Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | NSCLC | Research

A phase Ib/II study of galunisertib in combination with nivolumab in solid tumors and non-small cell lung cancer

Authors: Ernest Nadal, Mansoor Saleh, Santiago Ponce Aix, Maria Ochoa-de-Olza, Sandip Pravin Patel, Scott Antonia, Yumin Zhao, Ivelina Gueorguieva, Michael Man, Shawn T. Estrem, Jiangang Liu, Emin Avsar, Wen Hong Lin, Karim A. Benhadji, Leena Gandhi, Susan C. Guba, Inmaculada Ales Diaz

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

In this phase Ib/II open-label study, tumor immune suppression was targeted in patients with advanced refractory solid tumors and patients with recurrent/refractory non-small cell lung cancer (NSCLC) using galunisertib with nivolumab.

Methods

Eligible patients were ≥ 18 years old, had an Eastern Cooperative Oncology Group performance status ≤ 1, and were treatment-naive for anti-programmed cell death-1, its ligand, or transforming growth factor β receptor 1 kinase inhibitors. Phase Ib was an open-label, dose-escalation assessment of the safety and tolerability of galunisertib with nivolumab in patients with advanced refractory solid tumors. Phase II evaluated the safety of galunisertib with nivolumab in NSCLC patients who had received prior platinum-based treatment but were immuno-oncology agent-naive.

Results

This trial was conducted between October 2015 and August 2020. No dose-limiting toxicities were observed in phase I. In the phase II NSCLC cohort (n = 25), patients received 150 mg twice daily galunisertib (14 days on/14 days off dosing schedule for all phases) plus nivolumab at 3 mg/kg (intravenously every 2 weeks). In this phase, the most frequent treatment-related adverse events (AEs) were pruritus (n = 9, 36%), fatigue (n = 8, 32%), and decreased appetite (n = 7, 28%). No grade 4 or 5 treatment-related AEs were observed. Six (24%) patients had confirmed partial response (PR) and 4 (16%) had stable disease; 1 additional patient had confirmed PR after initial pseudo-progression. The median duration of response was 7.43 months (95% confidence interval [CI]: 3.75, NR). Among the 7 responders, including the delayed responder, 1 had high PD-L1 expression (≥ 50%). The median progression-free survival was 5.26 months (95% CI: 1.77, 9.20) and the median overall survival was 11.99 months (95% CI: 8.15, NR). Interferon gamma response genes were induced post-treatment and cell adhesion genes were repressed, although the association of these observations with tumor response and clinical outcomes was not statistically powered due to limited samples available.

Conclusions

The study met its primary endpoint as galunisertib combined with nivolumab was well tolerated. Preliminary efficacy was observed in a subset of patients in the Phase 2 NSCLC cohort.

Trial registration

Trial registered with ClinicalTrials.gov (NCT02423343; 22.04.2015).
Appendix
Available only for authorised users
Literature
2.
go back to reference Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.PubMedCrossRef Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.PubMedCrossRef
3.
4.
go back to reference Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.PubMedPubMedCentralCrossRef Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.PubMedPubMedCentralCrossRef
5.
go back to reference Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.PubMedPubMedCentralCrossRef Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.PubMedPubMedCentralCrossRef
6.
go back to reference Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM, et al. Neoadjuvant Nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. 2022;386(21):1973–85.PubMedPubMedCentralCrossRef Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM, et al. Neoadjuvant Nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. 2022;386(21):1973–85.PubMedPubMedCentralCrossRef
7.
go back to reference Felip E, Altorki N, Zhou C, Csőszi T, Vynnychenko I, Goloborodko O, et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet. 2021;398(10308):1344–57.PubMedCrossRef Felip E, Altorki N, Zhou C, Csőszi T, Vynnychenko I, Goloborodko O, et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet. 2021;398(10308):1344–57.PubMedCrossRef
8.
go back to reference Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol. 2002;32(3):634–43.PubMedCrossRef Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol. 2002;32(3):634–43.PubMedCrossRef
9.
go back to reference Escors D, Gato-Cañas M, Zuazo M, Arasanz H, García-Granda MJ, Vera R, et al. The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther. 2018;3:26.PubMedPubMedCentralCrossRef Escors D, Gato-Cañas M, Zuazo M, Arasanz H, García-Granda MJ, Vera R, et al. The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther. 2018;3:26.PubMedPubMedCentralCrossRef
10.
go back to reference Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.PubMedPubMedCentralCrossRef Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.PubMedPubMedCentralCrossRef
11.
go back to reference Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.PubMedCrossRef Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.PubMedCrossRef
12.
go back to reference Galuppini F, Dal Pozzo CA, Deckert J, Loupakis F, Fassan M, Baffa R. Tumor mutation burden: from comprehensive mutational screening to the clinic. Cancer Cell Int. 2019;19(1):209.PubMedPubMedCentralCrossRef Galuppini F, Dal Pozzo CA, Deckert J, Loupakis F, Fassan M, Baffa R. Tumor mutation burden: from comprehensive mutational screening to the clinic. Cancer Cell Int. 2019;19(1):209.PubMedPubMedCentralCrossRef
14.
15.
go back to reference Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.PubMedCrossRef Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.PubMedCrossRef
16.
go back to reference Yang H, Zhan L, Yang T, Wang L, Li C, Zhao J, et al. Ski prevents TGF-β-induced EMT and cell invasion by repressing SMAD-dependent signaling in non-small cell lung cancer. Oncol Rep. 2015;34(1):87–94.PubMedCrossRef Yang H, Zhan L, Yang T, Wang L, Li C, Zhao J, et al. Ski prevents TGF-β-induced EMT and cell invasion by repressing SMAD-dependent signaling in non-small cell lung cancer. Oncol Rep. 2015;34(1):87–94.PubMedCrossRef
19.
go back to reference Nawshad A, Lagamba D, Polad A, Hay ED. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs. 2005;179(1–2):11–23.PubMedCrossRef Nawshad A, Lagamba D, Polad A, Hay ED. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs. 2005;179(1–2):11–23.PubMedCrossRef
20.
go back to reference Chen T, Zhu J, Cai T, Du W, Zhang Y, Zhu Q, et al. Suppression of non-small cell lung cancer migration and invasion by hsa-miR-486-5p via the TGF-β/SMAD2 signaling pathway. J Cancer. 2019;10(24):6014–24.PubMedPubMedCentralCrossRef Chen T, Zhu J, Cai T, Du W, Zhang Y, Zhu Q, et al. Suppression of non-small cell lung cancer migration and invasion by hsa-miR-486-5p via the TGF-β/SMAD2 signaling pathway. J Cancer. 2019;10(24):6014–24.PubMedPubMedCentralCrossRef
21.
go back to reference Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015;9:4479–99.PubMedPubMedCentral Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015;9:4479–99.PubMedPubMedCentral
22.
go back to reference Holmgaard RB, Schaer DA, Li Y, Castaneda SP, Murphy MY, Xu X, et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J Immunother Cancer. 2018;6(1):47.PubMedPubMedCentralCrossRef Holmgaard RB, Schaer DA, Li Y, Castaneda SP, Murphy MY, Xu X, et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J Immunother Cancer. 2018;6(1):47.PubMedPubMedCentralCrossRef
23.
go back to reference Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol. 2010;10(8):554–67.PubMedCrossRef Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol. 2010;10(8):554–67.PubMedCrossRef
24.
go back to reference Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538–43.PubMedCrossRef Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538–43.PubMedCrossRef
25.
go back to reference Principe DR, Park A, Dorman MJ, Kumar S, Viswakarma N, Rubin J, et al. TGFβ blockade augments PD-1 inhibition to promote t-cell-mediated regression of pancreatic cancer. Mol Cancer Ther. 2019;18(3):613–20.PubMedCrossRef Principe DR, Park A, Dorman MJ, Kumar S, Viswakarma N, Rubin J, et al. TGFβ blockade augments PD-1 inhibition to promote t-cell-mediated regression of pancreatic cancer. Mol Cancer Ther. 2019;18(3):613–20.PubMedCrossRef
26.
go back to reference Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.PubMedPubMedCentralCrossRef Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.PubMedPubMedCentralCrossRef
27.
go back to reference Stauber A, Credille K, Truex LL, Ehlhardt W, Young J. Nonclinical safety evaluation of a transforming growth factor β receptor I kinase inhibitor in Fischer 344 rats and beagle dogs. J Clin Toxicol. 2014;4:3. Stauber A, Credille K, Truex LL, Ehlhardt W, Young J. Nonclinical safety evaluation of a transforming growth factor β receptor I kinase inhibitor in Fischer 344 rats and beagle dogs. J Clin Toxicol. 2014;4:3.
28.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.PubMedCrossRef Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.PubMedCrossRef
30.
go back to reference Gueorguieva I, Tabernero J, Melisi D, Macarulla T, Merz V, Waterhouse TH, et al. Population pharmacokinetics and exposure-overall survival analysis of the transforming growth factor-β inhibitor galunisertib in patients with pancreatic cancer. Cancer Chemother Pharmacol. 2019;84(5):1003–15.PubMedCrossRef Gueorguieva I, Tabernero J, Melisi D, Macarulla T, Merz V, Waterhouse TH, et al. Population pharmacokinetics and exposure-overall survival analysis of the transforming growth factor-β inhibitor galunisertib in patients with pancreatic cancer. Cancer Chemother Pharmacol. 2019;84(5):1003–15.PubMedCrossRef
31.
go back to reference Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40.PubMedPubMedCentralCrossRef Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40.PubMedPubMedCentralCrossRef
33.
go back to reference Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51.PubMedCrossRef Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51.PubMedCrossRef
34.
go back to reference Doi T, Fujiwara Y, Koyama T, Ikeda M, Helwig C, Watanabe M, et al. Phase I study of the bifunctional fusion protein Bintrafusp Alfa in Asian patients with advanced solid tumors, including a hepatocellular carcinoma safety-assessment cohort. Oncologist. 2020;25(9):e1292–302.PubMedPubMedCentralCrossRef Doi T, Fujiwara Y, Koyama T, Ikeda M, Helwig C, Watanabe M, et al. Phase I study of the bifunctional fusion protein Bintrafusp Alfa in Asian patients with advanced solid tumors, including a hepatocellular carcinoma safety-assessment cohort. Oncologist. 2020;25(9):e1292–302.PubMedPubMedCentralCrossRef
35.
go back to reference Yap T, Barve M, Gainor J, Bockorny B, Ju Y, Cote S, et al. 532 First-in-human phase 1 trial of SRK-181: a latent TGFβ1 inhibitor, alone or in combination with anti-PD-(L)1 treatment in patients with advanced solid tumors (DRAGON trial). J. Immunother. Cancer. 2021;9(Suppl 2);A563-A. Yap T, Barve M, Gainor J, Bockorny B, Ju Y, Cote S, et al. 532 First-in-human phase 1 trial of SRK-181: a latent TGFβ1 inhibitor, alone or in combination with anti-PD-(L)1 treatment in patients with advanced solid tumors (DRAGON trial). J. Immunother. Cancer. 2021;9(Suppl 2);A563-A.
36.
go back to reference Wang H, Wu Q, Zhang Y, Zhang HN, Wang YB, Wang W. TGF-β1-induced epithelial-mesenchymal transition in lung cancer cells involves upregulation of miR-9 and downregulation of its target E-cadherin. Cell Mol Biol Lett. 2017;22:22.PubMedPubMedCentralCrossRef Wang H, Wu Q, Zhang Y, Zhang HN, Wang YB, Wang W. TGF-β1-induced epithelial-mesenchymal transition in lung cancer cells involves upregulation of miR-9 and downregulation of its target E-cadherin. Cell Mol Biol Lett. 2017;22:22.PubMedPubMedCentralCrossRef
37.
go back to reference Sow HS, Ren J, Camps M, Ossendorp F, Ten Dijke P. Combined inhibition of TGF-β signaling and the PD-L1 immune checkpoint is differentially effective in tumor models. Cells. 2019;8(4):320.PubMedPubMedCentralCrossRef Sow HS, Ren J, Camps M, Ossendorp F, Ten Dijke P. Combined inhibition of TGF-β signaling and the PD-L1 immune checkpoint is differentially effective in tumor models. Cells. 2019;8(4):320.PubMedPubMedCentralCrossRef
38.
go back to reference Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014;384(9944):665–73.PubMedCrossRef Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014;384(9944):665–73.PubMedCrossRef
39.
go back to reference Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.PubMedCrossRef Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.PubMedCrossRef
40.
go back to reference Planchard D, Reinmuth N, Orlov S, Fischer JR, Sugawara S, Mandziuk S, et al. ARCTIC: durvalumab with or without tremelimumab as third-line or later treatment of metastatic non-small-cell lung cancer. Ann Oncol. 2020;31(5):609–18.PubMedCrossRef Planchard D, Reinmuth N, Orlov S, Fischer JR, Sugawara S, Mandziuk S, et al. ARCTIC: durvalumab with or without tremelimumab as third-line or later treatment of metastatic non-small-cell lung cancer. Ann Oncol. 2020;31(5):609–18.PubMedCrossRef
41.
go back to reference Rizvi NA, Shepherd FA, Antonia SJ, Brahmer JR, Chow LQ, Goldman J, et al. First-line monotherapy with Nivolumab (Anti-PD-1; BMS-936558, ONO-4538) in advanced Non-Small Cell Lung Cancer (NSCLC): safety, efficacy, and correlation of outcomes with PD-L1 status: metastatic non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;90(5 Supplement):S31.CrossRef Rizvi NA, Shepherd FA, Antonia SJ, Brahmer JR, Chow LQ, Goldman J, et al. First-line monotherapy with Nivolumab (Anti-PD-1; BMS-936558, ONO-4538) in advanced Non-Small Cell Lung Cancer (NSCLC): safety, efficacy, and correlation of outcomes with PD-L1 status: metastatic non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;90(5 Supplement):S31.CrossRef
42.
go back to reference Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall survival and long-term safety of Nivolumab (Anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33(18):2004–12.PubMedPubMedCentralCrossRef Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall survival and long-term safety of Nivolumab (Anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33(18):2004–12.PubMedPubMedCentralCrossRef
43.
go back to reference Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, et al. Five-year follow-up of Nivolumab in previously treated advanced non-small-cell lung cancer: results from the CA209-003 study. J Clin Oncol. 2018;36(17):1675–84.PubMedCrossRef Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, et al. Five-year follow-up of Nivolumab in previously treated advanced non-small-cell lung cancer: results from the CA209-003 study. J Clin Oncol. 2018;36(17):1675–84.PubMedCrossRef
44.
go back to reference Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, et al. STK11/LKB1 Mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 2018;8(7):822–35.PubMedPubMedCentralCrossRef Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, et al. STK11/LKB1 Mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 2018;8(7):822–35.PubMedPubMedCentralCrossRef
45.
go back to reference Papillon-Cavanagh S, Doshi P, Dobrin R, Szustakowski J, Walsh AM. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort. ESMO Open. 2020;5(2):e000706.PubMedPubMedCentralCrossRef Papillon-Cavanagh S, Doshi P, Dobrin R, Szustakowski J, Walsh AM. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort. ESMO Open. 2020;5(2):e000706.PubMedPubMedCentralCrossRef
46.
go back to reference Morén A, Raja E, Heldin CH, Moustakas A. Negative regulation of TGFβ signaling by the kinase LKB1 and the scaffolding protein LIP1. J Biol Chem. 2011;286(1):341–53.PubMedCrossRef Morén A, Raja E, Heldin CH, Moustakas A. Negative regulation of TGFβ signaling by the kinase LKB1 and the scaffolding protein LIP1. J Biol Chem. 2011;286(1):341–53.PubMedCrossRef
47.
go back to reference Barrera-Rodríguez R. Importance of the Keap1-Nrf2 pathway in NSCLC: Is it a possible biomarker? Biomed Rep. 2018;9(5):375–82.PubMedPubMedCentral Barrera-Rodríguez R. Importance of the Keap1-Nrf2 pathway in NSCLC: Is it a possible biomarker? Biomed Rep. 2018;9(5):375–82.PubMedPubMedCentral
48.
go back to reference Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med. 2018;24(5):556–62.PubMedPubMedCentralCrossRef Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z, et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med. 2018;24(5):556–62.PubMedPubMedCentralCrossRef
49.
go back to reference Rizvi N, Cho BC, Reinmuth N, Lee KH, Luft A, Ahn M, et al. OA04.07 mutations associated with sensitivity or resistance to immunotherapy in mNSCLC: analysis from the MYSTIC trial. J Thor Oncol. 2019;14(10):217.CrossRef Rizvi N, Cho BC, Reinmuth N, Lee KH, Luft A, Ahn M, et al. OA04.07 mutations associated with sensitivity or resistance to immunotherapy in mNSCLC: analysis from the MYSTIC trial. J Thor Oncol. 2019;14(10):217.CrossRef
50.
go back to reference Krieger T, Pearson I, Bell J, Doherty J, Robbins P. Targeted literature review on use of tumor mutational burden status and programmed cell death ligand 1 expression to predict outcomes of checkpoint inhibitor treatment. Diagn Pathol. 2020;15(1):6.PubMedPubMedCentralCrossRef Krieger T, Pearson I, Bell J, Doherty J, Robbins P. Targeted literature review on use of tumor mutational burden status and programmed cell death ligand 1 expression to predict outcomes of checkpoint inhibitor treatment. Diagn Pathol. 2020;15(1):6.PubMedPubMedCentralCrossRef
51.
go back to reference Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–104.PubMedPubMedCentralCrossRef Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–104.PubMedPubMedCentralCrossRef
52.
go back to reference Choueiri TK, Fishman MN, Escudier B, McDermott DF, Drake CG, Kluger H, et al. Immunomodulatory activity of Nivolumab in metastatic renal cell carcinoma. Clin Cancer Res. 2016;22(22):5461–71.PubMedPubMedCentralCrossRef Choueiri TK, Fishman MN, Escudier B, McDermott DF, Drake CG, Kluger H, et al. Immunomodulatory activity of Nivolumab in metastatic renal cell carcinoma. Clin Cancer Res. 2016;22(22):5461–71.PubMedPubMedCentralCrossRef
Metadata
Title
A phase Ib/II study of galunisertib in combination with nivolumab in solid tumors and non-small cell lung cancer
Authors
Ernest Nadal
Mansoor Saleh
Santiago Ponce Aix
Maria Ochoa-de-Olza
Sandip Pravin Patel
Scott Antonia
Yumin Zhao
Ivelina Gueorguieva
Michael Man
Shawn T. Estrem
Jiangang Liu
Emin Avsar
Wen Hong Lin
Karim A. Benhadji
Leena Gandhi
Susan C. Guba
Inmaculada Ales Diaz
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11153-1

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine