Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2024

Open Access 01-12-2024 | Night-Blindness | Research

Clinical and genetic studies for a cohort of patients with congenital stationary night blindness

Authors: Lijuan Huang, Xueqing Bai, Yan Xie, Yunyu Zhou, Jin Wu, Ningdong Li

Published in: Orphanet Journal of Rare Diseases | Issue 1/2024

Login to get access

Abstract

Background

Congenital stationary night blindness (CSNB) is an inherited retinal disorder. Most of patients have myopia. This study aims to describe the clinical and genetic characteristics of fifty-nine patients with CSNB and investigate myopic progression under genetic cause.

Results

Sixty-five variants were detected in the 59 CSNB patients, including 32 novel and 33 reported variants. The most frequently involved genes were NYX, CACNA1F, and TRPM1. Myopia (96.61%, 57/59) was the most common clinical finding, followed by nystagmus (62.71%, 37/59), strabismus (52.54%, 31/59), and nyctalopia (49.15%, 29/59). An average SE of -7.73 ± 3.37 D progressed to -9.14 ± 2.09 D in NYX patients with myopia, from − 2.24 ± 1.53 D to -4.42 ± 1.43 D in those with CACNA1F, and from − 5.21 ± 2.89 D to -9.24 ± 3.16 D in those with TRPM1 during the 3-year follow-up; the TRPM1 group showed the most rapid progression.

Conclusions

High myopia and strabismus are distinct clinical features of CSNB that are helpful for diagnosis. The novel variants identified in this study will further expand the knowledge of variants in CSNB and help explore the molecular mechanisms of CSNB.
Appendix
Available only for authorised users
Literature
1.
go back to reference Iosifidis C, Gale LJ, Ellingford T, Campbell JM, Ingram C, Chandler S, Parry K, Black NRA. Sergouniotis PI Clinical and genetic findings in TRPM1-related congenital stationary night blindness. Acta Ophthalmol. 2022;100:e1332–9.CrossRefPubMed Iosifidis C, Gale LJ, Ellingford T, Campbell JM, Ingram C, Chandler S, Parry K, Black NRA. Sergouniotis PI Clinical and genetic findings in TRPM1-related congenital stationary night blindness. Acta Ophthalmol. 2022;100:e1332–9.CrossRefPubMed
2.
go back to reference Kim HM, Han JK, Woo J. SJ Clinical and Genetic Characteristics of Korean Congenital Stationary Night Blindness Patients. genes 12, 789 (2021). Kim HM, Han JK, Woo J. SJ Clinical and Genetic Characteristics of Korean Congenital Stationary Night Blindness Patients. genes 12, 789 (2021).
3.
go back to reference Audo I, Holder RA, Moore GE. The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv Ophthalmol. 2008;53:16–40.CrossRefPubMed Audo I, Holder RA, Moore GE. The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv Ophthalmol. 2008;53:16–40.CrossRefPubMed
4.
go back to reference Kim AH, Chang LP, Kang YH, Wang EY, Chen HH, Tseng N, Seo YJ, Lee GH, Liu H, Chao L, Chen AN, Hwang KJ, Wu YS, Lai WC, Tsang CC, Hsiao SH, Wang MC. Congenital stationary night blindness: clinical and genetic features. Int J Mol Sci. 2022;23:14965.CrossRefPubMedPubMedCentral Kim AH, Chang LP, Kang YH, Wang EY, Chen HH, Tseng N, Seo YJ, Lee GH, Liu H, Chao L, Chen AN, Hwang KJ, Wu YS, Lai WC, Tsang CC, Hsiao SH, Wang MC. Congenital stationary night blindness: clinical and genetic features. Int J Mol Sci. 2022;23:14965.CrossRefPubMedPubMedCentral
5.
go back to reference Zeitz C, Lorenz LS, Forster B, Uksti U, Kroes J, De Baere HY, Leroy E, Cremers BP, Wittmer FP, van Genderen M, Sahel MM, Audo JA, Poloschek I, Mohand-Saïd CM, Fleischhauer S, Hüffmeier JC, Moskova-Doumanova U, Levin V, Hamel AV, Leifert CP, Munier D, Schorderet FL, Zrenner DF, Friedburg E, Wissinger C, Kohl B. Berger W Genotyping microarray for CSNB-associated genes. Invest Ophthalmol Vis Sci. 2009;50:5919–26.CrossRefPubMed Zeitz C, Lorenz LS, Forster B, Uksti U, Kroes J, De Baere HY, Leroy E, Cremers BP, Wittmer FP, van Genderen M, Sahel MM, Audo JA, Poloschek I, Mohand-Saïd CM, Fleischhauer S, Hüffmeier JC, Moskova-Doumanova U, Levin V, Hamel AV, Leifert CP, Munier D, Schorderet FL, Zrenner DF, Friedburg E, Wissinger C, Kohl B. Berger W Genotyping microarray for CSNB-associated genes. Invest Ophthalmol Vis Sci. 2009;50:5919–26.CrossRefPubMed
6.
go back to reference Malaichamy S, Sachidanandam SP, Arokiasamy R, Lancelot T, Audo ME, Zeitz I, Soumittra C. Molecular profiling of complete congenital stationary night blindness: a pilot study on an Indian cohort. Mol Vis. 2014;20:341–51.PubMedPubMedCentral Malaichamy S, Sachidanandam SP, Arokiasamy R, Lancelot T, Audo ME, Zeitz I, Soumittra C. Molecular profiling of complete congenital stationary night blindness: a pilot study on an Indian cohort. Mol Vis. 2014;20:341–51.PubMedPubMedCentral
7.
go back to reference Zeitz C. Audo I congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res. 2015;45:58–110.CrossRefPubMed Zeitz C. Audo I congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res. 2015;45:58–110.CrossRefPubMed
9.
go back to reference Jaganathan K, McRae KPS. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.CrossRefPubMed Jaganathan K, McRae KPS. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.CrossRefPubMed
10.
go back to reference Richards S, Bale AN, Bick S, Das D, Gastier-Foster S, Grody J, Hegde WW, Lyon M, Spector E, Voelkerding E. Rehm HL standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral Richards S, Bale AN, Bick S, Das D, Gastier-Foster S, Grody J, Hegde WW, Lyon M, Spector E, Voelkerding E. Rehm HL standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral
11.
go back to reference Bijveld MM, Bergen FR, van den Born AA, Kamermans LI, Prick M, Riemslag L, van Schooneveld FC, Kappers MJ, van Genderen AM. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology. 2013;120:2072–81.CrossRefPubMed Bijveld MM, Bergen FR, van den Born AA, Kamermans LI, Prick M, Riemslag L, van Schooneveld FC, Kappers MJ, van Genderen AM. Genotype and phenotype of 101 Dutch patients with congenital stationary night blindness. Ophthalmology. 2013;120:2072–81.CrossRefPubMed
12.
go back to reference Furukawa T, Omori UA. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci. 2020;77:1251–66.CrossRefPubMed Furukawa T, Omori UA. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci. 2020;77:1251–66.CrossRefPubMed
13.
go back to reference Takeuchi H, Moritoh HS, Matsushima S, Hori H, Kimori T, Kitano Y, Tsubo K, Tachibana Y, Koike M. Different activity patterns in retinal ganglion cells of TRPM1 and mGluR6 knockout mice. Biomed Res Int May. 2018;8:1–6. Takeuchi H, Moritoh HS, Matsushima S, Hori H, Kimori T, Kitano Y, Tsubo K, Tachibana Y, Koike M. Different activity patterns in retinal ganglion cells of TRPM1 and mGluR6 knockout mice. Biomed Res Int May. 2018;8:1–6.
14.
go back to reference Pearring JN, Shen BPJ, Koike Y, Furukawa C, Nawy T. Gregg RG a role for nyctalopin, a small leucine-rich repeat protein, in localizing the TRP melastatin 1 channel to retinal depolarizing bipolar cell dendrites. J Neurosci. 2011;31:10060–6.CrossRefPubMedPubMedCentral Pearring JN, Shen BPJ, Koike Y, Furukawa C, Nawy T. Gregg RG a role for nyctalopin, a small leucine-rich repeat protein, in localizing the TRP melastatin 1 channel to retinal depolarizing bipolar cell dendrites. J Neurosci. 2011;31:10060–6.CrossRefPubMedPubMedCentral
15.
go back to reference Waldner DM, Bonfield GSN, Nguyen S, Dimopoulos L, Sauvé IS, Stell Y. Bech-Hansen NT cone dystrophy and ectopic synaptogenesis in a Cacna1f loss of function model of congenital stationary night blindness (CSNB2A). Channels (Austin). 2018;12:17–33.CrossRefPubMed Waldner DM, Bonfield GSN, Nguyen S, Dimopoulos L, Sauvé IS, Stell Y. Bech-Hansen NT cone dystrophy and ectopic synaptogenesis in a Cacna1f loss of function model of congenital stationary night blindness (CSNB2A). Channels (Austin). 2018;12:17–33.CrossRefPubMed
16.
go back to reference Zeitz C, Audo RJ, Michiels I, Sánchez-Farías C, Varin N. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res. 2023;93:101155.CrossRefPubMed Zeitz C, Audo RJ, Michiels I, Sánchez-Farías C, Varin N. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res. 2023;93:101155.CrossRefPubMed
17.
go back to reference Wang H, Yang SS, Hu M, Yao N, Zhu Y, Zhou R, Liang J, Guan C. Association of ZNF644, GRM6, and CTNND2 genes with high myopia in the Han Chinese population: Jiangsu Eye Study. Eye (Lond). 2016;30:1017–22.CrossRefPubMed Wang H, Yang SS, Hu M, Yao N, Zhu Y, Zhou R, Liang J, Guan C. Association of ZNF644, GRM6, and CTNND2 genes with high myopia in the Han Chinese population: Jiangsu Eye Study. Eye (Lond). 2016;30:1017–22.CrossRefPubMed
18.
go back to reference Leroy BP, Wittmer BB, De Baere M, Berger E. Zeitz C A common NYX mutation in flemish patients with X linked CSNB. Br J Ophthalmol. 2009;93:692–6.CrossRefPubMed Leroy BP, Wittmer BB, De Baere M, Berger E. Zeitz C A common NYX mutation in flemish patients with X linked CSNB. Br J Ophthalmol. 2009;93:692–6.CrossRefPubMed
19.
go back to reference Zhou L, Song LT, Li X, Li Y. Dan H NYX mutations in four families with high myopia with or without CSNB1. Mol Vis. 2015;21:213–23.PubMedPubMedCentral Zhou L, Song LT, Li X, Li Y. Dan H NYX mutations in four families with high myopia with or without CSNB1. Mol Vis. 2015;21:213–23.PubMedPubMedCentral
20.
go back to reference Zhang Q, Li XX, Jia S, Yang X, Huang Z, Caruso S, Guan RC, Sergeev T, Guo Y. Hejtmancik JF Mutations in NYX of individuals with high myopia, but without night blindness. Mol Vis. 2007;13:330–6.PubMedPubMedCentral Zhang Q, Li XX, Jia S, Yang X, Huang Z, Caruso S, Guan RC, Sergeev T, Guo Y. Hejtmancik JF Mutations in NYX of individuals with high myopia, but without night blindness. Mol Vis. 2007;13:330–6.PubMedPubMedCentral
21.
go back to reference Chakraborty R, Hanif PH, Sidhu AM, Iuvone CS. Pardue MT ON pathway mutations increase susceptibility to form-deprivation myopia. Exp Eye Res. 2015;137:79–83.CrossRefPubMedPubMedCentral Chakraborty R, Hanif PH, Sidhu AM, Iuvone CS. Pardue MT ON pathway mutations increase susceptibility to form-deprivation myopia. Exp Eye Res. 2015;137:79–83.CrossRefPubMedPubMedCentral
22.
go back to reference Yam JC, Tang JY, Law SM, Chan AKP, Wong JJ, Ko E, Young ST, Tham AL, Chen CC, Pang LJ. Low-concentration atropine for myopia progression (LAMP) study: a Randomized, Double-Blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% Atropine Eye drops in Myopia Control. Ophthalmology. 2019;126:113–24.CrossRefPubMed Yam JC, Tang JY, Law SM, Chan AKP, Wong JJ, Ko E, Young ST, Tham AL, Chen CC, Pang LJ. Low-concentration atropine for myopia progression (LAMP) study: a Randomized, Double-Blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% Atropine Eye drops in Myopia Control. Ophthalmology. 2019;126:113–24.CrossRefPubMed
23.
go back to reference Miraldi Utz V, Longmuir PW, Olson SQ, Wang RJ, Drack K. Presentation of TRPM1-Associated congenital stationary night blindness in children. JAMA Ophthalmol. 2018;136:389–98.CrossRefPubMedPubMedCentral Miraldi Utz V, Longmuir PW, Olson SQ, Wang RJ, Drack K. Presentation of TRPM1-Associated congenital stationary night blindness in children. JAMA Ophthalmol. 2018;136:389–98.CrossRefPubMedPubMedCentral
24.
go back to reference Smith EL 3rd, Duncan FD. Refractive-error changesin kitten eyes produced by chronic on-channel blockade. Vis Res. 1991;31:833–44.CrossRefPubMed Smith EL 3rd, Duncan FD. Refractive-error changesin kitten eyes produced by chronic on-channel blockade. Vis Res. 1991;31:833–44.CrossRefPubMed
25.
go back to reference Hendriks M, Buitendijk VV, Polling GHS, Meester-Smoor JR, Hofman MA A, RD5000 Consortium, Kamermans M, van den Ingeborgh L. Klaver CCW Development of refractive errors-what can we learn from inherited retinal dystrophies? Am J Ophthalmol. 2017;182:81–9.CrossRefPubMed Hendriks M, Buitendijk VV, Polling GHS, Meester-Smoor JR, Hofman MA A, RD5000 Consortium, Kamermans M, van den Ingeborgh L. Klaver CCW Development of refractive errors-what can we learn from inherited retinal dystrophies? Am J Ophthalmol. 2017;182:81–9.CrossRefPubMed
26.
go back to reference Schneider FM, Behrendt MF, Oberwinkler M. Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells. Eur J Cell Biol. 2015;94:420–7.CrossRefPubMed Schneider FM, Behrendt MF, Oberwinkler M. Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells. Eur J Cell Biol. 2015;94:420–7.CrossRefPubMed
Metadata
Title
Clinical and genetic studies for a cohort of patients with congenital stationary night blindness
Authors
Lijuan Huang
Xueqing Bai
Yan Xie
Yunyu Zhou
Jin Wu
Ningdong Li
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2024
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-024-03091-3

Other articles of this Issue 1/2024

Orphanet Journal of Rare Diseases 1/2024 Go to the issue