Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2022

Open Access 01-12-2022 | NSCLC | Letter to the Editor

BCL-XL PROTAC degrader DT2216 synergizes with sotorasib in preclinical models of KRASG12C-mutated cancers

Authors: Sajid Khan, Janet Wiegand, Peiyi Zhang, Wanyi Hu, Dinesh Thummuri, Vivekananda Budamagunta, Nan Hua, Lingtao Jin, Carmen J. Allegra, Scott E. Kopetz, Maria Zajac-Kaye, Frederic J. Kaye, Guangrong Zheng, Daohong Zhou

Published in: Journal of Hematology & Oncology | Issue 1/2022

Login to get access

Abstract

KRAS mutations are the most common oncogenic drivers. Sotorasib (AMG510), a covalent inhibitor of KRASG12C, was recently approved for the treatment of KRASG12C-mutated non-small cell lung cancer (NSCLC). However, the efficacy of sotorasib and other KRASG12C inhibitors is limited by intrinsic resistance in colorectal cancer (CRC) and by the rapid emergence of acquired resistance in all treated tumors. Therefore, there is an urgent need to develop novel combination therapies to overcome sotorasib resistance and to maximize its efficacy. We assessed the effect of sotorasib alone or in combination with DT2216 (a clinical-stage BCL-XL proteolysis targeting chimera [PROTAC]) on KRASG12C-mutated NSCLC, CRC and pancreatic cancer (PC) cell lines using MTS cell viability, colony formation and Annexin-V/PI apoptosis assays. Furthermore, the therapeutic efficacy of sotorasib alone and in combination with DT2216 was evaluated in vivo using different tumor xenograft models. We observed heterogeneous responses to sotorasib alone, whereas its combination with DT2216 strongly inhibited viability of KRASG12C tumor cell lines that partially responded to sotorasib treatment. Mechanistically, sotorasib treatment led to stabilization of BIM and co-treatment with DT2216 inhibited sotorasib-induced BCL-XL/BIM interaction leading to enhanced apoptosis in KRASG12C tumor cell lines. Furthermore, DT2216 co-treatment significantly improved the antitumor efficacy of sotorasib in vivo. Collectively, our findings suggest that due to cytostatic activity, the efficacy of sotorasib is limited, and therefore, its combination with a pro-apoptotic agent, i.e., DT2216, shows synergistic responses and can potentially overcome resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: Is the undruggable drugged? Nat Rev Drug Discov. 2020;19(8):533–52.CrossRef Moore AR, Rosenberg SC, McCormick F, Malek S. RAS-targeted therapies: Is the undruggable drugged? Nat Rev Drug Discov. 2020;19(8):533–52.CrossRef
2.
go back to reference Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575(7781):217–23.CrossRef Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575(7781):217–23.CrossRef
3.
go back to reference Ryan MB, Fece de la Cruz F, Phat S, Myers DT, Wong E, Shahzade HA, et al. Vertical pathway inhibition overcomes adaptive feedback resistance to KRAS. Clin Cancer Res. 2020;26(7):1633–43. Ryan MB, Fece de la Cruz F, Phat S, Myers DT, Wong E, Shahzade HA, et al. Vertical pathway inhibition overcomes adaptive feedback resistance to KRAS. Clin Cancer Res. 2020;26(7):1633–43.
4.
go back to reference Misale S, Fatherree JP, Cortez E, Li C, Bilton S, Timonina D, et al. KRAS G12C NSCLC models are sensitive to direct targeting of KRAS in combination with PI3K inhibition. Clin Cancer Res. 2019;25(2):796–807.CrossRef Misale S, Fatherree JP, Cortez E, Li C, Bilton S, Timonina D, et al. KRAS G12C NSCLC models are sensitive to direct targeting of KRAS in combination with PI3K inhibition. Clin Cancer Res. 2019;25(2):796–807.CrossRef
5.
go back to reference Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128(6):1173–86.CrossRef Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128(6):1173–86.CrossRef
6.
go back to reference Zhang H, Nimmer PM, Tahir SK, Chen J, Fryer RM, Hahn KR, et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 2007;14(5):943–51.CrossRef Zhang H, Nimmer PM, Tahir SK, Chen J, Fryer RM, Hahn KR, et al. Bcl-2 family proteins are essential for platelet survival. Cell Death Differ. 2007;14(5):943–51.CrossRef
7.
go back to reference Schoenwaelder SM, Jarman KE, Gardiner EE, Hua M, Qiao J, White MJ, et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood. 2011;118(6):1663–74.CrossRef Schoenwaelder SM, Jarman KE, Gardiner EE, Hua M, Qiao J, White MJ, et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood. 2011;118(6):1663–74.CrossRef
8.
go back to reference Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-X L PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25(12):1938–47.CrossRef Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-X L PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25(12):1938–47.CrossRef
9.
go back to reference He Y, Koch R, Budamagunta V, Zhang P, Zhang X, Khan S, et al. DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J Hematol Oncol. 2020;13(1):95.CrossRef He Y, Koch R, Budamagunta V, Zhang P, Zhang X, Khan S, et al. DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J Hematol Oncol. 2020;13(1):95.CrossRef
10.
go back to reference Zhang X, Thummuri D, Liu X, Hu W, Zhang P, Khan S, et al. Discovery of PROTAC BCL-X L degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem. 2020;192:112186.CrossRef Zhang X, Thummuri D, Liu X, Hu W, Zhang P, Khan S, et al. Discovery of PROTAC BCL-X L degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem. 2020;192:112186.CrossRef
11.
go back to reference Kasper S, Breitenbuecher F, Reis H, Brandau S, Worm K, Köhler J, et al. Oncogenic RAS simultaneously protects against anti-EGFR antibody-dependent cellular cytotoxicity and EGFR signaling blockade. Oncogene. 2013;32(23):2873–81.CrossRef Kasper S, Breitenbuecher F, Reis H, Brandau S, Worm K, Köhler J, et al. Oncogenic RAS simultaneously protects against anti-EGFR antibody-dependent cellular cytotoxicity and EGFR signaling blockade. Oncogene. 2013;32(23):2873–81.CrossRef
12.
go back to reference Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G, et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene. 2003;22(43):6785–93.CrossRef Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G, et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene. 2003;22(43):6785–93.CrossRef
Metadata
Title
BCL-XL PROTAC degrader DT2216 synergizes with sotorasib in preclinical models of KRASG12C-mutated cancers
Authors
Sajid Khan
Janet Wiegand
Peiyi Zhang
Wanyi Hu
Dinesh Thummuri
Vivekananda Budamagunta
Nan Hua
Lingtao Jin
Carmen J. Allegra
Scott E. Kopetz
Maria Zajac-Kaye
Frederic J. Kaye
Guangrong Zheng
Daohong Zhou
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2022
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-022-01241-3

Other articles of this Issue 1/2022

Journal of Hematology & Oncology 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine