Skip to main content
Top
Published in: Neurotoxicity Research 4/2016

Open Access 01-11-2016 | Original Article

Neurotoxic Effects of 5-MeO-DIPT: A Psychoactive Tryptamine Derivative in Rats

Authors: Karolina Noworyta-Sokołowska, Katarzyna Kamińska, Grzegorz Kreiner, Zofia Rogóż, Krystyna Gołembiowska

Published in: Neurotoxicity Research | Issue 4/2016

Login to get access

Abstract

5-Methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT, ‘foxy’) is one of the most popular tryptamine hallucinogens in the illicit drug market. It produces serious adverse effects, but its pharmacological profile is not well recognized. In vitro data have shown that 5-MeO-DIPT acts as a potent serotonin transporter (SERT) inhibitor and displays high affinity at serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptors. In this study, using microdialysis in freely moving rats, we examined the effect of 5-MeO-DIPT on dopamine (DA), serotonin (5-HT), and glutamate release in the rat striatum, nucleus accumbens, and frontal cortex. In search of a possible neurotoxic effect of 5-MeO-DIPT, we measured DA and 5-HT tissue content in the above rat brain regions and also determined the oxidative DNA damage with the comet assay. Moreover, we tested drug-elicited head-twitch response and a forepaw treading induced by 8-OH-DPAT. 5-MeO-DIPT at doses of 5, 10, and 20 mg/kg increased extracellular DA, 5-HT, and glutamate level but the differences in the potency were found between brain regions. 5-MeO-DIPT increased 5-HT and decreased 5-HIAA tissue content which seems to result from SERT inhibition. On the other hand, a decrease in DA, DOPAC, and HVA tissue contents suggests possible adaptive changes in DA turnover or damage of DA terminals by 5-MeO-DIPT. DNA single and double-strand breaks persisted up to 60 days after the treatment, indicating marked neurotoxicity of 5-MeO-DIPT. The induction of head-twitch response and potentiation of forepaw treading induced by 8-OH-DPAT indicate that hallucinogenic activity seems to be mediated through the stimulation of 5-HT2A and 5-HT1A receptors by 5-MeO-DIPT.
Literature
go back to reference Aghajanian GH, Marek GJ (1997) Serotonin induces excitatory postsynaptic in apical dendrites of neocortical pyramidal cells. Neuropsychopharmacology 36:589–599 Aghajanian GH, Marek GJ (1997) Serotonin induces excitatory postsynaptic in apical dendrites of neocortical pyramidal cells. Neuropsychopharmacology 36:589–599
go back to reference Aghajanian GH, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–171CrossRefPubMed Aghajanian GH, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–171CrossRefPubMed
go back to reference Araneda R, Andrade R (1991) 5-hydroxytryptamine 2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40:399–412CrossRefPubMed Araneda R, Andrade R (1991) 5-hydroxytryptamine 2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40:399–412CrossRefPubMed
go back to reference Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA 104:9870–9875CrossRefPubMedPubMedCentral Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA 104:9870–9875CrossRefPubMedPubMedCentral
go back to reference Blough BE, Landavazo A, Decker AM, Partilla JS, Baumann MH, Rothman RB (2014) Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology 231:4135–4144CrossRefPubMedPubMedCentral Blough BE, Landavazo A, Decker AM, Partilla JS, Baumann MH, Rothman RB (2014) Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology 231:4135–4144CrossRefPubMedPubMedCentral
go back to reference Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci 21:9917–9929PubMed Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci 21:9917–9929PubMed
go back to reference Chambers JJ, Kurrasch-Orbaugh DM, Parker MA, Nichols DE (2001) Enantiospecific synthesis and pharmacological evaluation of a series of super-potent, conformationally restricted 5-HT(2A/2C) receptor agonists. J Med Chem 44:1003–1010CrossRefPubMed Chambers JJ, Kurrasch-Orbaugh DM, Parker MA, Nichols DE (2001) Enantiospecific synthesis and pharmacological evaluation of a series of super-potent, conformationally restricted 5-HT(2A/2C) receptor agonists. J Med Chem 44:1003–1010CrossRefPubMed
go back to reference Colpaert FC, Janssen PA (1983) A characterization of LSD-antagonist effects of pirenperone in the rat. Neuropharmacology 22:1001–1005CrossRefPubMed Colpaert FC, Janssen PA (1983) A characterization of LSD-antagonist effects of pirenperone in the rat. Neuropharmacology 22:1001–1005CrossRefPubMed
go back to reference Compton DM, Selinger MC, Westman E, Otero P (2011) Differentiation of MDMA or 5-MeO-DIPT induced cognitive deficits in rat following adolescent exposure. Psych Neurosci 4:157–169CrossRef Compton DM, Selinger MC, Westman E, Otero P (2011) Differentiation of MDMA or 5-MeO-DIPT induced cognitive deficits in rat following adolescent exposure. Psych Neurosci 4:157–169CrossRef
go back to reference De Deurwaerdere P, Navailles S, Berg KA, Clarke WP, Spampinato U (2004) Constitutive activity of the serotonergic2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. Neuroscience 24:3235–3241PubMed De Deurwaerdere P, Navailles S, Berg KA, Clarke WP, Spampinato U (2004) Constitutive activity of the serotonergic2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. Neuroscience 24:3235–3241PubMed
go back to reference deMontigny C, Aghajanian GK (1977) Preferential action of 5-methoxytryptamine and 5-methoxydimethyltryptamine on presynaptic serotonin receptors: a comparative iontophoretic study with LSD and serotonin. Neuropharmacology 16:811–818CrossRef deMontigny C, Aghajanian GK (1977) Preferential action of 5-methoxytryptamine and 5-methoxydimethyltryptamine on presynaptic serotonin receptors: a comparative iontophoretic study with LSD and serotonin. Neuropharmacology 16:811–818CrossRef
go back to reference Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1999) SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 38:1195–1205CrossRefPubMed Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E (1999) SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 38:1195–1205CrossRefPubMed
go back to reference Drug Enforcement Administration, Office of Diversion Control, Drug and Chemical Evaluation Section, April 2013 Drug Enforcement Administration, Office of Diversion Control, Drug and Chemical Evaluation Section, April 2013
go back to reference Fantegrossi WE, Harrington AW, Kiessel CL, Eckler JR, Rabin JR, Winter JC, Coop A, Rice KC, Woods JH (2006) Hallucinogen-like actions of 5-methoxy-N, N-diisopropyltryptamine in mice and rats. Pharmacol Biochem Behav 83:122–129CrossRefPubMed Fantegrossi WE, Harrington AW, Kiessel CL, Eckler JR, Rabin JR, Winter JC, Coop A, Rice KC, Woods JH (2006) Hallucinogen-like actions of 5-methoxy-N, N-diisopropyltryptamine in mice and rats. Pharmacol Biochem Behav 83:122–129CrossRefPubMed
go back to reference Fantegrossi WE, Somoneau J, Cohen MS, Zimmerman SM, Henson CM, Rice KC, Woods JH (2010) Interaction of 5-HT2A and 5-HT2C receptors in DOI-elicited head twitch behavior in mice. J Pharmacol Exp Ther 335:728–734CrossRefPubMedPubMedCentral Fantegrossi WE, Somoneau J, Cohen MS, Zimmerman SM, Henson CM, Rice KC, Woods JH (2010) Interaction of 5-HT2A and 5-HT2C receptors in DOI-elicited head twitch behavior in mice. J Pharmacol Exp Ther 335:728–734CrossRefPubMedPubMedCentral
go back to reference Frenzilli G, Ferrucci M, Giorgi FS, Blandini F, Nigro M, Ruggieri S, Murri L, Paparelli A, Fornai F (2007) DNA fragmentation and oxidative stress in the hippocampal formation: a bridge between 3,4-methylenedioxymethamphetamine (ecstasy) intake and long-lasting behavioral alterations. Behav Pharmacol 18:471–481CrossRefPubMed Frenzilli G, Ferrucci M, Giorgi FS, Blandini F, Nigro M, Ruggieri S, Murri L, Paparelli A, Fornai F (2007) DNA fragmentation and oxidative stress in the hippocampal formation: a bridge between 3,4-methylenedioxymethamphetamine (ecstasy) intake and long-lasting behavioral alterations. Behav Pharmacol 18:471–481CrossRefPubMed
go back to reference Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35:2505–2511CrossRefPubMed Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35:2505–2511CrossRefPubMed
go back to reference González-Maeso J, Weisstaub NV, Zhou M, Chan P, Iviv L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452CrossRefPubMed González-Maeso J, Weisstaub NV, Zhou M, Chan P, Iviv L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452CrossRefPubMed
go back to reference Halberstadt AL (2015) Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 277:99–120CrossRefPubMed Halberstadt AL (2015) Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 277:99–120CrossRefPubMed
go back to reference Halberstadt AL, van der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA, Powell SB (2009) 5-HT2A and 5-HT2C receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacol 34:1958–1967CrossRef Halberstadt AL, van der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA, Powell SB (2009) 5-HT2A and 5-HT2C receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacol 34:1958–1967CrossRef
go back to reference Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658CrossRefPubMed Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658CrossRefPubMed
go back to reference Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Brit J Pharmacol 142:231–255CrossRef Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Brit J Pharmacol 142:231–255CrossRef
go back to reference Hamon M, Gozlan H, El Mestikawy S, Emerit MB, Bolanos AF, Schechter L (1990) The central 5-HT1A receptors: pharmacological, biochemical, functional, and regulatory properties. Ann NY Acad Sci 600:114–129CrossRefPubMed Hamon M, Gozlan H, El Mestikawy S, Emerit MB, Bolanos AF, Schechter L (1990) The central 5-HT1A receptors: pharmacological, biochemical, functional, and regulatory properties. Ann NY Acad Sci 600:114–129CrossRefPubMed
go back to reference Johnson Z, Venters J, Guarraci FA, Zewail-Foote M (2015) Methamphetamine induces DNA damage in specific regions of the female rat brain. Clin Exp Pharmacol Physiol 42:570–575CrossRefPubMed Johnson Z, Venters J, Guarraci FA, Zewail-Foote M (2015) Methamphetamine induces DNA damage in specific regions of the female rat brain. Clin Exp Pharmacol Physiol 42:570–575CrossRefPubMed
go back to reference Kanamori T, Kuwayama K, Tsujikawa K, Miyaguchi H, Iwata Y, Inoue H, Kishi T (2006) In vivo metabolism of 5-Methoxy-NN-diisopropyltryptamine in rat. J Health Science 52:425–430CrossRef Kanamori T, Kuwayama K, Tsujikawa K, Miyaguchi H, Iwata Y, Inoue H, Kishi T (2006) In vivo metabolism of 5-Methoxy-NN-diisopropyltryptamine in rat. J Health Science 52:425–430CrossRef
go back to reference Leysen JE, Niemegeers CJ, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21:301–314PubMed Leysen JE, Niemegeers CJ, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21:301–314PubMed
go back to reference Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN (2002) memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid. Proc Natl Acad Sci USA 99:2356–2361CrossRefPubMedPubMedCentral Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN (2002) memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid. Proc Natl Acad Sci USA 99:2356–2361CrossRefPubMedPubMedCentral
go back to reference Lucas G, Spampinato U (2000) Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74:693–701CrossRefPubMed Lucas G, Spampinato U (2000) Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74:693–701CrossRefPubMed
go back to reference Marquis KL, Sabb AL, Logue SF, Brennan JA, Piesla MJ, Comery TA, Grauer SM, Ashby CR Jr, Nguyen HQ, Dawson LA, Barret JE, Stack G, Meltzer HY, Harrison BL, Rosenzweig-Lipson S (2007) WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,71hi]indole]:a novel 5-hydroxytryptamine 2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther 320:486–496CrossRefPubMed Marquis KL, Sabb AL, Logue SF, Brennan JA, Piesla MJ, Comery TA, Grauer SM, Ashby CR Jr, Nguyen HQ, Dawson LA, Barret JE, Stack G, Meltzer HY, Harrison BL, Rosenzweig-Lipson S (2007) WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,71hi]indole]:a novel 5-hydroxytryptamine 2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther 320:486–496CrossRefPubMed
go back to reference Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21:9856–9866PubMed Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21:9856–9866PubMed
go back to reference Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA (2004) Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res 1023:134–140CrossRefPubMed Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA (2004) Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res 1023:134–140CrossRefPubMed
go back to reference Nagai F, Nonaka R, Satoh K, Kamimura H (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559:132–137CrossRefPubMed Nagai F, Nonaka R, Satoh K, Kamimura H (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559:132–137CrossRefPubMed
go back to reference Nakagawa T, Kaneko S (2008) Neuropsychotoxicity of abused drugs: molecular and neural mechanisms of neuropsychotoxicity induced by methamphetamine, 3,4-methylenedioxymethamphetamine (Ecstasy), and 5-Methoxy-N, N-diisopropyltryptamine (Foxy). J Pharmacol Sci 106:2–8CrossRefPubMed Nakagawa T, Kaneko S (2008) Neuropsychotoxicity of abused drugs: molecular and neural mechanisms of neuropsychotoxicity induced by methamphetamine, 3,4-methylenedioxymethamphetamine (Ecstasy), and 5-Methoxy-N, N-diisopropyltryptamine (Foxy). J Pharmacol Sci 106:2–8CrossRefPubMed
go back to reference Nelson DL, Lucaites VL, Wainscott DB, Glennon RA (1999) Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, 5-HT2B and 5-HHT2C receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 359:1–6CrossRef Nelson DL, Lucaites VL, Wainscott DB, Glennon RA (1999) Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, 5-HT2B and 5-HHT2C receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 359:1–6CrossRef
go back to reference Nichols DE (1997) Role of serotonergic neurons and 5-HT receptors in the action of hallucinogens. In: Abumgarten HG, Goethert M (eds) Serotonergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag, Berlin, pp 563–585 Nichols DE (1997) Role of serotonergic neurons and 5-HT receptors in the action of hallucinogens. In: Abumgarten HG, Goethert M (eds) Serotonergic Neurons and 5-HT Receptors in the CNS. Springer-Verlag, Berlin, pp 563–585
go back to reference O’Brien CP (2001) Drug addiction and drug abuse. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG (eds) Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 5-HT2A heteroceptors on thalamocortical glutamatergic neurons. McGraw-Hill, New York, pp 8846–8852 O’Brien CP (2001) Drug addiction and drug abuse. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG (eds) Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 5-HT2A heteroceptors on thalamocortical glutamatergic neurons. McGraw-Hill, New York, pp 8846–8852
go back to reference Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego
go back to reference Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. serotonin-1 receptors. Brain Res 346:205–230CrossRefPubMed Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. serotonin-1 receptors. Brain Res 346:205–230CrossRefPubMed
go back to reference Pehek EA, McFarlane HG, Maguschak K, Price B, Pluto CP (2001) M100,907, a selective 5-HT2A antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 888:51–59CrossRefPubMed Pehek EA, McFarlane HG, Maguschak K, Price B, Pluto CP (2001) M100,907, a selective 5-HT2A antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 888:51–59CrossRefPubMed
go back to reference Puig MV, Celada P, az-Mataix L, Artigas F (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors; relationship to thalamocortical afferents. Cereb Cortex 13:870–882CrossRefPubMed Puig MV, Celada P, az-Mataix L, Artigas F (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors; relationship to thalamocortical afferents. Cereb Cortex 13:870–882CrossRefPubMed
go back to reference Sakaue M, Somboonthum P, Nishihara B, Koyama Y, Hashimoto H, Baba A, Matsuda T (2000) Postsynaptic 5-Hydroxytryptamine1A receptor activation increases in vivo dopamine release in rat prefrontal cortex. Brit J Pharmacol 129:1028–1034CrossRef Sakaue M, Somboonthum P, Nishihara B, Koyama Y, Hashimoto H, Baba A, Matsuda T (2000) Postsynaptic 5-Hydroxytryptamine1A receptor activation increases in vivo dopamine release in rat prefrontal cortex. Brit J Pharmacol 129:1028–1034CrossRef
go back to reference Sanchez C, Arnt J, Moltzen E (1996) Assesment of relative efficacies of 5-HT1A receptor ligands by means of in vivo animal modeles. Eur J Pharmacol 315:245–254CrossRefPubMed Sanchez C, Arnt J, Moltzen E (1996) Assesment of relative efficacies of 5-HT1A receptor ligands by means of in vivo animal modeles. Eur J Pharmacol 315:245–254CrossRefPubMed
go back to reference Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonina1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109CrossRefPubMed Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonina1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109CrossRefPubMed
go back to reference Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112PubMed Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112PubMed
go back to reference Scruggs JL, Schmidt D, Deutch AY (2003) The hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-amoinopropane (DOI) increases cortical extracellular glutamate levels in rats. Neurosci Lett 346:137–140CrossRefPubMed Scruggs JL, Schmidt D, Deutch AY (2003) The hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-amoinopropane (DOI) increases cortical extracellular glutamate levels in rats. Neurosci Lett 346:137–140CrossRefPubMed
go back to reference Shulgin AT, Carter MF (1980) N, N-Diisopropyltryptamine (DIPT) and 5-methoxy-N, N-diisopropyltryptamine (5-MeO-DIPT), two orally active tryptamine analogs with CNS activity. Comm Psychopharmacol 4:363–369 Shulgin AT, Carter MF (1980) N, N-Diisopropyltryptamine (DIPT) and 5-methoxy-N, N-diisopropyltryptamine (5-MeO-DIPT), two orally active tryptamine analogs with CNS activity. Comm Psychopharmacol 4:363–369
go back to reference Sipes TE, Geyer MA (1995) DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT2A and not by 5-HT2C receptors. Behav Pharnmacol 6:839–842 Sipes TE, Geyer MA (1995) DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT2A and not by 5-HT2C receptors. Behav Pharnmacol 6:839–842
go back to reference Skelton MR, Schaefer TL, Herring NR, Grace CE, Vorhees CV, Williams MT (2009) Comparison of the developmental effects of 5-methoxy-N, N-diisopropyltryptamine (Foxy) to (±)-3,4-methylenedioxymethamphetamine (ecstasy) in rats. Psychopharmacology 204:287–297CrossRefPubMedPubMedCentral Skelton MR, Schaefer TL, Herring NR, Grace CE, Vorhees CV, Williams MT (2009) Comparison of the developmental effects of 5-methoxy-N, N-diisopropyltryptamine (Foxy) to (±)-3,4-methylenedioxymethamphetamine (ecstasy) in rats. Psychopharmacology 204:287–297CrossRefPubMedPubMedCentral
go back to reference Sloviter RS, Drust EG, Connor JD (1978) Specificity of a rat behavioral model for serotonin receptor activation. J Pharmacol Exp Ther 206:339–347PubMed Sloviter RS, Drust EG, Connor JD (1978) Specificity of a rat behavioral model for serotonin receptor activation. J Pharmacol Exp Ther 206:339–347PubMed
go back to reference Smith LM, Peroutka SJ (1986) Differential effects of 5-hydroxytryptamine 1a selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav 24:1513–1519CrossRefPubMed Smith LM, Peroutka SJ (1986) Differential effects of 5-hydroxytryptamine 1a selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav 24:1513–1519CrossRefPubMed
go back to reference Smith RL, Canton H, Barret RJ, Sanders-Bush E (1998) Agonist properties of N, N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. Pharmacol Biochem Behav 61:232–330CrossRef Smith RL, Canton H, Barret RJ, Sanders-Bush E (1998) Agonist properties of N, N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. Pharmacol Biochem Behav 61:232–330CrossRef
go back to reference Smith RL, Barret RJ, Sanders-Bush E (1999) Mechanism of tolerance development to 2,5-dimethoxy-4-iodoamphetamine in rats: down-regulation of the 5-HT2A, but not 5-HT2C, receptor. Psychopharmacol (Berl) 144:248–254CrossRef Smith RL, Barret RJ, Sanders-Bush E (1999) Mechanism of tolerance development to 2,5-dimethoxy-4-iodoamphetamine in rats: down-regulation of the 5-HT2A, but not 5-HT2C, receptor. Psychopharmacol (Berl) 144:248–254CrossRef
go back to reference Sogawa C, Sogawa N, Tagawa J, Fujino A, Ohyama K, Asanuma M, Funada M, Kitayama S (2007) 5-Methoxy-N, N-diisopropyltryptamine (Foxy), a selective and high affinity inhibitor of serotonin transporter. Toxicol Lett 170:75–82CrossRefPubMed Sogawa C, Sogawa N, Tagawa J, Fujino A, Ohyama K, Asanuma M, Funada M, Kitayama S (2007) 5-Methoxy-N, N-diisopropyltryptamine (Foxy), a selective and high affinity inhibitor of serotonin transporter. Toxicol Lett 170:75–82CrossRefPubMed
go back to reference Tanda G, Caroni E, Frau R, Di Chiara G (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology 115:288CrossRef Tanda G, Caroni E, Frau R, Di Chiara G (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology 115:288CrossRef
go back to reference Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharamcology (Berl) 94:213–216 Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharamcology (Berl) 94:213–216
go back to reference Vazquez-Borsetti P, Cortes R, Artigas F (2009) Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cereb Cortex 19:1678–1686CrossRefPubMed Vazquez-Borsetti P, Cortes R, Artigas F (2009) Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cereb Cortex 19:1678–1686CrossRefPubMed
go back to reference Vickers SP, Easton N, Malcolm CS, Allen NH, Porter RH, Bickerdike MJ et al (2001) Modulation of 5-HT2A receptor-mediated head-twitch behaviour in the rat by 5-HT2C receptor agonists. Pharmacol Biochem Behav 69:643–652CrossRefPubMed Vickers SP, Easton N, Malcolm CS, Allen NH, Porter RH, Bickerdike MJ et al (2001) Modulation of 5-HT2A receptor-mediated head-twitch behaviour in the rat by 5-HT2C receptor agonists. Pharmacol Biochem Behav 69:643–652CrossRefPubMed
go back to reference Wędzony K, Maćkowiak M, Fijał K, Gołembiowska K (1996) Ipsapirone enhances the dopamine outflow via 5-HT1A receptors in the rat prefrontal cortex. Eur J Pharmacol 305:73–78CrossRefPubMed Wędzony K, Maćkowiak M, Fijał K, Gołembiowska K (1996) Ipsapirone enhances the dopamine outflow via 5-HT1A receptors in the rat prefrontal cortex. Eur J Pharmacol 305:73–78CrossRefPubMed
go back to reference Wettstein JG, Host M, Hitchcock JM (1999) Selectivity of action of typical and atypical anti-psychotic drugs as antagonists of the behavioral effects of 1-[2,5-dimethoxy-4-iodophenyll]-2-aminopropane (DOI). Prog Neuropsychopharmacol Biol Psychiatry 23:533–544CrossRefPubMed Wettstein JG, Host M, Hitchcock JM (1999) Selectivity of action of typical and atypical anti-psychotic drugs as antagonists of the behavioral effects of 1-[2,5-dimethoxy-4-iodophenyll]-2-aminopropane (DOI). Prog Neuropsychopharmacol Biol Psychiatry 23:533–544CrossRefPubMed
go back to reference Williams MT, Herring NR, Schaefer TL, Skelton MR, Campbell NG, Lipton JW, McCrea AE, Vorhees CV (2007) Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine (‘Foxy’) to adult rats: a new drug of abuse. Neuropsychopharmacol 32:1404–1420CrossRef Williams MT, Herring NR, Schaefer TL, Skelton MR, Campbell NG, Lipton JW, McCrea AE, Vorhees CV (2007) Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine (‘Foxy’) to adult rats: a new drug of abuse. Neuropsychopharmacol 32:1404–1420CrossRef
go back to reference Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706PubMed Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706PubMed
go back to reference Yan QS (2000) Activation of 5-HT2A/2C receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull 51:75–81CrossRefPubMed Yan QS (2000) Activation of 5-HT2A/2C receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull 51:75–81CrossRefPubMed
Metadata
Title
Neurotoxic Effects of 5-MeO-DIPT: A Psychoactive Tryptamine Derivative in Rats
Authors
Karolina Noworyta-Sokołowska
Katarzyna Kamińska
Grzegorz Kreiner
Zofia Rogóż
Krystyna Gołembiowska
Publication date
01-11-2016
Publisher
Springer US
Published in
Neurotoxicity Research / Issue 4/2016
Print ISSN: 1029-8428
Electronic ISSN: 1476-3524
DOI
https://doi.org/10.1007/s12640-016-9654-0

Other articles of this Issue 4/2016

Neurotoxicity Research 4/2016 Go to the issue