Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2022

Open Access 01-12-2022 | Lymphoma | Correspondence

Revealing the evolution of the tumor immune microenvironment in follicular lymphoma patients progressing within 24 months using single-cell imaging mass cytometry

Authors: Long Liu, Xingxing Yu, Zhifeng Li, Xiaohua He, Jie Zha, Zhijuan Lin, Yan Hong, Huijian Zheng, Qian Lai, Kaiyang Ding, Xian Jia, Guo Fu, Haifeng Yu, Haiyan Yang, Zhiming Li, Ken H. Young, Bing Xu

Published in: Journal of Hematology & Oncology | Issue 1/2022

Login to get access

Abstract

Background

Patients with follicular lymphoma (FL) who experience disease progression within 24 months (POD24) have inferior outcomes. The tumor immune microenvironment (TIME) plays a crucial role in pathogenesis and progression of follicular lymphoma (FL). However, TIME evolution during progression of disease within 24 months (POD24) is elusive.

Methods

Spatially resolved and single-cell image mass cytometry with a panel of 36 metal-tagged antibodies was used to quantitatively analyze the TIME structure in 13 paired FLs at diagnosis and POD24.

Results

Follicles and peri-follicular regions were well dissected in structure. Peri-follicular regions represented a barrier for immune infiltration into the follicles. More FL-cells in the peri-follicular regions suffered CD8+T cells attacks under simultaneous protection of regulatory T cells (Tregs) and/or macrophages compared with that in the follicles irrespective of POD24. During POD24, increased CD163 macrophages with PD-1 ligand upregulation and decreased CD8+T cells with upregulated LAG-3 expression around FL-cells were observed in the follicles. Spatial analyses demonstrated that FL-cells interacted more intimately with macrophages than with Tregs and less with cytotoxic T cells in both peri-follicular regions and follicles during POD24. In comparison, macrophages also cooperated more frequently with Tregs to simultaneously hijack FL-cells, creating an enhanced immunosuppressive environment in both peri-follicular and follicular regions during POD24.

Conclusions

Peri-follicular regions function as a barrier by recruiting both CD8+T cells and immunosuppressive cells, protecting follicular FL-cells from immune attack at diagnosis or POD24. FL-cells reside in a more immune-compromised microenvironment and evade immune cell attacks during POD24. Novel immunotherapeutic approaches harnessing LAG-3, macrophages, and Tregs will be empowered to overcome poor outcomes in patients with FL POD24.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zha J, Fan L, Yi S, Yu H, Zheng Z, Xu W, et al. Clinical features and outcomes of 1845 patients with follicular lymphoma: a real-world multicenter experience in China. J Hematol Oncol. 2021;14(1):131.CrossRef Zha J, Fan L, Yi S, Yu H, Zheng Z, Xu W, et al. Clinical features and outcomes of 1845 patients with follicular lymphoma: a real-world multicenter experience in China. J Hematol Oncol. 2021;14(1):131.CrossRef
2.
go back to reference Casulo C, Dixon JG, Le-Rademacher J, Hoster E, Hochster HS, Hiddemann W, et al. Validation of POD24 as a robust early clinical end point of poor survival in FL from 5225 patients on 13 clinical trials. Blood. 2022;139(11):1684–93.CrossRef Casulo C, Dixon JG, Le-Rademacher J, Hoster E, Hochster HS, Hiddemann W, et al. Validation of POD24 as a robust early clinical end point of poor survival in FL from 5225 patients on 13 clinical trials. Blood. 2022;139(11):1684–93.CrossRef
3.
go back to reference Tobin JWD, Keane C, Gunawardana J, Mollee P, Birch S, Hoang T, et al. Progression of disease within 24 months in follicular lymphoma is associated with reduced intratumoral immune infiltration. J Clin Oncol. 2019;37(34):3300–9.CrossRef Tobin JWD, Keane C, Gunawardana J, Mollee P, Birch S, Hoang T, et al. Progression of disease within 24 months in follicular lymphoma is associated with reduced intratumoral immune infiltration. J Clin Oncol. 2019;37(34):3300–9.CrossRef
4.
go back to reference Jurinovic V, Kridel R, Staiger AM, Szczepanowski M, Horn H, Dreyling MH, et al. Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy. Blood. 2016;128(8):1112–20.CrossRef Jurinovic V, Kridel R, Staiger AM, Szczepanowski M, Horn H, Dreyling MH, et al. Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy. Blood. 2016;128(8):1112–20.CrossRef
5.
go back to reference Mondello P, Fama A, Larson MC, Feldman AL, Villasboas JC, Yang ZZ, et al. Lack of intrafollicular memory CD4 + T cells is predictive of early clinical failure in newly diagnosed follicular lymphoma. Blood Cancer J. 2021;11(7):130.CrossRef Mondello P, Fama A, Larson MC, Feldman AL, Villasboas JC, Yang ZZ, et al. Lack of intrafollicular memory CD4 + T cells is predictive of early clinical failure in newly diagnosed follicular lymphoma. Blood Cancer J. 2021;11(7):130.CrossRef
6.
go back to reference Yang ZZ, Kim HJ, Villasboas JC, Price-Troska T, Jalali S, Wu H, et al. Mass cytometry analysis reveals that specific intratumoral CD4(+) T cell subsets correlate with patient survival in follicular lymphoma. Cell Rep. 2019;26(8):2178-93.e3.CrossRef Yang ZZ, Kim HJ, Villasboas JC, Price-Troska T, Jalali S, Wu H, et al. Mass cytometry analysis reveals that specific intratumoral CD4(+) T cell subsets correlate with patient survival in follicular lymphoma. Cell Rep. 2019;26(8):2178-93.e3.CrossRef
7.
go back to reference Schwabenland M, Salie H, Tanevski J, Killmer S, Lago MS, Schlaak AE, et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity. 2021;54(7):1594–610.CrossRef Schwabenland M, Salie H, Tanevski J, Killmer S, Lago MS, Schlaak AE, et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity. 2021;54(7):1594–610.CrossRef
8.
go back to reference Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD, et al. The single-cell pathology landscape of breast cancer. Nature. 2020;578(7796):615–20.CrossRef Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD, et al. The single-cell pathology landscape of breast cancer. Nature. 2020;578(7796):615–20.CrossRef
Metadata
Title
Revealing the evolution of the tumor immune microenvironment in follicular lymphoma patients progressing within 24 months using single-cell imaging mass cytometry
Authors
Long Liu
Xingxing Yu
Zhifeng Li
Xiaohua He
Jie Zha
Zhijuan Lin
Yan Hong
Huijian Zheng
Qian Lai
Kaiyang Ding
Xian Jia
Guo Fu
Haifeng Yu
Haiyan Yang
Zhiming Li
Ken H. Young
Bing Xu
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Lymphoma
Published in
Journal of Hematology & Oncology / Issue 1/2022
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-022-01326-z

Other articles of this Issue 1/2022

Journal of Hematology & Oncology 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine