Skip to main content
Top
Published in: Translational Neurodegeneration 1/2017

Open Access 01-12-2017 | Research

Nicorandil potentiates sodium butyrate induced preconditioning of neurons and enhances their survival upon subsequent treatment with H2O2

Authors: Parisa Tabeshmehr, Haider Kh Husnain, Mahin Salmannejad, Mahsa Sani, Seyed Mojtaba Hosseini, Mohammad Hossein Khorraminejad Shirazi

Published in: Translational Neurodegeneration | Issue 1/2017

Login to get access

Abstract

Background

Extensive loss of donor neural stem cell (NSCs) due to ischemic stress and low rate of differentiation at the site of cell graft are two of the major issues that hamper optimal outcome in NSCs transplantation studies. Given that histone deacetylases (HDACs) modulate various cellular processes by deacetylating histones and non-histone proteins, we hypothesized that combined treatment with small molecules, sodium butyrate (NaB; a known HDAC inhibitor) and nicorandil, will enhance the rate neuronal differentiation of NSCs besides their preconditioning to resist oxidative stress.

Methods

NSCs derived from 14-day old Sprague Dawley rat ganglion eminence were characterized for tri-lineage differentiation. Treatment with 1 mM NaB significantly changed their culture characteristics while continuous treatment for 10 days enhanced their neural differentiation. NaB treatment also preconditioned the cells for their resistance to oxidative stress.

Results

The highest rate of neural differentiation and preconditioning effect was achieved when the NSCs were treated concomitantly with NaB and nicorandil. Cell proliferation assay showed that concomitant treatment with NaB and nicorandil retarded their rate of proliferation.

Conclusion

These data conclude that preconditioning of NSCs with NaB and nicorandil effectively enhances their differentiation capacity besides preconditioning the cells to support their survival under ischemic conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhao Y, Zuo Y, Jiang J, Yan H, Wang X, Huo H, et al. Neural stem cell transplantation combined with erythropoietin for the treatment of spinal cord injury in rats. Exp Thera Med. 2016;12(4):2688–94.CrossRef Zhao Y, Zuo Y, Jiang J, Yan H, Wang X, Huo H, et al. Neural stem cell transplantation combined with erythropoietin for the treatment of spinal cord injury in rats. Exp Thera Med. 2016;12(4):2688–94.CrossRef
2.
go back to reference Lee IH, Huang SS, Chuang CY, Liao KH, Chang LH, Chuang CC, Su YS, Lin HJ, Hsieh JY, Su SH, Lee OK. Delayed epidural transplantation of human induced pluripotent stem cell-derived neural progenitors enhances functional recovery after stroke. Sci Rep. 2017;7(1):1943.CrossRefPubMedPubMedCentral Lee IH, Huang SS, Chuang CY, Liao KH, Chang LH, Chuang CC, Su YS, Lin HJ, Hsieh JY, Su SH, Lee OK. Delayed epidural transplantation of human induced pluripotent stem cell-derived neural progenitors enhances functional recovery after stroke. Sci Rep. 2017;7(1):1943.CrossRefPubMedPubMedCentral
3.
go back to reference Bjugstad KB, Rael LT, Levy S, Carrick M, Mains CW, Slone DS, et al. Oxidation-reduction potential as a biomarker for severity and acute outcome in traumatic brain injury. Oxid Med Cell Longev. 2016;2016:9.CrossRef Bjugstad KB, Rael LT, Levy S, Carrick M, Mains CW, Slone DS, et al. Oxidation-reduction potential as a biomarker for severity and acute outcome in traumatic brain injury. Oxid Med Cell Longev. 2016;2016:9.CrossRef
4.
go back to reference Lu J, Xie L, Liu C, Zhang Q, Sun S. PTEN/PI3k/AKT regulates macrophage polarization in emphysematous mice. Scand J Immunol. 2017;85(6):395-405. doi:10.1111/sji.12545. Lu J, Xie L, Liu C, Zhang Q, Sun S. PTEN/PI3k/AKT regulates macrophage polarization in emphysematous mice. Scand J Immunol. 2017;85(6):395-405. doi:10.​1111/​sji.​12545.
5.
go back to reference Zhou Q, Dalgard CL, Wynder C, Doughty ML. Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult sub-ventricular cells. BMC Neurosci. 2011;12(1):1.CrossRef Zhou Q, Dalgard CL, Wynder C, Doughty ML. Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult sub-ventricular cells. BMC Neurosci. 2011;12(1):1.CrossRef
6.
go back to reference Hsing CH, Hung SK, Chen YC, Wei TS, Sun DP, Wang JJ, et al. Histone deacetylase inhibitor trichostatin a ameliorated endotoxin-induced neuro-inflammation and cognitive dysfunction. Mediat Inflamm. 2015;27:2015. Hsing CH, Hung SK, Chen YC, Wei TS, Sun DP, Wang JJ, et al. Histone deacetylase inhibitor trichostatin a ameliorated endotoxin-induced neuro-inflammation and cognitive dysfunction. Mediat Inflamm. 2015;27:2015.
7.
go back to reference Ziemka-Nalecz M, Jaworska J, Sypecka J, Polowy R, Filipkowski RK, Zalewska T. Sodium butyrate, a Histone Deacetylase inhibitor, exhibits Neuroprotective/Neurogenic effects in a rat model of neonatal hypoxia-ischemia. Mol Neurobiol. 2017;54(7):5300-18. Ziemka-Nalecz M, Jaworska J, Sypecka J, Polowy R, Filipkowski RK, Zalewska T. Sodium butyrate, a Histone Deacetylase inhibitor, exhibits Neuroprotective/Neurogenic effects in a rat model of neonatal hypoxia-ischemia. Mol Neurobiol. 2017;54(7):5300-18.
8.
go back to reference Siebzehnrubl FA, Buslei R, Eyupoglu IY, Seufert S, Hahnen E, Blumcke I. Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells. Exp Brain Res. 2007;176(4):672–8.CrossRefPubMed Siebzehnrubl FA, Buslei R, Eyupoglu IY, Seufert S, Hahnen E, Blumcke I. Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells. Exp Brain Res. 2007;176(4):672–8.CrossRefPubMed
9.
go back to reference Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci. 2015;55(1):7–20.CrossRefPubMed Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci. 2015;55(1):7–20.CrossRefPubMed
10.
go back to reference Fung H, Demple B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell. 2005;17:463–70.CrossRefPubMed Fung H, Demple B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell. 2005;17:463–70.CrossRefPubMed
11.
go back to reference Domenis R, Bergamin N, Gianfranceschi G, Vascotto C, Romanello M, Rigo S, et al. The redox function of APE1 is involved in the differentiation process of stem cells toward a neuronal cell fate. PLoS One. 2014;9(2):e89232.CrossRefPubMedPubMedCentral Domenis R, Bergamin N, Gianfranceschi G, Vascotto C, Romanello M, Rigo S, et al. The redox function of APE1 is involved in the differentiation process of stem cells toward a neuronal cell fate. PLoS One. 2014;9(2):e89232.CrossRefPubMedPubMedCentral
12.
go back to reference Poletto M, Vascotto C, Scognamiglio PL, Lirussi L, Marasco D. Role of the unstructured N-terminal domain of the hAPE1 (human apurinic/apyrimidinic endonuclease-1) in the modulation of its interaction with nucleic acids and NPM1 (nucleophosmin). Biochem J. 2013;452:545–57.CrossRefPubMed Poletto M, Vascotto C, Scognamiglio PL, Lirussi L, Marasco D. Role of the unstructured N-terminal domain of the hAPE1 (human apurinic/apyrimidinic endonuclease-1) in the modulation of its interaction with nucleic acids and NPM1 (nucleophosmin). Biochem J. 2013;452:545–57.CrossRefPubMed
14.
go back to reference Georgiadis MM, Chen Q, Meng J, Guo C, Wireman R, Reed A, et al. Small molecule activation of apurinic/apyrimidinic endonuclease 1 reduces DNA damage induced by cisplatin in cultured sensory neurons. DNA Repair (Amst). 2016;41:32–41.CrossRef Georgiadis MM, Chen Q, Meng J, Guo C, Wireman R, Reed A, et al. Small molecule activation of apurinic/apyrimidinic endonuclease 1 reduces DNA damage induced by cisplatin in cultured sensory neurons. DNA Repair (Amst). 2016;41:32–41.CrossRef
15.
go back to reference Zhou Y, Wang Q, Evers BM, Chung DH. Signal transduction pathways involved in oxidative stress-induced intestinal epithelial cell apoptosis. Pediatric Res. 2005;58(6):1192–7.CrossRef Zhou Y, Wang Q, Evers BM, Chung DH. Signal transduction pathways involved in oxidative stress-induced intestinal epithelial cell apoptosis. Pediatric Res. 2005;58(6):1192–7.CrossRef
16.
go back to reference So EC, Chen YC, Wang SC, Wu CC, Huang MC, Lai MS, et al. Midazolam regulated caspase pathway, endoplasmic reticulum stress, autophagy, and cell cycle to induce apoptosis in MA-10 mouse Leydig tumor cells. Onco Targets Ther. 2016;9:2519.PubMedPubMedCentral So EC, Chen YC, Wang SC, Wu CC, Huang MC, Lai MS, et al. Midazolam regulated caspase pathway, endoplasmic reticulum stress, autophagy, and cell cycle to induce apoptosis in MA-10 mouse Leydig tumor cells. Onco Targets Ther. 2016;9:2519.PubMedPubMedCentral
17.
18.
go back to reference Amariglio N, Hirshberg A, Scheithauer BW, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6:e1000029.CrossRefPubMedPubMedCentral Amariglio N, Hirshberg A, Scheithauer BW, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6:e1000029.CrossRefPubMedPubMedCentral
19.
go back to reference Radtke C, Redeker J, Jokuszies A, et al. In vivo transformation of neural stem cells following transplantation in the injured nervous system. J Reconstr Microsurg. 2010;26:211–2.CrossRefPubMed Radtke C, Redeker J, Jokuszies A, et al. In vivo transformation of neural stem cells following transplantation in the injured nervous system. J Reconstr Microsurg. 2010;26:211–2.CrossRefPubMed
20.
go back to reference Wu W, He Q, Li X, Zhang X, Lu A, Ge R, et al. Long-term cultured human neural stem cells undergo spontaneous transformation to tumor-initiating cells. Int J Biol Sci. 2011;7:892–901.CrossRefPubMedPubMedCentral Wu W, He Q, Li X, Zhang X, Lu A, Ge R, et al. Long-term cultured human neural stem cells undergo spontaneous transformation to tumor-initiating cells. Int J Biol Sci. 2011;7:892–901.CrossRefPubMedPubMedCentral
21.
go back to reference Kaus A, Widera D, Kassmer S, Peter J, Zaenker K, Kaltschmidt C, et al. Neural stem cells adopt tumorigenic properties by constitutively activated NF-kappaB and subsequent VEGF up-regulation. Stem Cells Dev. 2010;19(7):999–1015.CrossRefPubMed Kaus A, Widera D, Kassmer S, Peter J, Zaenker K, Kaltschmidt C, et al. Neural stem cells adopt tumorigenic properties by constitutively activated NF-kappaB and subsequent VEGF up-regulation. Stem Cells Dev. 2010;19(7):999–1015.CrossRefPubMed
22.
go back to reference Zhao LN, Wang P, Liu YH, Cai H, Ma J, Liu LB, Xi Z, Li ZQ, Liu XB, Xue YX. Mir-383 inhibits proliferation, migration and angiogenesis of glioma-exposed endothelial cells in vitro via vegf-mediated fak and src signaling pathways. Cellular signalling. 2017;30:142-53. Zhao LN, Wang P, Liu YH, Cai H, Ma J, Liu LB, Xi Z, Li ZQ, Liu XB, Xue YX. Mir-383 inhibits proliferation, migration and angiogenesis of glioma-exposed endothelial cells in vitro via vegf-mediated fak and src signaling pathways. Cellular signalling. 2017;30:142-53.
23.
go back to reference Lange C, Garcia MT, Decimo I, Bifari F, Eelen G, Quaegebeur A, et al. Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO J. 2016;35(9):924–41.CrossRefPubMedPubMedCentral Lange C, Garcia MT, Decimo I, Bifari F, Eelen G, Quaegebeur A, et al. Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO J. 2016;35(9):924–41.CrossRefPubMedPubMedCentral
24.
go back to reference Lim S, Kaldis P. Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells. Stem Cells. 2012;30:1509–20.CrossRefPubMed Lim S, Kaldis P. Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells. Stem Cells. 2012;30:1509–20.CrossRefPubMed
25.
go back to reference Dokmanovic M, Clarke C, Marks PA. Histone Deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5(10):981–9.CrossRefPubMed Dokmanovic M, Clarke C, Marks PA. Histone Deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5(10):981–9.CrossRefPubMed
26.
go back to reference Lagger G. O’Carro ll D, Rembold M et al. essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 2002;21:2672–81.CrossRefPubMedPubMedCentral Lagger G. O’Carro ll D, Rembold M et al. essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 2002;21:2672–81.CrossRefPubMedPubMedCentral
27.
go back to reference Marks PA, Jiang X. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle. 2005;4(4):549–51.CrossRefPubMed Marks PA, Jiang X. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle. 2005;4(4):549–51.CrossRefPubMed
29.
go back to reference Elmi M, Matsumoto Y, Zeng ZJ, Lakshminarasimhan P, Yang W, Uemura A, et al. TLX activates MASH1 forinduction of neuronal lineage commitment of adult hippocampal neuroprogenitors. Mol Cell Neurosci. 2010;45(2):121–31.CrossRefPubMed Elmi M, Matsumoto Y, Zeng ZJ, Lakshminarasimhan P, Yang W, Uemura A, et al. TLX activates MASH1 forinduction of neuronal lineage commitment of adult hippocampal neuroprogenitors. Mol Cell Neurosci. 2010;45(2):121–31.CrossRefPubMed
30.
31.
go back to reference Gregory PD, Wagner K, Horz W. Histone acetylation and chromatin remodeling. Exp Cell Res. 2001;265:195–202.CrossRefPubMed Gregory PD, Wagner K, Horz W. Histone acetylation and chromatin remodeling. Exp Cell Res. 2001;265:195–202.CrossRefPubMed
32.
go back to reference Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003;983:84–100.CrossRefPubMed Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003;983:84–100.CrossRefPubMed
33.
go back to reference Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A. 2000;97:10014–9.CrossRefPubMedPubMedCentral Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A. 2000;97:10014–9.CrossRefPubMedPubMedCentral
34.
go back to reference Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A. 2004;101(47):16659–64.CrossRefPubMedPubMedCentral Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A. 2004;101(47):16659–64.CrossRefPubMedPubMedCentral
35.
go back to reference Chu W, Yuan J, Huang L, Xiang X, Zhu H, Chen F, et al. Valproic acid arrests proliferation but promotes neuronal differentiation of adult spinal NSPCs from SCI rats. Neurochem Res. 2015;40(7):1472–86.CrossRefPubMed Chu W, Yuan J, Huang L, Xiang X, Zhu H, Chen F, et al. Valproic acid arrests proliferation but promotes neuronal differentiation of adult spinal NSPCs from SCI rats. Neurochem Res. 2015;40(7):1472–86.CrossRefPubMed
36.
go back to reference Biermann J, Boyle J, Pielen A, Lagrè WA. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells. Mol Vis. 2011;17:395–403.PubMedPubMedCentral Biermann J, Boyle J, Pielen A, Lagrè WA. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells. Mol Vis. 2011;17:395–403.PubMedPubMedCentral
37.
go back to reference Sun J, Wang F, Li H, Zhang H, Jin J, Chen W, et al. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. Biomed Res Int. 2015 May;7:2015. Sun J, Wang F, Li H, Zhang H, Jin J, Chen W, et al. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. Biomed Res Int. 2015 May;7:2015.
38.
go back to reference Valvassori SS, Dal-Pont GC, Steckert AV, Varela RB, Lopes-Borges J, Mariot E, et al. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain. Psychiatry Res. 2016;235:154–9.CrossRefPubMed Valvassori SS, Dal-Pont GC, Steckert AV, Varela RB, Lopes-Borges J, Mariot E, et al. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain. Psychiatry Res. 2016;235:154–9.CrossRefPubMed
39.
go back to reference Georgiadis MM, Luo M, Gaur RK, Delaplane S, Li X, Kelley MR. Evolution of the redox function in mammalian apurinic/apyrimidinic endonuclease. Mutat Res. 2008;643:54–63.CrossRefPubMedPubMedCentral Georgiadis MM, Luo M, Gaur RK, Delaplane S, Li X, Kelley MR. Evolution of the redox function in mammalian apurinic/apyrimidinic endonuclease. Mutat Res. 2008;643:54–63.CrossRefPubMedPubMedCentral
40.
go back to reference Luo M, Zhang J, He H, Su D, Chen Q, Gross ML, et al. Characterization of the redox activity and disulfide bond formation in apurinic/apyrimidinic endonuclease. Biochemist. 2012;51:695–705.CrossRef Luo M, Zhang J, He H, Su D, Chen Q, Gross ML, et al. Characterization of the redox activity and disulfide bond formation in apurinic/apyrimidinic endonuclease. Biochemist. 2012;51:695–705.CrossRef
41.
go back to reference Park MS, Kim CS, Joo HK, Lee YR, Kang G, Kim SJ, et al. Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells. Mol Cells. 2013;36:439–45.CrossRefPubMedPubMedCentral Park MS, Kim CS, Joo HK, Lee YR, Kang G, Kim SJ, et al. Cytoplasmic localization and redox cysteine residue of APE1/Ref-1 are associated with its anti-inflammatory activity in cultured endothelial cells. Mol Cells. 2013;36:439–45.CrossRefPubMedPubMedCentral
42.
go back to reference Idris NM1, Ashraf M, Ahmed RP, Shujia J, Haider KH. Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress. Regen Med. 2012;7(1):47–57.CrossRefPubMed Idris NM1, Ashraf M, Ahmed RP, Shujia J, Haider KH. Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress. Regen Med. 2012;7(1):47–57.CrossRefPubMed
43.
go back to reference Niagara MI, Haider HK, Jiang S, Ashraf M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res. 2007;100(4):545–55.CrossRefPubMed Niagara MI, Haider HK, Jiang S, Ashraf M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res. 2007;100(4):545–55.CrossRefPubMed
44.
go back to reference Xiang J, Wan C, Guo R, Guo D. Is hydrogen peroxide a suitable apoptosis inducer for all cell types? Biomed Res Int. Volume 2016, Article ID 7343965, 6-pages. http://dx.doi.org/10.1155/2016/7343965. Xiang J, Wan C, Guo R, Guo D. Is hydrogen peroxide a suitable apoptosis inducer for all cell types? Biomed Res Int. Volume 2016, Article ID 7343965, 6-pages. http://​dx.​doi.​org/​10.​1155/​2016/​7343965.
Metadata
Title
Nicorandil potentiates sodium butyrate induced preconditioning of neurons and enhances their survival upon subsequent treatment with H2O2
Authors
Parisa Tabeshmehr
Haider Kh Husnain
Mahin Salmannejad
Mahsa Sani
Seyed Mojtaba Hosseini
Mohammad Hossein Khorraminejad Shirazi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2017
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-017-0097-1

Other articles of this Issue 1/2017

Translational Neurodegeneration 1/2017 Go to the issue