Skip to main content
Top
Published in: Neurotoxicity Research 4/2016

01-11-2016 | Original Article

Characterization of the Kynurenine Pathway in CD8+ Human Primary Monocyte-Derived Dendritic Cells

Authors: Nady Braidy, Helene Rossez, Chai K. Lim, Bat-Erdene Jugder, Bruce J. Brew, Gilles J. Guillemin

Published in: Neurotoxicity Research | Issue 4/2016

Login to get access

Abstract

The kynurenine (KYN) pathway (KP) is a major degradative pathway of the amino acid, l-tryptophan (TRP), that ultimately leads to the anabolism of the essential pyridine nucleotide, nicotinamide adenine dinucleotide. TRP catabolism results in the production of several important metabolites, including the major immune tolerance-inducing metabolite KYN, and the neurotoxin and excitotoxin quinolinic acid. Dendritic cells (DCs) have been shown to mediate immunoregulatory roles that mediated by TRP catabolism. However, characterization of the KP in human DCs has so far only been partly delineated. It is critical to understand which KP enzymes are expressed and which KP metabolites are produced to be able to understand their regulatory effects on the immune response. In this study, we characterized the KP in human monocyte-derived DCs (MDDCs) in comparison with the human primary macrophages using RT-PCR, high-pressure gas chromatography, mass spectrometry, and immunocytochemistry. Our results show that the KP is entirely expressed in human MDDC. Following activation of the KP using interferon gamma, MDDCs can mediate apoptosis of T h cells in vitro. Understanding the molecular mechanisms regulating KP metabolism in MDDCs may provide renewed insight for the development of novel therapeutics aimed at modulating immunological effects and peripheral tolerance.
Literature
go back to reference Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, Schwarcz R, Fallarino F, Puccetti P (2006) Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177(1):130–137CrossRefPubMed Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, Schwarcz R, Fallarino F, Puccetti P (2006) Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177(1):130–137CrossRefPubMed
go back to reference Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16(1):77–86CrossRefPubMed Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16(1):77–86CrossRefPubMed
go back to reference Braidy N, Guillemin GJ, Grant R (2011) Effects of kynurenine pathway inhibition on NAD metabolism and cell viability in human primary astrocytes and neurons. Int J Tryptophan Res 4:29–37CrossRefPubMedPubMedCentral Braidy N, Guillemin GJ, Grant R (2011) Effects of kynurenine pathway inhibition on NAD metabolism and cell viability in human primary astrocytes and neurons. Int J Tryptophan Res 4:29–37CrossRefPubMedPubMedCentral
go back to reference Braidy N, Brew BJ, Inestrosa NC, Chung R, Sachdev P, Guillemin GJ (2014) Changes in Cathepsin D and Beclin-1 mRNA and protein expression by the excitotoxin quinolinic acid in human astrocytes and neurons. Metab Brain Dis 29(3):873–883CrossRefPubMed Braidy N, Brew BJ, Inestrosa NC, Chung R, Sachdev P, Guillemin GJ (2014) Changes in Cathepsin D and Beclin-1 mRNA and protein expression by the excitotoxin quinolinic acid in human astrocytes and neurons. Metab Brain Dis 29(3):873–883CrossRefPubMed
go back to reference Curatolo L, Caccia C, Speciale C, Raimondi L, Cini M, Marconi M, Molinari A, Schwarcz R (1996) Modulation of extracellular kynurenic acid content by excitatory amino acids in primary cultures of rat astrocytes. Adv Exp Med Biol 398:273–276CrossRefPubMed Curatolo L, Caccia C, Speciale C, Raimondi L, Cini M, Marconi M, Molinari A, Schwarcz R (1996) Modulation of extracellular kynurenic acid content by excitatory amino acids in primary cultures of rat astrocytes. Adv Exp Med Biol 398:273–276CrossRefPubMed
go back to reference Espey MG, Chernyshev ON, Reinhard JJ, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8(2):431–434CrossRefPubMed Espey MG, Chernyshev ON, Reinhard JJ, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8(2):431–434CrossRefPubMed
go back to reference Fallarino F, Vacca C, Orabona C, Belladonna ML, Bianchi R, Marshall B, Keskin DB, Mellor AL, Fioretti MC, Grohmann U, Puccetti P (2002) Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 14(1):65–68CrossRefPubMed Fallarino F, Vacca C, Orabona C, Belladonna ML, Bianchi R, Marshall B, Keskin DB, Mellor AL, Fioretti MC, Grohmann U, Puccetti P (2002) Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 14(1):65–68CrossRefPubMed
go back to reference Foster AC, Vezzani A, French ED, Schwarcz R (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 48(3):273–278CrossRefPubMed Foster AC, Vezzani A, French ED, Schwarcz R (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 48(3):273–278CrossRefPubMed
go back to reference Fukuoka S, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, Shibata K (2002) Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan–niacin pathway and quinolinate hypothesis. J Biol Chem 277(38):35162–35167CrossRefPubMed Fukuoka S, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, Shibata K (2002) Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan–niacin pathway and quinolinate hypothesis. J Biol Chem 277(38):35162–35167CrossRefPubMed
go back to reference Guillemin G, Boussin FD, Le Grand R, Croitoru J, Coffigny H, Dormont D (1996) Granulocyte macrophage colony stimulating factor stimulates in vitro proliferation of astrocytes derived from simian mature brains. Glia 16(1):71–80CrossRefPubMed Guillemin G, Boussin FD, Le Grand R, Croitoru J, Coffigny H, Dormont D (1996) Granulocyte macrophage colony stimulating factor stimulates in vitro proliferation of astrocytes derived from simian mature brains. Glia 16(1):71–80CrossRefPubMed
go back to reference Guillemin G, Boussin FD, Croitoru J, Franck-Duchenne M, Le Grand R, Lazarini F, Dormont D (1997) Obtention and characterization of primary astrocyte and microglial cultures from adult monkey brains. J Neurosci Res 49(5):576–591CrossRefPubMed Guillemin G, Boussin FD, Croitoru J, Franck-Duchenne M, Le Grand R, Lazarini F, Dormont D (1997) Obtention and characterization of primary astrocyte and microglial cultures from adult monkey brains. J Neurosci Res 49(5):576–591CrossRefPubMed
go back to reference Guillemin GJ, Kerr SJ, Smythe GA, Armati PJ, Brew BJ (1999) Kynurenine pathway metabolism in human astrocytes. Adv Exp Med Biol 467:125–131CrossRefPubMed Guillemin GJ, Kerr SJ, Smythe GA, Armati PJ, Brew BJ (1999) Kynurenine pathway metabolism in human astrocytes. Adv Exp Med Biol 467:125–131CrossRefPubMed
go back to reference Guillemin GJ, Smith DG, Kerr SJ, Smythe GA, Kapoor V, Armati PJ, Brew BJ (2000) Characterisation of kynurenine pathway metabolism in human astrocytes and implications in neuropathogenesis. Redox Rep 5(2–3):108–111CrossRefPubMed Guillemin GJ, Smith DG, Kerr SJ, Smythe GA, Kapoor V, Armati PJ, Brew BJ (2000) Characterisation of kynurenine pathway metabolism in human astrocytes and implications in neuropathogenesis. Redox Rep 5(2–3):108–111CrossRefPubMed
go back to reference Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:1–13CrossRef Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:1–13CrossRef
go back to reference Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003a) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112CrossRefPubMed Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003a) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112CrossRefPubMed
go back to reference Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ (2003b) Quinolinic acid in the pathogenesis of Alzheimer’s disease. Adv Exp Med Biol 527:167–176CrossRefPubMed Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ (2003b) Quinolinic acid in the pathogenesis of Alzheimer’s disease. Adv Exp Med Biol 527:167–176CrossRefPubMed
go back to reference Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM (2005a) Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 31(4):395–404CrossRefPubMed Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM (2005a) Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 31(4):395–404CrossRefPubMed
go back to reference Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005b) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23CrossRefPubMed Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005b) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23CrossRefPubMed
go back to reference Guillemin GJ, Wang L, Brew BJ (2005c) Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex. J Neuroinflamm 2(1):16CrossRef Guillemin GJ, Wang L, Brew BJ (2005c) Quinolinic acid selectively induces apoptosis of human astrocytes: potential role in AIDS dementia complex. J Neuroinflamm 2(1):16CrossRef
go back to reference Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27(47):12884–92CrossRefPubMed Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27(47):12884–92CrossRefPubMed
go back to reference Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in multiple sclerosis. Acta Neurol Scand 112(2):93–96CrossRefPubMed Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in multiple sclerosis. Acta Neurol Scand 112(2):93–96CrossRefPubMed
go back to reference Hertenstein A, Schumacher T, Litzenburger U, Opitz CA, Falk CS, Serafini T, Wick W, Platten M (2011) Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10. Biochem Pharmacol 82(6):632–641CrossRefPubMed Hertenstein A, Schumacher T, Litzenburger U, Opitz CA, Falk CS, Serafini T, Wick W, Platten M (2011) Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10. Biochem Pharmacol 82(6):632–641CrossRefPubMed
go back to reference Heyes MP (1996) The kynurenine pathway and neurologic disease. Therapeutic strategies. Adv Exp Med Biol 398(125):125–129CrossRefPubMed Heyes MP (1996) The kynurenine pathway and neurologic disease. Therapeutic strategies. Adv Exp Med Biol 398(125):125–129CrossRefPubMed
go back to reference Heyes MP, Chen CY, Major EO, Saito K (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326:351–356CrossRefPubMedPubMedCentral Heyes MP, Chen CY, Major EO, Saito K (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326:351–356CrossRefPubMedPubMedCentral
go back to reference Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473PubMed Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473PubMed
go back to reference Hu J, Yuan X, Belladonna ML, Ong JM, Wachsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2006) Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 66(17):8887–8896CrossRefPubMed Hu J, Yuan X, Belladonna ML, Ong JM, Wachsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2006) Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 66(17):8887–8896CrossRefPubMed
go back to reference Jhamandas KH, Boegman RJ, Beninger RJ, Miranda AF, Lipic KA (2000) Excitotoxicity of quinolinic acid: modulation by endogenous antagonists. Neurotox Res 2(2–3):139–155CrossRefPubMed Jhamandas KH, Boegman RJ, Beninger RJ, Miranda AF, Lipic KA (2000) Excitotoxicity of quinolinic acid: modulation by endogenous antagonists. Neurotox Res 2(2–3):139–155CrossRefPubMed
go back to reference Kapoor V, Kapoor R, Chalmers J (1994) Kynurenic acid, an endogenous glutamate antagonist, in SHR and WKY rats: possible role in central blood pressure regulation. Clin Exp Pharmacol Physiol 21(11):891–896CrossRefPubMed Kapoor V, Kapoor R, Chalmers J (1994) Kynurenic acid, an endogenous glutamate antagonist, in SHR and WKY rats: possible role in central blood pressure regulation. Clin Exp Pharmacol Physiol 21(11):891–896CrossRefPubMed
go back to reference Kerr SJ, Armati PJ, Pemberton LA, Smythe G, Brew BJ (1997a) Kynurenine pathway inhibition with 6-chloro-d-tryptophan reduces neurotoxicity of HIV-infected macrophage supernatants (abstract). Neurology 48(3):A94 Kerr SJ, Armati PJ, Pemberton LA, Smythe G, Brew BJ (1997a) Kynurenine pathway inhibition with 6-chloro-d-tryptophan reduces neurotoxicity of HIV-infected macrophage supernatants (abstract). Neurology 48(3):A94
go back to reference Kerr SJ, Armati PJ, Pemberton LA, Smythe G, Tattam B, Brew BJ (1997b) Kynurenine pathway inhibition reduces neurotoxicity of HIV-1-infected macrophages. Neurology 49(6):1671–1681CrossRefPubMed Kerr SJ, Armati PJ, Pemberton LA, Smythe G, Tattam B, Brew BJ (1997b) Kynurenine pathway inhibition reduces neurotoxicity of HIV-1-infected macrophages. Neurology 49(6):1671–1681CrossRefPubMed
go back to reference Krause D, Suh HS, Tarassishin L, Cui QL, Durafourt BA, Choi N, Bauman A, Cosenza-Nashat M, Antel JP, Zhao ML, Lee SC (2011) The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1. Am J Pathol 179(3):1360–1372CrossRefPubMedPubMedCentral Krause D, Suh HS, Tarassishin L, Cui QL, Durafourt BA, Choi N, Bauman A, Cosenza-Nashat M, Antel JP, Zhao ML, Lee SC (2011) The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1. Am J Pathol 179(3):1360–1372CrossRefPubMedPubMedCentral
go back to reference Lapin IP, Prakhie IB, Kiseleva IP (1982) Excitatory effects of kynurenine and its metabolites, amino acids and convulsants administered into brain ventricles: differences between rats and mice. J Neural Transm 54(3–4):229–238CrossRefPubMed Lapin IP, Prakhie IB, Kiseleva IP (1982) Excitatory effects of kynurenine and its metabolites, amino acids and convulsants administered into brain ventricles: differences between rats and mice. J Neural Transm 54(3–4):229–238CrossRefPubMed
go back to reference Li H, Shi B (2015) Tolerogenic dendritic cells and their applications in transplantation. Cell Mol Immunol 12(1):24–30CrossRefPubMed Li H, Shi B (2015) Tolerogenic dendritic cells and their applications in transplantation. Cell Mol Immunol 12(1):24–30CrossRefPubMed
go back to reference Lim CK, Yap MM, Kent SJ, Gras G, Samah B, Batten JC, De Rose R, Heng B, Brew BJ, Guillemin GJ (2013) Characterization of the kynurenine pathway and quinolinic acid production in macaque macrophages. Int J Tryptophan Res 6:7–19CrossRefPubMedPubMedCentral Lim CK, Yap MM, Kent SJ, Gras G, Samah B, Batten JC, De Rose R, Heng B, Brew BJ, Guillemin GJ (2013) Characterization of the kynurenine pathway and quinolinic acid production in macaque macrophages. Int J Tryptophan Res 6:7–19CrossRefPubMedPubMedCentral
go back to reference Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4(10):762–774CrossRefPubMed Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4(10):762–774CrossRefPubMed
go back to reference Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, Koni PA, Iwashima M, Munn DH (2003) Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171(4):1652–1655CrossRefPubMed Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, Koni PA, Iwashima M, Munn DH (2003) Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171(4):1652–1655CrossRefPubMed
go back to reference Mitsuno M, Kitajima Y, Ohtaka K, Kai K, Hashiguchi K, Nakamura J, Hiraki M, Noshiro H, Miyazaki K (2010) Tranilast strongly sensitizes pancreatic cancer cells to gemcitabine via decreasing protein expression of ribonucleotide reductase 1. Int J Oncol 36(2):341–349PubMed Mitsuno M, Kitajima Y, Ohtaka K, Kai K, Hashiguchi K, Nakamura J, Hiraki M, Noshiro H, Miyazaki K (2010) Tranilast strongly sensitizes pancreatic cancer cells to gemcitabine via decreasing protein expression of ribonucleotide reductase 1. Int J Oncol 36(2):341–349PubMed
go back to reference Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81(4):247–265CrossRefPubMed Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81(4):247–265CrossRefPubMed
go back to reference Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281(5380):1191–3CrossRefPubMed Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281(5380):1191–3CrossRefPubMed
go back to reference Ohshio Y, Hanaoka J, Kontani K, Teramoto K (2014) Tranilast inhibits the function of cancer-associated fibroblasts responsible for the induction of immune suppressor cell types. Scand J Immunol 80(6):408–416CrossRefPubMed Ohshio Y, Hanaoka J, Kontani K, Teramoto K (2014) Tranilast inhibits the function of cancer-associated fibroblasts responsible for the induction of immune suppressor cell types. Scand J Immunol 80(6):408–416CrossRefPubMed
go back to reference Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, Bianchi R, Velardi E, Perruccio K, Velardi A, Bronte V, Fioretti MC, Grohmann U (2006) Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 107(7):2846–2854CrossRefPubMed Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, Bianchi R, Velardi E, Perruccio K, Velardi A, Bronte V, Fioretti MC, Grohmann U (2006) Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 107(7):2846–2854CrossRefPubMed
go back to reference Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res 17(10):589–595CrossRefPubMed Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res 17(10):589–595CrossRefPubMed
go back to reference Qian F, Villella J, Wallace PK, Mhawech-Fauceglia P, Tario JD Jr, Andrews C, Matsuzaki J, Valmori D, Ayyoub M, Frederick PJ, Beck A, Liao J, Cheney R, Moysich K, Lele S, Shrikant P, Old LJ, Odunsi K (2009) Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res 69(13):5498–5504CrossRefPubMed Qian F, Villella J, Wallace PK, Mhawech-Fauceglia P, Tario JD Jr, Andrews C, Matsuzaki J, Valmori D, Ayyoub M, Frederick PJ, Beck A, Liao J, Cheney R, Moysich K, Lele S, Shrikant P, Old LJ, Odunsi K (2009) Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res 69(13):5498–5504CrossRefPubMed
go back to reference Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ (2009) The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS One 4(7):e6344CrossRefPubMedPubMedCentral Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ (2009) The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS One 4(7):e6344CrossRefPubMedPubMedCentral
go back to reference Sato S, Takahashi S, Asamoto M, Naiki T, Naiki-Ito A, Asai K, Shirai T (2010) Tranilast suppresses prostate cancer growth and osteoclast differentiation in vivo and in vitro. Prostate 70(3):229–238PubMed Sato S, Takahashi S, Asamoto M, Naiki T, Naiki-Ito A, Asai K, Shirai T (2010) Tranilast suppresses prostate cancer growth and osteoclast differentiation in vivo and in vitro. Prostate 70(3):229–238PubMed
go back to reference Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219(4582):316–318CrossRefPubMed Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219(4582):316–318CrossRefPubMed
go back to reference Sheipouri D, Braidy N, Guillemin GJ (2012) Kynurenine pathway in skin cells: implications for UV-induced skin damage. Int J Tryptophan Res 5:15–25PubMedPubMedCentral Sheipouri D, Braidy N, Guillemin GJ (2012) Kynurenine pathway in skin cells: implications for UV-induced skin damage. Int J Tryptophan Res 5:15–25PubMedPubMedCentral
go back to reference Sheipouri D, Grant R, Bustamante S, Lovejoy D, Guillemin GJ, Braidy N (2015) Characterisation of the kynurenine pathway in skin-derived fibroblasts and keratinocytes. J Cell Biochem 116(6):903–922CrossRefPubMed Sheipouri D, Grant R, Bustamante S, Lovejoy D, Guillemin GJ, Braidy N (2015) Characterisation of the kynurenine pathway in skin-derived fibroblasts and keratinocytes. J Cell Biochem 116(6):903–922CrossRefPubMed
go back to reference Smythe GA, Braga O, Brew BJ, Grant RS, Guillemin GJ, Kerr SJ, Walker DW (2002) Concurrent quantification of quinolinic, picolinic, and nicotinic acids using electron-capture negative-ion gas chromatography–mass spectrometry. Anal Biochem 301(1):21–26CrossRefPubMed Smythe GA, Braga O, Brew BJ, Grant RS, Guillemin GJ, Kerr SJ, Walker DW (2002) Concurrent quantification of quinolinic, picolinic, and nicotinic acids using electron-capture negative-ion gas chromatography–mass spectrometry. Anal Biochem 301(1):21–26CrossRefPubMed
go back to reference Smythe GA, Poljak A, Bustamante S, Braga O, Maxwell A, Grant R, Sachdev P (2003) ECNI GC–MS analysis of picolinic and quinolinic acids and their amides in human plasma, CSF, and brain tissue. In: Allegri G, Costa CVL, Ragazzi E, Steinhart H, Varesio L (eds) Developments in tryptophan and serotonin metabolism, vol 527. Kluwer Academic/Plenum Publ., New York, pp 705–712CrossRef Smythe GA, Poljak A, Bustamante S, Braga O, Maxwell A, Grant R, Sachdev P (2003) ECNI GC–MS analysis of picolinic and quinolinic acids and their amides in human plasma, CSF, and brain tissue. In: Allegri G, Costa CVL, Ragazzi E, Steinhart H, Varesio L (eds) Developments in tryptophan and serotonin metabolism, vol 527. Kluwer Academic/Plenum Publ., New York, pp 705–712CrossRef
go back to reference Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379PubMed Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379PubMed
go back to reference Subramaniam V, Chakrabarti R, Prud’homme GJ, Jothy S (2010) Tranilast inhibits cell proliferation and migration and promotes apoptosis in murine breast cancer. Anticancer Drugs 21(4):351–361CrossRefPubMed Subramaniam V, Chakrabarti R, Prud’homme GJ, Jothy S (2010) Tranilast inhibits cell proliferation and migration and promotes apoptosis in murine breast cancer. Anticancer Drugs 21(4):351–361CrossRefPubMed
go back to reference Tanabe A, Egashira Y, Fukuoka S, Shibata K, Sanada H (2002) Expression of rat hepatic 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase is affected by a high protein diet and by streptozotocin-induced diabetes. J Nutr 132(6):1153–1159PubMed Tanabe A, Egashira Y, Fukuoka S, Shibata K, Sanada H (2002) Expression of rat hepatic 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase is affected by a high protein diet and by streptozotocin-induced diabetes. J Nutr 132(6):1153–1159PubMed
go back to reference Turville SG, Arthos J, Donald KM, Lynch G, Naif H, Clark G, Hart D, Cunningham AL (2001) HIV gp120 receptors on human dendritic cells. Blood 98(8):2482–2488CrossRefPubMed Turville SG, Arthos J, Donald KM, Lynch G, Naif H, Clark G, Hart D, Cunningham AL (2001) HIV gp120 receptors on human dendritic cells. Blood 98(8):2482–2488CrossRefPubMed
go back to reference Wirthgen E, Hoeflich A (2015) Endotoxin-induced tryptophan degradation along the kynurenine pathway: the role of indolamine 2,3-dioxygenase and aryl hydrocarbon receptor-mediated immunosuppressive effects in endotoxin tolerance and cancer and its implications for immunoparalysis. J Amino Acids 2015:973548CrossRefPubMedPubMedCentral Wirthgen E, Hoeflich A (2015) Endotoxin-induced tryptophan degradation along the kynurenine pathway: the role of indolamine 2,3-dioxygenase and aryl hydrocarbon receptor-mediated immunosuppressive effects in endotoxin tolerance and cancer and its implications for immunoparalysis. J Amino Acids 2015:973548CrossRefPubMedPubMedCentral
Metadata
Title
Characterization of the Kynurenine Pathway in CD8+ Human Primary Monocyte-Derived Dendritic Cells
Authors
Nady Braidy
Helene Rossez
Chai K. Lim
Bat-Erdene Jugder
Bruce J. Brew
Gilles J. Guillemin
Publication date
01-11-2016
Publisher
Springer US
Published in
Neurotoxicity Research / Issue 4/2016
Print ISSN: 1029-8428
Electronic ISSN: 1476-3524
DOI
https://doi.org/10.1007/s12640-016-9657-x

Other articles of this Issue 4/2016

Neurotoxicity Research 4/2016 Go to the issue