Skip to main content
Top
Published in: Maxillofacial Plastic and Reconstructive Surgery 1/2018

Open Access 01-12-2018 | Methodology

Novel condylar repositioning method for 3D-printed models

Authors: Keisuke Sugahara, Yoshiharu Katsumi, Masahide Koyachi, Yu Koyama, Satoru Matsunaga, Kento Odaka, Shinichi Abe, Masayuki Takano, Akira Katakura

Published in: Maxillofacial Plastic and Reconstructive Surgery | Issue 1/2018

Login to get access

Abstract

Background

Along with the advances in technology of three-dimensional (3D) printer, it became a possible to make more precise patient-specific 3D model in the various fields including oral and maxillofacial surgery. When creating 3D models of the mandible and maxilla, it is easier to make a single unit with a fused temporomandibular joint, though this results in poor operability of the model. However, while models created with a separate mandible and maxilla have operability, it can be difficult to fully restore the position of the condylar after simulation. The purpose of this study is to introduce and asses the novel condylar repositioning method in 3D model preoperational simulation.

Methods

Our novel condylar repositioning method is simple to apply two irregularities in 3D models. Three oral surgeons measured and evaluated one linear distance and two angles in 3D models.

Results

This study included two patients who underwent sagittal split ramus osteotomy (SSRO) and two benign tumor patients who underwent segmental mandibulectomy and immediate reconstruction. For each SSRO case, the mandibular condyles were designed to be convex and the glenoid cavities were designed to be concave. For the benign tumor cases, the margins on the resection side, including the joint portions, were designed to be convex, and the resection margin was designed to be concave. The distance from the mandibular ramus to the tip of the maxillary canine, the angle created by joining the inferior edge of the orbit to the tip of the maxillary canine and the ramus, the angle created by the lines from the base of the mentum to the endpoint of the condyle, and the angle between the most lateral point of the condyle and the most medial point of the condyle were measured before and after simulations. Near-complete matches were observed for all items measured before and after model simulations of surgery in all jaw deformity and reconstruction cases.

Conclusions

We demonstrated that 3D models manufactured using our method can be applied to simulations and fully restore the position of the condyle without the need for special devices.
Literature
1.
go back to reference Katsumi Y, Sugahara K, Matsunaga S, Odaka K, Mitomo K, Abe S et al (2016) Planning for orthognathic surgery at medical fabrication laboratory in Tokyo Dental College (Fab Lab TDC): clinical application of full-scale-model made by 3-dimensional ink jet printer for orthognathic surgery. Oral Science Japan 2016:9–11 Katsumi Y, Sugahara K, Matsunaga S, Odaka K, Mitomo K, Abe S et al (2016) Planning for orthognathic surgery at medical fabrication laboratory in Tokyo Dental College (Fab Lab TDC): clinical application of full-scale-model made by 3-dimensional ink jet printer for orthognathic surgery. Oral Science Japan 2016:9–11
2.
go back to reference Ayoub AF, Rehab M, O’neil M, Khambay B, Ju X, Barbenel J et al (2014) A novel approach for planning orthognathic surgery: the integration of dental casts into three-dimensional printed mandibular models. J Oral Maxillofac Surg 43:454–459CrossRef Ayoub AF, Rehab M, O’neil M, Khambay B, Ju X, Barbenel J et al (2014) A novel approach for planning orthognathic surgery: the integration of dental casts into three-dimensional printed mandibular models. J Oral Maxillofac Surg 43:454–459CrossRef
3.
go back to reference Yuan P, Mai H, Li J, Ho DC, Lai Y, Liu S et al (2017) Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning. Int J Comput Assist Radiol Surg 12:2129–2143CrossRefPubMedPubMedCentral Yuan P, Mai H, Li J, Ho DC, Lai Y, Liu S et al (2017) Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning. Int J Comput Assist Radiol Surg 12:2129–2143CrossRefPubMedPubMedCentral
4.
go back to reference Mayuka N, Katsuhiko S, Kazutaka K (2016) The characteristics of mandibular morphology in facial asymmetry by using axial cephalometric radiographs. Nihon Univ J Oral Sci U 42:4–54 Mayuka N, Katsuhiko S, Kazutaka K (2016) The characteristics of mandibular morphology in facial asymmetry by using axial cephalometric radiographs. Nihon Univ J Oral Sci U 42:4–54
5.
go back to reference Suojanen J, Leikola J, Stoor P (2016) The use of patient-specific implants in orthognathic surgery: a series of 32 maxillary osteotomy patients. J Craniomaxillofac Surg 44:1913–1916CrossRefPubMed Suojanen J, Leikola J, Stoor P (2016) The use of patient-specific implants in orthognathic surgery: a series of 32 maxillary osteotomy patients. J Craniomaxillofac Surg 44:1913–1916CrossRefPubMed
6.
go back to reference Cornelius CP, Smolka W, Giessler GA, Wilde F, Probst FA (2015) Patient-specific reconstruction plates are the missing link in computer-assisted mandibular reconstruction: a showcase for technical description. J Craniomaxillofac Surg 43:624–629CrossRefPubMed Cornelius CP, Smolka W, Giessler GA, Wilde F, Probst FA (2015) Patient-specific reconstruction plates are the missing link in computer-assisted mandibular reconstruction: a showcase for technical description. J Craniomaxillofac Surg 43:624–629CrossRefPubMed
7.
go back to reference Wilde F, Hanken H, Probst F, Schramm A, Heiland M, Cornelius CP (2015) Multicenter study on the use of patient-specific CAD/CAM reconstruction plates for mandibular reconstruction. Int J Comput Assist Radiol Surg 10:2035–2051CrossRefPubMed Wilde F, Hanken H, Probst F, Schramm A, Heiland M, Cornelius CP (2015) Multicenter study on the use of patient-specific CAD/CAM reconstruction plates for mandibular reconstruction. Int J Comput Assist Radiol Surg 10:2035–2051CrossRefPubMed
8.
go back to reference Yuki M, Koichi N, Machiko K, Hiroshi Y, Kazuto K, Kiyoshi H (2014) The comparative study of two types of condylar positioning systems for double-jaw orthognathic surgery. J Jaw Deform 24:203–210CrossRef Yuki M, Koichi N, Machiko K, Hiroshi Y, Kazuto K, Kiyoshi H (2014) The comparative study of two types of condylar positioning systems for double-jaw orthognathic surgery. J Jaw Deform 24:203–210CrossRef
Metadata
Title
Novel condylar repositioning method for 3D-printed models
Authors
Keisuke Sugahara
Yoshiharu Katsumi
Masahide Koyachi
Yu Koyama
Satoru Matsunaga
Kento Odaka
Shinichi Abe
Masayuki Takano
Akira Katakura
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Maxillofacial Plastic and Reconstructive Surgery / Issue 1/2018
Electronic ISSN: 2288-8586
DOI
https://doi.org/10.1186/s40902-018-0143-7

Other articles of this Issue 1/2018

Maxillofacial Plastic and Reconstructive Surgery 1/2018 Go to the issue