Intensive Care. 2019;9(1):125.PubMedPubMedCentralCrossRef Pregernig A, Müller M, Held U, Beck-Schimmer B. Prediction of mortality in adult patients with sepsis using six biomarkers: a systematic review and meta-analysis. Ann Intensive Care. 2019;9(1):125.PubMedPubMedCentralCrossRef
36.
go back to reference Baxt WG. Complexity, chaos and human physiology: the justification for non-linear neural computational analysis. Cancer Lett. 1994;77(2–3):85–93.PubMedCrossRef Baxt WG. Complexity, chaos and human physiology: the justification for non-linear neural computational analysis. Cancer Lett. 1994;77(2–3):85–93.PubMedCrossRef
37.
go back to reference Scott H, Colborn K. Machine learning for predicting sepsis in-hospital mortality: an important start. Acad Emerg Med. 2016;23(11):1307.PubMedCrossRef Scott H, Colborn K. Machine learning for predicting sepsis in-hospital mortality: an important start. Acad Emerg Med. 2016;23(11):1307.PubMedCrossRef
38.
go back to reference Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.PubMedCrossRef Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.PubMedCrossRef
39.
go back to reference Ding X, Gellad ZF, Mather C, Barth P, Poon EG, Newman M, Goldstein BA. Designing risk prediction models for ambulatory no-shows across different specialties and clinics. J Am Med Inform Assoc. 2018;25(8):924–30.PubMedPubMedCentralCrossRef Ding X, Gellad ZF, Mather C, Barth P, Poon EG, Newman M, Goldstein BA. Designing risk prediction models for ambulatory no-shows across different specialties and clinics. J Am Med Inform Assoc. 2018;25(8):924–30.PubMedPubMedCentralCrossRef
40.
go back to reference Venables WN, Ripley BD. Tree-based methods. In: Modern applied statistics with S. New York: Springer-Verlag; 2002. p. 251–69. Venables WN, Ripley BD. Tree-based methods. In: Modern applied statistics with S. New York: Springer-Verlag; 2002. p. 251–69.
41.
go back to reference Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inform. 2019;125:55–61.PubMedCrossRef Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Int J Med Inform. 2019;125:55–61.PubMedCrossRef
42.
go back to reference Lee H-C, Yoon H-K, Nam K, Cho Y, Kim T, Kim W, Bahk J-H. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med. 2018;7(10):322.PubMedCentralCrossRef Lee H-C, Yoon H-K, Nam K, Cho Y, Kim T, Kim W, Bahk J-H. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med. 2018;7(10):322.PubMedCentralCrossRef
43.
go back to reference Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. New York: Springer-Verlag; 2001.CrossRef Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. New York: Springer-Verlag; 2001.CrossRef
44.
go back to reference Roulston MS. Performance targets and the brier score. Meteorol Appl. 2007;14(2):185–94.CrossRef Roulston MS. Performance targets and the brier score. Meteorol Appl. 2007;14(2):185–94.CrossRef
45.
go back to reference Jiménez-Valverde A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob Ecol Biogeogr. 2012;21(4):498–507.CrossRef Jiménez-Valverde A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob Ecol Biogeogr. 2012;21(4):498–507.CrossRef
46.
go back to reference Dietterich TG. Ensemble methods in machine learning, vol. 2000. Berlin: Springer Berlin Heidelberg; 2000. p. 1–15. Dietterich TG. Ensemble methods in machine learning, vol. 2000. Berlin: Springer Berlin Heidelberg; 2000. p. 1–15.
47.
go back to reference Fang X, Wang Z, Yang J, Cai H, Yao Z, Li K, Fang Q. Clinical evaluation of Sepsis-1 and Sepsis-3 in the ICU. Chest. 2018;153(5):1169–76.PubMedCrossRef Fang X, Wang Z, Yang J, Cai H, Yao Z, Li K, Fang Q. Clinical evaluation of Sepsis-1 and Sepsis-3 in the ICU. Chest. 2018;153(5):1169–76.PubMedCrossRef
48.
go back to reference Newgard CD, Lewis RJ, Jolly BT. Use of out-of-hospital variables to predict severity of injury in pediatric patients involved in motor vehicle crashes. Ann Emerg Med. 2002;39(5):481–91.PubMedCrossRef Newgard CD, Lewis RJ, Jolly BT. Use of out-of-hospital variables to predict severity of injury in pediatric patients involved in motor vehicle crashes. Ann Emerg Med. 2002;39(5):481–91.PubMedCrossRef
49.
go back to reference Johnson AE, Mark RG. Real-time mortality prediction in the Intensive Care Unit. In: AMIA Annual Symposium Proceedings: 2017. Washington, D.C.: American Medical Informatics Association; 2017. p. 994. Johnson AE, Mark RG. Real-time mortality prediction in the Intensive Care Unit. In: AMIA Annual Symposium Proceedings: 2017. Washington, D.C.: American Medical Informatics Association; 2017. p. 994.
50.
go back to reference Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms. In: ICML'06: Proceedings of The 23rd International Conference on Machine Learning, vol. 2006. New York: Association for Computing Machinery; 2006. p. 161–8.CrossRef Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms. In: ICML'06: Proceedings of The 23rd International Conference on Machine Learning, vol. 2006. New York: Association for Computing Machinery; 2006. p. 161–8.CrossRef
Metadata
Title
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU
Authors
Guilan Kong
Ke Lin
Yonghua Hu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2020
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-020-01271-2

Other articles of this Issue 1/2020

BMC Medical Informatics and Decision Making 1/2020 Go to the issue