Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

Open Access 01-12-2021 | Neuropathic Pain | Research

VEGF-A/VEGFR-1 signalling and chemotherapy-induced neuropathic pain: therapeutic potential of a novel anti-VEGFR-1 monoclonal antibody

Authors: Laura Micheli, Carmen Parisio, Elena Lucarini, Alessia Vona, Alessandra Toti, Alessandra Pacini, Tommaso Mello, Serena Boccella, Flavia Ricciardi, Sabatino Maione, Grazia Graziani, Pedro Miguel Lacal, Paola Failli, Carla Ghelardini, Lorenzo Di Cesare Mannelli

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Neuropathic pain is a clinically relevant adverse effect of several anticancer drugs that markedly impairs patients’ quality of life and frequently leads to dose reduction or therapy discontinuation. The poor knowledge about the mechanisms involved in neuropathy development and pain chronicization, and the lack of effective therapies, make treatment of chemotherapy-induced neuropathic pain an unmet medical need. In this context, the vascular endothelial growth factor A (VEGF-A) has emerged as a candidate neuropathy hallmark and its decrease has been related to pain relief. In the present study, we have investigated the role of VEGF-A and its receptors, VEGFR-1 and VEGFR-2, in pain signalling and in chemotherapy-induced neuropathy establishment as well as the therapeutic potential of receptor blockade in the management of pain.

Methods

Behavioural and electrophysiological analyses were performed in an in vivo murine model, by using selective receptor agonists, blocking monoclonal antibodies or siRNA-mediated silencing of VEGF-A and VEGFRs. Expression of VEGF-A and VEGFR-1 in astrocytes and neurons was detected by immunofluorescence staining and confocal microscopy analysis.

Results

In mice, the intrathecal infusion of VEGF-A (VEGF165 isoforms) induced a dose-dependent noxious hypersensitivity and this effect was mediated by VEGFR-1. Consistently, electrophysiological studies indicated that VEGF-A strongly stimulated the spinal nociceptive neurons activity through VEGFR-1. In the dorsal horn of the spinal cord of animals affected by oxaliplatin-induced neuropathy, VEGF-A expression was increased in astrocytes while VEGFR-1 was mainly detected in neurons, suggesting a VEGF-A/VEGFR-1-mediated astrocyte-neuron cross-talk in neuropathic pain pathophysiology. Accordingly, the selective knockdown of astrocytic VEGF-A by intraspinal injection of shRNAmir blocked the development of oxaliplatin-induced neuropathic hyperalgesia and allodynia. Interestingly, both intrathecal and systemic administration of the novel anti-VEGFR-1 monoclonal antibody D16F7, endowed with anti-angiogenic and antitumor properties, reverted oxaliplatin-induced neuropathic pain. Besides, D16F7 effectively relieved hypersensitivity induced by other neurotoxic chemotherapeutic agents, such as paclitaxel and vincristine.

Conclusions

These data strongly support the role of the VEGF-A/VEGFR-1 system in mediating chemotherapy-induced neuropathic pain at the central nervous system level. Thus, treatment with the anti-VEGFR-1 mAb D16F7, besides exerting antitumor activity, might result in the additional advantage of attenuating neuropathic pain when combined with neurotoxic anticancer agents.
Appendix
Available only for authorised users
Literature
1.
go back to reference Di Cesare Mannelli L, Pacini A, Bonaccini L, Zanardelli M, Mello T, Ghelardini C. Morphologic features and glial activation in rat Oxaliplatin-dependent neuropathic pain. J Pain. 2013;14:1585–600.PubMedCrossRef Di Cesare Mannelli L, Pacini A, Bonaccini L, Zanardelli M, Mello T, Ghelardini C. Morphologic features and glial activation in rat Oxaliplatin-dependent neuropathic pain. J Pain. 2013;14:1585–600.PubMedCrossRef
2.
go back to reference Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev. 2014;40:872–82.PubMedCrossRef Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev. 2014;40:872–82.PubMedCrossRef
3.
go back to reference Ibrahim EY, Ehrlich BE. Prevention of chemotherapy-induced peripheral neuropathy: a review of recent findings. Crit Rev Oncol Hematol. 2020;145:102831.PubMedCrossRef Ibrahim EY, Ehrlich BE. Prevention of chemotherapy-induced peripheral neuropathy: a review of recent findings. Crit Rev Oncol Hematol. 2020;145:102831.PubMedCrossRef
4.
go back to reference Di Cesare Mannelli L, Tenci B, Micheli L, Vona A, Corti F, Zanardelli M, et al. Adipose-derived stem cells decrease pain in a rat model of oxaliplatin-induced neuropathy: role of VEGF-A modulation. Neuropharmacology England. 2018;131:166–75.CrossRef Di Cesare Mannelli L, Tenci B, Micheli L, Vona A, Corti F, Zanardelli M, et al. Adipose-derived stem cells decrease pain in a rat model of oxaliplatin-induced neuropathy: role of VEGF-A modulation. Neuropharmacology England. 2018;131:166–75.CrossRef
5.
go back to reference Lin J, Li G, Den X, Xu C, Liu S, Gao Y, et al. VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X2(/)3 receptor of primary sensory neurons. Brain Res Bull United States. 2010;83:284–91.CrossRef Lin J, Li G, Den X, Xu C, Liu S, Gao Y, et al. VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X2(/)3 receptor of primary sensory neurons. Brain Res Bull United States. 2010;83:284–91.CrossRef
6.
go back to reference Selvaraj D, Gangadharan V, Michalski CW, Kurejova M, Stösser S, Srivastava K, et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in Cancer pain. Cancer Cell. 2015;27:780–96.PubMedPubMedCentralCrossRef Selvaraj D, Gangadharan V, Michalski CW, Kurejova M, Stösser S, Srivastava K, et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in Cancer pain. Cancer Cell. 2015;27:780–96.PubMedPubMedCentralCrossRef
7.
go back to reference Hamilton JL, Nagao M, Levine BR, Chen D, Olsen BR, Im H-J. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain: targeting VEGF and VEGFRs for treatment of osteoarthritis and pain. J Bone Miner Res. 2016;31:911–24.PubMedCrossRef Hamilton JL, Nagao M, Levine BR, Chen D, Olsen BR, Im H-J. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain: targeting VEGF and VEGFRs for treatment of osteoarthritis and pain. J Bone Miner Res. 2016;31:911–24.PubMedCrossRef
8.
go back to reference Lee B, Elston DM. The uses of naltrexone in dermatologic conditions. J Am Acad Dermatol. 2019;80:1746–52.PubMedCrossRef Lee B, Elston DM. The uses of naltrexone in dermatologic conditions. J Am Acad Dermatol. 2019;80:1746–52.PubMedCrossRef
9.
go back to reference Verheyen A, Peeraer E, Lambrechts D, Poesen K, Carmeliet P, Shibuya M, et al. Therapeutic potential of VEGF and VEGF-derived peptide in peripheral neuropathies. Neuroscience. 2013;244:77–89.PubMedCrossRef Verheyen A, Peeraer E, Lambrechts D, Poesen K, Carmeliet P, Shibuya M, et al. Therapeutic potential of VEGF and VEGF-derived peptide in peripheral neuropathies. Neuroscience. 2013;244:77–89.PubMedCrossRef
10.
go back to reference Verheyen A, Peeraer E, Nuydens R, Dhondt J, Poesen K, Pintelon I, et al. Systemic anti-vascular endothelial growth factor therapies induce a painful sensory neuropathy. Brain. 2012;135:2629–41.PubMedCrossRef Verheyen A, Peeraer E, Nuydens R, Dhondt J, Poesen K, Pintelon I, et al. Systemic anti-vascular endothelial growth factor therapies induce a painful sensory neuropathy. Brain. 2012;135:2629–41.PubMedCrossRef
11.
go back to reference Hulse RP, Beazley-Long N, Hua J, Kennedy H, Prager J, Bevan H, et al. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia. Neurobiol Dis. 2014;71:245–59.PubMedPubMedCentralCrossRef Hulse RP, Beazley-Long N, Hua J, Kennedy H, Prager J, Bevan H, et al. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia. Neurobiol Dis. 2014;71:245–59.PubMedPubMedCentralCrossRef
12.
go back to reference Ved N, Da Vitoria Lobo ME, Bestall SM, L. Vidueira C, Beazley-Long N, Ballmer-Hofer K, et al. Diabetes-induced microvascular complications at the level of the spinal cord: a contributing factor in diabetic neuropathic pain: diabetes-induced microvascular degeneration and neuropathic pain. J Physiol. 2018;596:3675–93.PubMedPubMedCentralCrossRef Ved N, Da Vitoria Lobo ME, Bestall SM, L. Vidueira C, Beazley-Long N, Ballmer-Hofer K, et al. Diabetes-induced microvascular complications at the level of the spinal cord: a contributing factor in diabetic neuropathic pain: diabetes-induced microvascular degeneration and neuropathic pain. J Physiol. 2018;596:3675–93.PubMedPubMedCentralCrossRef
13.
go back to reference Hu X-M, Yang W, Du L-X, Cui W-Q, Mi W-L, Mao-Ying Q-L, et al. Vascular endothelial growth factor a signaling promotes spinal central sensitization and pain-related behaviors in female rats with bone Cancer. Anesthesiology United States. 2019;131:1125–47.CrossRef Hu X-M, Yang W, Du L-X, Cui W-Q, Mi W-L, Mao-Ying Q-L, et al. Vascular endothelial growth factor a signaling promotes spinal central sensitization and pain-related behaviors in female rats with bone Cancer. Anesthesiology United States. 2019;131:1125–47.CrossRef
14.
go back to reference Iyer S, Acharya KR. Tying the knot: the cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines: Cystine-knot growth factors and angiogenesis. FEBS J. 2011;278:4304–22.PubMedPubMedCentralCrossRef Iyer S, Acharya KR. Tying the knot: the cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines: Cystine-knot growth factors and angiogenesis. FEBS J. 2011;278:4304–22.PubMedPubMedCentralCrossRef
15.
go back to reference Peach C, Mignone V, Arruda M, Alcobia D, Hill S, Kilpatrick L, et al. Molecular pharmacology of VEGF-A isoforms: binding and Signalling at VEGFR2. Int J Mol Sci. 2018;19:1264.PubMedPubMedCentralCrossRef Peach C, Mignone V, Arruda M, Alcobia D, Hill S, Kilpatrick L, et al. Molecular pharmacology of VEGF-A isoforms: binding and Signalling at VEGFR2. Int J Mol Sci. 2018;19:1264.PubMedPubMedCentralCrossRef
16.
go back to reference Stevens M, Oltean S. Modulation of VEGF-A Alternative Splicing as a Novel Treatment in Chronic Kidney Disease. Genes (Basel). 2018;9:98.PubMedCrossRef Stevens M, Oltean S. Modulation of VEGF-A Alternative Splicing as a Novel Treatment in Chronic Kidney Disease. Genes (Basel). 2018;9:98.PubMedCrossRef
17.
go back to reference Woolard J, Wang W-Y, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, et al. VEGF 165 b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004;64:7822–35.PubMedCrossRef Woolard J, Wang W-Y, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, et al. VEGF 165 b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004;64:7822–35.PubMedCrossRef
18.
go back to reference Dardente H, English WR, Valluru MK, Kanthou C, Simpson D. Debunking the myth of the endogenous Antiangiogenic Vegfaxxxb transcripts. Trends Endocrinol Metab United States. 2020;31:398–409.CrossRef Dardente H, English WR, Valluru MK, Kanthou C, Simpson D. Debunking the myth of the endogenous Antiangiogenic Vegfaxxxb transcripts. Trends Endocrinol Metab United States. 2020;31:398–409.CrossRef
19.
go back to reference Li Q, Zeng C, Liu H, Yung KWY, Chen C, Xie Q, et al. Protein-Protein Interaction Inhibitor of SRPKs Alters the Splicing Isoforms of VEGF and Inhibits Angiogenesis iScience 2021;24:102423. Li Q, Zeng C, Liu H, Yung KWY, Chen C, Xie Q, et al. Protein-Protein Interaction Inhibitor of SRPKs Alters the Splicing Isoforms of VEGF and Inhibits Angiogenesis iScience 2021;24:102423.
20.
go back to reference Zhang H, Xia W, Liang C, Wang X, Zhi L, Guo C, et al. VEGF165b and its mutant demonstrate immunomodulatory, not merely anti-angiogenic functions, in tumor-bearing mice. Mol Immunol England. 2020;122:132–40.CrossRef Zhang H, Xia W, Liang C, Wang X, Zhi L, Guo C, et al. VEGF165b and its mutant demonstrate immunomodulatory, not merely anti-angiogenic functions, in tumor-bearing mice. Mol Immunol England. 2020;122:132–40.CrossRef
21.
go back to reference Jiang F, Chong L, Du S, Duan Y, Wang Y, Wang J, et al. Decreased ratio of VEGF165b/VEGF in aqueous humor predicts progression of diabetic retinopathy. Ophthalmic Res Switzerland. 2020;63:517–23.CrossRef Jiang F, Chong L, Du S, Duan Y, Wang Y, Wang J, et al. Decreased ratio of VEGF165b/VEGF in aqueous humor predicts progression of diabetic retinopathy. Ophthalmic Res Switzerland. 2020;63:517–23.CrossRef
22.
go back to reference Karsten MM, Beck MH, Rademacher A, Knabl J, Blohmer J-U, Jückstock J, et al. VEGF-A165b levels are reduced in breast cancer patients at primary diagnosis but increase after completion of cancer treatment. Sci Rep. 2020;10:3635.PubMedPubMedCentralCrossRef Karsten MM, Beck MH, Rademacher A, Knabl J, Blohmer J-U, Jückstock J, et al. VEGF-A165b levels are reduced in breast cancer patients at primary diagnosis but increase after completion of cancer treatment. Sci Rep. 2020;10:3635.PubMedPubMedCentralCrossRef
23.
go back to reference Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and Therapeutic Potential of VEGF in the Nervous System. Physiol Rev. 2009;89:607–48. Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and Therapeutic Potential of VEGF in the Nervous System. Physiol Rev. 2009;89:607–48.
24.
go back to reference Ponnambalam S, Alberghina M. Evolution of the VEGF-regulated vascular network from a neural guidance system. Mol Neurobiol. 2011;43:192–206.PubMedCrossRef Ponnambalam S, Alberghina M. Evolution of the VEGF-regulated vascular network from a neural guidance system. Mol Neurobiol. 2011;43:192–206.PubMedCrossRef
25.
go back to reference Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol. 2016;12:439–54.PubMedCrossRef Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol. 2016;12:439–54.PubMedCrossRef
26.
go back to reference Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122:2454–68.PubMedPubMedCentralCrossRef Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122:2454–68.PubMedPubMedCentralCrossRef
27.
go back to reference Licht T, Keshet E. Delineating multiple functions of VEGF-A in the adult brain. Cell Mol Life Sci. 2013;70:1727–37.PubMedCrossRef Licht T, Keshet E. Delineating multiple functions of VEGF-A in the adult brain. Cell Mol Life Sci. 2013;70:1727–37.PubMedCrossRef
28.
go back to reference Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: experimental evidence in different metastatic Cancer models. Int J Mol Sci. 2020;21. Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: experimental evidence in different metastatic Cancer models. Int J Mol Sci. 2020;21.
30.
go back to reference Nakayama M, Nakayama A, van Lessen M, Yamamoto H, Hoffmann S, Drexler HCA, et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol. 2013;15:249–60.PubMedPubMedCentralCrossRef Nakayama M, Nakayama A, van Lessen M, Yamamoto H, Hoffmann S, Drexler HCA, et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol. 2013;15:249–60.PubMedPubMedCentralCrossRef
31.
go back to reference Taiana MM, Lombardi R, Porretta-Serapiglia C, Ciusani E, Oggioni N, Sassone J, et al. Neutralization of Schwann Cell-Secreted VEGF Is Protective to In Vitro and In Vivo Experimental Diabetic Neuropathy. Zhou R, editor. PLoS One. 2014;9:e108403. Taiana MM, Lombardi R, Porretta-Serapiglia C, Ciusani E, Oggioni N, Sassone J, et al. Neutralization of Schwann Cell-Secreted VEGF Is Protective to In Vitro and In Vivo Experimental Diabetic Neuropathy. Zhou R, editor. PLoS One. 2014;9:e108403.
32.
go back to reference Lacal PM, Graziani G. Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacol Res. 2018;136:97–107.PubMedCrossRef Lacal PM, Graziani G. Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacol Res. 2018;136:97–107.PubMedCrossRef
33.
go back to reference Graziani G, Ruffini F, Tentori L, Scimeca M, Dorio AS, Atzori MG, et al. Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding. Oncotarget. 2016;7:72868–85.PubMedPubMedCentralCrossRef Graziani G, Ruffini F, Tentori L, Scimeca M, Dorio AS, Atzori MG, et al. Antitumor activity of a novel anti-vascular endothelial growth factor receptor-1 monoclonal antibody that does not interfere with ligand binding. Oncotarget. 2016;7:72868–85.PubMedPubMedCentralCrossRef
34.
go back to reference Atzori MG, Tentori L, Ruffini F, Ceci C, Lisi L, Bonanno E, et al. The anti-vascular endothelial growth factor receptor-1 monoclonal antibody D16F7 inhibits invasiveness of human glioblastoma and glioblastoma stem cells. J Exp Clin Cancer Res. 2017;36:106.PubMedPubMedCentralCrossRef Atzori MG, Tentori L, Ruffini F, Ceci C, Lisi L, Bonanno E, et al. The anti-vascular endothelial growth factor receptor-1 monoclonal antibody D16F7 inhibits invasiveness of human glioblastoma and glioblastoma stem cells. J Exp Clin Cancer Res. 2017;36:106.PubMedPubMedCentralCrossRef
35.
go back to reference Atzori MG, Tentori L, Ruffini F, Ceci C, Bonanno E, Scimeca M, et al. The anti–vascular endothelial growth factor Receptor-1 monoclonal antibody D16F7 inhibits Glioma growth and angiogenesis in vivo. J Pharmacol Exp Ther. 2018;364:77–86.PubMedCrossRef Atzori MG, Tentori L, Ruffini F, Ceci C, Bonanno E, Scimeca M, et al. The anti–vascular endothelial growth factor Receptor-1 monoclonal antibody D16F7 inhibits Glioma growth and angiogenesis in vivo. J Pharmacol Exp Ther. 2018;364:77–86.PubMedCrossRef
36.
go back to reference Lacal, Pedro Miguel, Atzori, MG; Ruffini, F; Scimeca, M; Bonanno, E; Cicconi, R; Mattei, M; Bernardini, R; D’Atri, S; Tentori, L; Graziani, G. Targeting the vascular endothelial growth factor receptor-1 by the monoclonal antobody D16F7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma. Pharmacol Res. 2020; Lacal, Pedro Miguel, Atzori, MG; Ruffini, F; Scimeca, M; Bonanno, E; Cicconi, R; Mattei, M; Bernardini, R; D’Atri, S; Tentori, L; Graziani, G. Targeting the vascular endothelial growth factor receptor-1 by the monoclonal antobody D16F7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma. Pharmacol Res. 2020;
37.
go back to reference Hylden JLK, Wilcox GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol. 1980;67:313–6.PubMedCrossRef Hylden JLK, Wilcox GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol. 1980;67:313–6.PubMedCrossRef
38.
go back to reference Cavaletti G, Tredici G, Petruccioli MG, Dondè E, Tredici P, Marmiroli P, et al. Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat. Eur J Cancer England. 2001;37:2457–63.CrossRef Cavaletti G, Tredici G, Petruccioli MG, Dondè E, Tredici P, Marmiroli P, et al. Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat. Eur J Cancer England. 2001;37:2457–63.CrossRef
39.
go back to reference Di Cesare Mannelli L, Lucarini E, Micheli L, Mosca I, Ambrosino P, Soldovieri MV, et al. Effects of natural and synthetic isothiocyanate-based H 2 S-releasers against chemotherapy-induced neuropathic pain: role of Kv7 potassium channels. Neuropharmacology. 2017;121:49–59.PubMedCrossRef Di Cesare Mannelli L, Lucarini E, Micheli L, Mosca I, Ambrosino P, Soldovieri MV, et al. Effects of natural and synthetic isothiocyanate-based H 2 S-releasers against chemotherapy-induced neuropathic pain: role of Kv7 potassium channels. Neuropharmacology. 2017;121:49–59.PubMedCrossRef
40.
go back to reference Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain. 2001;94:293–304.PubMedCrossRef Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain. 2001;94:293–304.PubMedCrossRef
41.
go back to reference Weng RH, Cordella VJ, Dougherty MP. Changes in sensory processing in the spinal dorsal horn accompany vincristine-induced hyperalgesia and allodynia. Pain. 2003;103:131–8.PubMedCrossRef Weng RH, Cordella VJ, Dougherty MP. Changes in sensory processing in the spinal dorsal horn accompany vincristine-induced hyperalgesia and allodynia. Pain. 2003;103:131–8.PubMedCrossRef
42.
go back to reference Russo R, D’Agostino G, Mattace Raso G, Avagliano C, Cristiano C, Meli R, et al. Central administration of oxytocin reduces hyperalgesia in mice: implication for cannabinoid and opioid systems. Peptides United States. 2012;38:81–8.CrossRef Russo R, D’Agostino G, Mattace Raso G, Avagliano C, Cristiano C, Meli R, et al. Central administration of oxytocin reduces hyperalgesia in mice: implication for cannabinoid and opioid systems. Peptides United States. 2012;38:81–8.CrossRef
43.
go back to reference Lucarini E, Pagnotta E, Micheli L, Parisio C, Testai L, Martelli A, et al. Eruca sativa meal against diabetic neuropathic pain: an H(2)S-mediated effect of Glucoerucin. Molecules. 2019;24. Lucarini E, Pagnotta E, Micheli L, Parisio C, Testai L, Martelli A, et al. Eruca sativa meal against diabetic neuropathic pain: an H(2)S-mediated effect of Glucoerucin. Molecules. 2019;24.
44.
go back to reference Baptista-de-Souza D, Di Cesare ML, Zanardelli M, Micheli L, Nunes-de-Souza RL, Canto-de-Souza A, et al. Serotonergic modulation in neuropathy induced by oxaliplatin: effect on the 5HT2C receptor. Eur J Pharmacol Netherlands. 2014;735:141–9.CrossRef Baptista-de-Souza D, Di Cesare ML, Zanardelli M, Micheli L, Nunes-de-Souza RL, Canto-de-Souza A, et al. Serotonergic modulation in neuropathy induced by oxaliplatin: effect on the 5HT2C receptor. Eur J Pharmacol Netherlands. 2014;735:141–9.CrossRef
45.
go back to reference Ghelardini C, Galeotti N, Calvani M, Mosconi L, Nicolai R, Bartolini A. Acetyl-l-carnitine induces muscarinic antinocieption in mice and rats. Neuropharmacology. England. 2002;43:1180–7.CrossRef Ghelardini C, Galeotti N, Calvani M, Mosconi L, Nicolai R, Bartolini A. Acetyl-l-carnitine induces muscarinic antinocieption in mice and rats. Neuropharmacology. England. 2002;43:1180–7.CrossRef
46.
go back to reference McGaraughty S, Chu KL, Perner RJ, Didomenico S, Kort ME, Kym PR. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol Pain. 2010;6:14.PubMedPubMedCentralCrossRef McGaraughty S, Chu KL, Perner RJ, Didomenico S, Kort ME, Kym PR. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol Pain. 2010;6:14.PubMedPubMedCentralCrossRef
47.
go back to reference Telleria-Diaz A, Schmidt M, Kreusch S, Neubert A-K, Schache F, Vazquez E, et al. Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: involvement of prostaglandins and endocannabinoids. Pain. 2010;148:26–35.PubMedCrossRef Telleria-Diaz A, Schmidt M, Kreusch S, Neubert A-K, Schache F, Vazquez E, et al. Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: involvement of prostaglandins and endocannabinoids. Pain. 2010;148:26–35.PubMedCrossRef
48.
go back to reference Simone DA, Khasabov SG, Hamamoto DT. Changes in response properties of nociceptive dorsal horn neurons in a murine model of cancer pain. Sheng Li Xue Bao China. 2008;60:635–44. Simone DA, Khasabov SG, Hamamoto DT. Changes in response properties of nociceptive dorsal horn neurons in a murine model of cancer pain. Sheng Li Xue Bao China. 2008;60:635–44.
49.
go back to reference Boccella S, Vacca V, Errico F, Marinelli S, Squillace M, Guida F, et al. D-aspartate modulates nociceptive-specific neuron activity and pain threshold in inflammatory and neuropathic pain condition in mice. Biomed Res Int. 2015;2015:1–10.CrossRef Boccella S, Vacca V, Errico F, Marinelli S, Squillace M, Guida F, et al. D-aspartate modulates nociceptive-specific neuron activity and pain threshold in inflammatory and neuropathic pain condition in mice. Biomed Res Int. 2015;2015:1–10.CrossRef
50.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.PubMedCrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.PubMedCrossRef
51.
go back to reference Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, et al. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods United States. 2017;115:28–41. Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, et al. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods United States. 2017;115:28–41.
52.
go back to reference Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc England. 2006;224:213–32.CrossRef Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc England. 2006;224:213–32.CrossRef
53.
go back to reference Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, et al. Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br. J. Pharmacol. 2018:987–93. Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, et al. Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br. J. Pharmacol. 2018:987–93.
54.
go back to reference Cébe Suarez S, Pieren M, Cariolato L, Arn S, Hoffmann U, Bogucki A, et al. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci Switzerland. 2006;63:2067–77.CrossRef Cébe Suarez S, Pieren M, Cariolato L, Arn S, Hoffmann U, Bogucki A, et al. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci Switzerland. 2006;63:2067–77.CrossRef
55.
go back to reference Kawamura H, Li X, Goishi K, van Meeteren LA, Jakobsson L, Cébe-Suarez S, et al. Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood. 2008;112:3638–49.PubMedPubMedCentralCrossRef Kawamura H, Li X, Goishi K, van Meeteren LA, Jakobsson L, Cébe-Suarez S, et al. Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood. 2008;112:3638–49.PubMedPubMedCentralCrossRef
56.
go back to reference Delcombel R, Janssen L, Vassy R, Gammons M, Haddad O, Richard B, et al. New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis Germany. 2013;16:353–71.CrossRef Delcombel R, Janssen L, Vassy R, Gammons M, Haddad O, Richard B, et al. New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis Germany. 2013;16:353–71.CrossRef
57.
go back to reference Cudmore MJ, Hewett PW, Ahmad S, Wang K-Q, Cai M, Al-Ani B, et al. The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis. Nat Commun. 2012;3:972.PubMedCrossRef Cudmore MJ, Hewett PW, Ahmad S, Wang K-Q, Cai M, Al-Ani B, et al. The role of heterodimerization between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell homeostasis. Nat Commun. 2012;3:972.PubMedCrossRef
58.
go back to reference Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J biol Chem. United States. 1994;269:25646–54. Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J biol Chem. United States. 1994;269:25646–54.
59.
go back to reference Meyer M. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 1999;18:363–74.PubMedPubMedCentralCrossRef Meyer M. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 1999;18:363–74.PubMedPubMedCentralCrossRef
60.
go back to reference Persico MG, Vincenti V, DiPalma T. Structure, Expression and Receptor-Binding Properties of Placenta Growth Factor (PlGF). In: Claesson-Welsh L, editor. Vasc Growth Factors Angiogenes. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 31–40. Persico MG, Vincenti V, DiPalma T. Structure, Expression and Receptor-Binding Properties of Placenta Growth Factor (PlGF). In: Claesson-Welsh L, editor. Vasc Growth Factors Angiogenes. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 31–40.
61.
go back to reference Cai M, Wang K, Murdoch CE, Gu Y, Ahmed A. Heterodimerisation between VEGFR-1 and VEGFR-2 and not the homodimers of VEGFR-1 inhibit VEGFR-2 activity. Vasc Pharmacol. 2017;88:11–20.CrossRef Cai M, Wang K, Murdoch CE, Gu Y, Ahmed A. Heterodimerisation between VEGFR-1 and VEGFR-2 and not the homodimers of VEGFR-1 inhibit VEGFR-2 activity. Vasc Pharmacol. 2017;88:11–20.CrossRef
62.
go back to reference Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther England. 2016;164:204–25.CrossRef Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther England. 2016;164:204–25.CrossRef
63.
go back to reference Vaidya S, Shantanu PA, Tiwari V. Attenuation of ongoing neuropathic pain by peripheral acting opioid involves activation of central dopaminergic neurocircuitry. Neurosci Lett. Ireland. 2021;754:135751.CrossRef Vaidya S, Shantanu PA, Tiwari V. Attenuation of ongoing neuropathic pain by peripheral acting opioid involves activation of central dopaminergic neurocircuitry. Neurosci Lett. Ireland. 2021;754:135751.CrossRef
64.
go back to reference Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10:1361–8.PubMedCrossRef Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10:1361–8.PubMedCrossRef
65.
go back to reference Di Cesare Mannelli L, Marcoli M, Micheli L, Zanardelli M, Maura G, Ghelardini C, et al. Oxaliplatin evokes P2X7-dependent glutamate release in the cerebral cortex: a pain mechanism mediated by Pannexin 1. Neuropharmacology. 2015;97:133–41.PubMedCrossRef Di Cesare Mannelli L, Marcoli M, Micheli L, Zanardelli M, Maura G, Ghelardini C, et al. Oxaliplatin evokes P2X7-dependent glutamate release in the cerebral cortex: a pain mechanism mediated by Pannexin 1. Neuropharmacology. 2015;97:133–41.PubMedCrossRef
66.
go back to reference Stockstill K, Doyle TM, Yan X, Chen Z, Janes K, Little JW, et al. Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J Exp Med. 2018;215:1301–13.PubMedPubMedCentralCrossRef Stockstill K, Doyle TM, Yan X, Chen Z, Janes K, Little JW, et al. Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J Exp Med. 2018;215:1301–13.PubMedPubMedCentralCrossRef
67.
go back to reference Sommer C, Leinders M. Üçeyler N. Inflammation in the pathophysiology of neuropathic pain: Pain. 2018;159:595–602.PubMed Sommer C, Leinders M. Üçeyler N. Inflammation in the pathophysiology of neuropathic pain: Pain. 2018;159:595–602.PubMed
68.
go back to reference Alles SRA, Smith PA. Etiology and pharmacology of neuropathic pain. Isom LL, editor. Pharmacol Rev. 2018;70:315–47.PubMedCrossRef Alles SRA, Smith PA. Etiology and pharmacology of neuropathic pain. Isom LL, editor. Pharmacol Rev. 2018;70:315–47.PubMedCrossRef
69.
go back to reference Nencini S, Ringuet M, Kim D-H, Greenhill C, Ivanusic JJ. GDNF, Neurturin, and Artemin activate and sensitize bone afferent neurons and contribute to inflammatory bone pain. J Neurosci. 2018;38:4899–911.PubMedPubMedCentralCrossRef Nencini S, Ringuet M, Kim D-H, Greenhill C, Ivanusic JJ. GDNF, Neurturin, and Artemin activate and sensitize bone afferent neurons and contribute to inflammatory bone pain. J Neurosci. 2018;38:4899–911.PubMedPubMedCentralCrossRef
70.
go back to reference Garraway SM, Huie JR. Spinal plasticity and behavior: BDNF-induced Neuromodulation in uninjured and injured spinal cord. Neural Plast. 2016;2016:1–19.CrossRef Garraway SM, Huie JR. Spinal plasticity and behavior: BDNF-induced Neuromodulation in uninjured and injured spinal cord. Neural Plast. 2016;2016:1–19.CrossRef
71.
go back to reference Di Cesare Mannelli L, Pacini A, Micheli L, Tani A, Zanardelli M, Ghelardini C. Glial role in oxaliplatin-induced neuropathic pain. Exp Neurol. 2014;261:22–33.PubMedCrossRef Di Cesare Mannelli L, Pacini A, Micheli L, Tani A, Zanardelli M, Ghelardini C. Glial role in oxaliplatin-induced neuropathic pain. Exp Neurol. 2014;261:22–33.PubMedCrossRef
72.
go back to reference Branca JJV, Maresca M, Morucci G, Becatti M, Paternostro F, Gulisano M, et al. Oxaliplatin-induced blood brain barrier loosening: a new point of view on chemotherapy-induced neurotoxicity. Oncotarget. 2018;9:23426–38.PubMedPubMedCentralCrossRef Branca JJV, Maresca M, Morucci G, Becatti M, Paternostro F, Gulisano M, et al. Oxaliplatin-induced blood brain barrier loosening: a new point of view on chemotherapy-induced neurotoxicity. Oncotarget. 2018;9:23426–38.PubMedPubMedCentralCrossRef
73.
go back to reference Montague-Cardoso K, Pitcher T, Chisolm K, Salera G, Lindstrom E, Hewitt E, et al. Changes in vascular permeability in the spinal cord contribute to chemotherapy-induced neuropathic pain. Brain Behav Immun. 2020;83:248–59.PubMedPubMedCentralCrossRef Montague-Cardoso K, Pitcher T, Chisolm K, Salera G, Lindstrom E, Hewitt E, et al. Changes in vascular permeability in the spinal cord contribute to chemotherapy-induced neuropathic pain. Brain Behav Immun. 2020;83:248–59.PubMedPubMedCentralCrossRef
74.
go back to reference Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, et al. Astrocytic TYMP and VEGFA drive blood–brain barrier opening in inflammatory central nervous system lesions. Brain. 2015;138:1548–67.PubMedPubMedCentralCrossRef Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, et al. Astrocytic TYMP and VEGFA drive blood–brain barrier opening in inflammatory central nervous system lesions. Brain. 2015;138:1548–67.PubMedPubMedCentralCrossRef
75.
go back to reference Rojas DR, Tegeder I, Kuner R, Agarwal N. Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species. J Mol Med. 2018;96:1395–405.PubMedCrossRef Rojas DR, Tegeder I, Kuner R, Agarwal N. Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species. J Mol Med. 2018;96:1395–405.PubMedCrossRef
76.
go back to reference Schratzberger P, Schratzberger G, Silver M, Curry C, Kearney M, Magner M, et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med United States. 2000;6:405–13.CrossRef Schratzberger P, Schratzberger G, Silver M, Curry C, Kearney M, Magner M, et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med United States. 2000;6:405–13.CrossRef
77.
go back to reference Beazley-Long N, Hua J, Jehle T, Hulse RP, Dersch R, Lehrling C, et al. VEGF-A165b is an endogenous Neuroprotective splice isoform of vascular endothelial growth factor a in vivo and in vitro. Am J Pathol. 2013;183:918–29.PubMedPubMedCentralCrossRef Beazley-Long N, Hua J, Jehle T, Hulse RP, Dersch R, Lehrling C, et al. VEGF-A165b is an endogenous Neuroprotective splice isoform of vascular endothelial growth factor a in vivo and in vitro. Am J Pathol. 2013;183:918–29.PubMedPubMedCentralCrossRef
78.
go back to reference Davis-Smyth T, Presta LG, Ferrara N. Mapping the charged residues in the second immunoglobulin-like domain of the vascular endothelial growth factor/placenta growth factor receptor Flt-1 required for binding and structural stability. J Biol Chem. 1998;273:3216–22.PubMedCrossRef Davis-Smyth T, Presta LG, Ferrara N. Mapping the charged residues in the second immunoglobulin-like domain of the vascular endothelial growth factor/placenta growth factor receptor Flt-1 required for binding and structural stability. J Biol Chem. 1998;273:3216–22.PubMedCrossRef
79.
go back to reference Christinger HW, Fuh G, de Vos AM, Wiesmann C. The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor Receptor-1. J Biol Chem. 2004;279:10382–8.PubMedCrossRef Christinger HW, Fuh G, de Vos AM, Wiesmann C. The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor Receptor-1. J Biol Chem. 2004;279:10382–8.PubMedCrossRef
80.
go back to reference Argyriou AA, Bruna J, Marmiroli P, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol. 2012;82:51–77.PubMedCrossRef Argyriou AA, Bruna J, Marmiroli P, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol. 2012;82:51–77.PubMedCrossRef
81.
go back to reference Kolb NA, Smith AG, Singleton JR, Beck SL, Stoddard GJ, Brown S, et al. The Association of Chemotherapy-Induced Peripheral Neuropathy Symptoms and the risk of falling. JAMA Neurol. 2016;73:860.PubMedPubMedCentralCrossRef Kolb NA, Smith AG, Singleton JR, Beck SL, Stoddard GJ, Brown S, et al. The Association of Chemotherapy-Induced Peripheral Neuropathy Symptoms and the risk of falling. JAMA Neurol. 2016;73:860.PubMedPubMedCentralCrossRef
82.
go back to reference Uniyal A, Shantanu PA, Vaidya S, Belinskaia DA, Shestakova NN, Kumar R, et al. Tozasertib attenuates neuropathic pain by interfering with Aurora kinase and KIF11 mediated nociception. ACS Chem Neurosci United States. 2021;12:1948–60.CrossRef Uniyal A, Shantanu PA, Vaidya S, Belinskaia DA, Shestakova NN, Kumar R, et al. Tozasertib attenuates neuropathic pain by interfering with Aurora kinase and KIF11 mediated nociception. ACS Chem Neurosci United States. 2021;12:1948–60.CrossRef
83.
go back to reference Tiwari V, He S-Q, Huang Q, Liang L, Yang F, Chen Z, et al. Activation of μ-δ opioid receptor heteromers inhibits neuropathic pain behavior in rodents. Pain. 2020;161:842–55.PubMedPubMedCentralCrossRef Tiwari V, He S-Q, Huang Q, Liang L, Yang F, Chen Z, et al. Activation of μ-δ opioid receptor heteromers inhibits neuropathic pain behavior in rodents. Pain. 2020;161:842–55.PubMedPubMedCentralCrossRef
84.
go back to reference McGrath JC, Lilley E. Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol. 2015/05/12. John Wiley & Sons. Ltd. 2015;172:3189–93. McGrath JC, Lilley E. Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol. 2015/05/12. John Wiley & Sons. Ltd. 2015;172:3189–93.
Metadata
Title
VEGF-A/VEGFR-1 signalling and chemotherapy-induced neuropathic pain: therapeutic potential of a novel anti-VEGFR-1 monoclonal antibody
Authors
Laura Micheli
Carmen Parisio
Elena Lucarini
Alessia Vona
Alessandra Toti
Alessandra Pacini
Tommaso Mello
Serena Boccella
Flavia Ricciardi
Sabatino Maione
Grazia Graziani
Pedro Miguel Lacal
Paola Failli
Carla Ghelardini
Lorenzo Di Cesare Mannelli
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-02127-x

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine