Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

01-12-2021 | Multiple Myeloma | Research

CK2-mediated phosphorylation of Che-1/AATF is required for its pro-proliferative activity

Authors: Valeria Catena, Tiziana Bruno, Simona Iezzi, Silvia Matteoni, Annalisa Salis, Cristina Sorino, Gianluca Damonte, Maurizio Fanciulli

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

Background

Che-1/AATF (Che-1) is an RNA polymerase II binding protein involved in several cellular processes, including proliferation, apoptosis and response to stress. We have recently demonstrated that Che-1 is able to promote cell proliferation by sustaining global histone acetylation in multiple myeloma (MM) cells where it interacts with histone proteins and competes with HDAC class I members for binding.

Methods

Site-directed Mutagenesis was performed to generate a Che-1 mutant (Che-1 3S) lacking three serine residues (Ser316, Ser320 and Ser321) in 308–325 aa region. Western blot experiments were conducted to examine the effect of depletion or over-expression of Che-1 and Che-1 3S mutant on histone acetylation, in different human cancer cell lines. Proliferation assays were assessed to estimate the change in cells number when Che-1 was over-expressed or deleted. Immunoprecipitation assays were performed to evaluate Che-1/histone H3 interaction when Ser316, Ser320 and Ser321 were removed. The involvement of CK2 kinase in Che-1 phosphorylation at these residues was analysed by in vitro kinase, 2D gel electrophoresis assays and mass spectrometry analysis.

Results

Here, we confirmed that Che-1 depletion reduces cell proliferation with a concomitant general histone deacetylation in several tumor cell lines. Furthermore, we provided evidence that CK2 protein kinase phosphorylates Che-1 at Ser316, Ser320 and Ser321 and that these modifications are required for Che-1/histone H3 binding. These results improve our understanding onto the mechanisms by which Che-1 regulates histone acetylation and cell proliferation.

Conclusions

Che-1 phosphorylation at Ser316, Ser320 and Ser321 by CK2 promotes the interaction with histone H3 and represents an essential requirement for Che-1 pro-proliferative ability.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bacalini MG, Tavolaro S, Peragine N, Marinelli M, Santangelo S, Del Giudice I, et al. A subset of chronic lymphocytic leukemia patients display reduced levels of PARP1 expression coupled with a defective irradiation-induced apoptosis. Exp Hematol. 2012;40(3):197–206 e1.PubMedCrossRef Bacalini MG, Tavolaro S, Peragine N, Marinelli M, Santangelo S, Del Giudice I, et al. A subset of chronic lymphocytic leukemia patients display reduced levels of PARP1 expression coupled with a defective irradiation-induced apoptosis. Exp Hematol. 2012;40(3):197–206 e1.PubMedCrossRef
2.
go back to reference Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34(9):1214–30.PubMedPubMedCentralCrossRef Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34(9):1214–30.PubMedPubMedCentralCrossRef
3.
go back to reference Kaul D. Cellular AATF gene: armour against HIV-1. Indian J Biochem Biophys. 2007;44(5):276–8.PubMed Kaul D. Cellular AATF gene: armour against HIV-1. Indian J Biochem Biophys. 2007;44(5):276–8.PubMed
4.
go back to reference Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.CrossRefPubMed Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.CrossRefPubMed
5.
go back to reference Kumar DP, Santhekadur PK, Seneshaw M, Mirshahi F, Tuculescu CU, Sanyal AJ. A novel regulatory role of apoptosis antagonizing transcription factor in the pathogenesis of NAFLD and HCC. Hepatology. 2019;69(4):1520–34. Kumar DP, Santhekadur PK, Seneshaw M, Mirshahi F, Tuculescu CU, Sanyal AJ. A novel regulatory role of apoptosis antagonizing transcription factor in the pathogenesis of NAFLD and HCC. Hepatology. 2019;69(4):1520–34.
7.
go back to reference Ishigaki S, Fonseca SG, Oslowski CM, Jurczyk A, Shearstone JR, Zhu LJ, et al. AATF mediates an antiapoptotic effect of the unfolded protein response through transcriptional regulation of AKT1. Cell Death Differ. 2010;17(5):774–86.PubMedCrossRef Ishigaki S, Fonseca SG, Oslowski CM, Jurczyk A, Shearstone JR, Zhu LJ, et al. AATF mediates an antiapoptotic effect of the unfolded protein response through transcriptional regulation of AKT1. Cell Death Differ. 2010;17(5):774–86.PubMedCrossRef
8.
go back to reference Caliskan G, Baris IC, Ayaydin F, Dobson MJ, Senarisoy M, Boros IM, et al. Che1/AATF interacts with subunits of the histone acetyltransferase core module of SAGA complexes. PLoS One. 2017;12(12):e0189193.PubMedPubMedCentralCrossRef Caliskan G, Baris IC, Ayaydin F, Dobson MJ, Senarisoy M, Boros IM, et al. Che1/AATF interacts with subunits of the histone acetyltransferase core module of SAGA complexes. PLoS One. 2017;12(12):e0189193.PubMedPubMedCentralCrossRef
9.
go back to reference Welcker D, Jain M, Khurshid S, Jokic M, Hohne M, Schmitt A, et al. AATF suppresses apoptosis, promotes proliferation and is critical for Kras-driven lung cancer. Oncogene. 2018;37(11):1503–18.PubMedCrossRef Welcker D, Jain M, Khurshid S, Jokic M, Hohne M, Schmitt A, et al. AATF suppresses apoptosis, promotes proliferation and is critical for Kras-driven lung cancer. Oncogene. 2018;37(11):1503–18.PubMedCrossRef
10.
go back to reference Bruno T, Valerio M, Casadei L, De Nicola F, Goeman F, Pallocca M, et al. Che-1 sustains hypoxic response of colorectal cancer cells by affecting Hif-1 alpha stabilization. J Exp Clin Canc Res. 2017;36:32.CrossRef Bruno T, Valerio M, Casadei L, De Nicola F, Goeman F, Pallocca M, et al. Che-1 sustains hypoxic response of colorectal cancer cells by affecting Hif-1 alpha stabilization. J Exp Clin Canc Res. 2017;36:32.CrossRef
11.
go back to reference Srinivas AN, Suresh D, Mirshahi F, Santhekadur PK, Sanyal AJ, Kumar DP. Emerging roles of AATF: checkpoint signaling and beyond. J Cell Physiol. 2021;236(5):3383–95.PubMedCrossRef Srinivas AN, Suresh D, Mirshahi F, Santhekadur PK, Sanyal AJ, Kumar DP. Emerging roles of AATF: checkpoint signaling and beyond. J Cell Physiol. 2021;236(5):3383–95.PubMedCrossRef
12.
go back to reference Bruno T, De Angelis R, De Nicola F, Barbato C, Di Padova M, Corbi N, et al. Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb. Cancer Cell. 2002;2(5):387–99.PubMedCrossRef Bruno T, De Angelis R, De Nicola F, Barbato C, Di Padova M, Corbi N, et al. Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb. Cancer Cell. 2002;2(5):387–99.PubMedCrossRef
13.
go back to reference Bruno T, De Nicola F, Iezzi S, Lecis D, D'Angelo C, Di Padova M, et al. Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell. 2006;10(6):473–86.PubMedCrossRef Bruno T, De Nicola F, Iezzi S, Lecis D, D'Angelo C, Di Padova M, et al. Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell. 2006;10(6):473–86.PubMedCrossRef
14.
go back to reference Di Padova M, Bruno T, De Nicola F, Iezzi S, D'Angelo C, Gallo R, et al. Che-1 arrests human colon carcinoma cell proliferation by displacing HDAC1 from the p21WAF1/CIP1 promoter. J Biol Chem. 2003;278(38):36496–504.PubMedCrossRef Di Padova M, Bruno T, De Nicola F, Iezzi S, D'Angelo C, Gallo R, et al. Che-1 arrests human colon carcinoma cell proliferation by displacing HDAC1 from the p21WAF1/CIP1 promoter. J Biol Chem. 2003;278(38):36496–504.PubMedCrossRef
15.
go back to reference Bruno T, De Nicola F, Corleone G, Catena V, Goeman F, Pallocca M, et al. Che-1/AATF-induced transcriptionally active chromatin promotes cell proliferation in multiple myeloma. Blood Adv. 2020;4(22):5616–30.PubMedPubMedCentralCrossRef Bruno T, De Nicola F, Corleone G, Catena V, Goeman F, Pallocca M, et al. Che-1/AATF-induced transcriptionally active chromatin promotes cell proliferation in multiple myeloma. Blood Adv. 2020;4(22):5616–30.PubMedPubMedCentralCrossRef
16.
go back to reference De Nicola F, Catena V, Rinaldo C, Bruno T, Iezzi S, Sorino C, et al. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation. Cell Death Dis. 2014;5:e1414.PubMedPubMedCentralCrossRef De Nicola F, Catena V, Rinaldo C, Bruno T, Iezzi S, Sorino C, et al. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation. Cell Death Dis. 2014;5:e1414.PubMedPubMedCentralCrossRef
17.
go back to reference Hopker K, Hagmann H, Khurshid S, Chen S, Hasskamp P, Seeger-Nukpezah T, et al. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO J. 2012;31(20):3961–75.PubMedPubMedCentralCrossRef Hopker K, Hagmann H, Khurshid S, Chen S, Hasskamp P, Seeger-Nukpezah T, et al. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO J. 2012;31(20):3961–75.PubMedPubMedCentralCrossRef
19.
go back to reference Borgo C, Ruzzene M. Role of protein kinase CK2 in antitumor drug resistance. J Exp Clin Canc Res. 2019;38:287.CrossRef Borgo C, Ruzzene M. Role of protein kinase CK2 in antitumor drug resistance. J Exp Clin Canc Res. 2019;38:287.CrossRef
20.
21.
22.
go back to reference Coccetti P, Tripodi F, Tedeschi G, Nonnis S, Marin O, Fantinato S, et al. The CK2 phosphorylation of catalytic domain of Cdc34 modulates its activity at the G (1) to S transition in Saccharomyces cerevisiae. Cell Cycle. 2008;7(10):1391–401.PubMedCrossRef Coccetti P, Tripodi F, Tedeschi G, Nonnis S, Marin O, Fantinato S, et al. The CK2 phosphorylation of catalytic domain of Cdc34 modulates its activity at the G (1) to S transition in Saccharomyces cerevisiae. Cell Cycle. 2008;7(10):1391–401.PubMedCrossRef
23.
go back to reference Li HC, Liu XS, Yang XM, Wang YM, Wang Y, Turner JR, et al. Phosphorylation of CLIP-170 by Plk1 and CK2 promotes timely formation of kinetochore-microtubule attachments. EMBO J. 2010;29(17):2953–65.PubMedPubMedCentralCrossRef Li HC, Liu XS, Yang XM, Wang YM, Wang Y, Turner JR, et al. Phosphorylation of CLIP-170 by Plk1 and CK2 promotes timely formation of kinetochore-microtubule attachments. EMBO J. 2010;29(17):2953–65.PubMedPubMedCentralCrossRef
24.
go back to reference Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, et al. CK2 in cancer: cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals-Base. 2017;10(1):18.CrossRef Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, et al. CK2 in cancer: cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals-Base. 2017;10(1):18.CrossRef
25.
go back to reference Deplus R, Blanchon L, Rajavelu A, Boukaba A, Defrance M, Luciani J, et al. Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a. Cell Rep. 2014;8(3):743–53.PubMedCrossRef Deplus R, Blanchon L, Rajavelu A, Boukaba A, Defrance M, Luciani J, et al. Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a. Cell Rep. 2014;8(3):743–53.PubMedCrossRef
26.
go back to reference Wu SY, Lee AY, Lai HT, Zhang H, Chiang CM. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol Cell. 2013;49(5):843–57.PubMedPubMedCentralCrossRef Wu SY, Lee AY, Lai HT, Zhang H, Chiang CM. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol Cell. 2013;49(5):843–57.PubMedPubMedCentralCrossRef
27.
go back to reference Fanciulli M, Bruno T, Di Padova M, De Angelis R, Iezzi S, Iacobini C, et al. Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb. FASEB J. 2000;14(7):904–12.PubMedCrossRef Fanciulli M, Bruno T, Di Padova M, De Angelis R, Iezzi S, Iacobini C, et al. Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb. FASEB J. 2000;14(7):904–12.PubMedCrossRef
28.
go back to reference Sorino C, Catena V, Bruno T, De Nicola F, Scalera S, Bossi G, et al. Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Nucleic Acids Res. 2020;48(11):5891–906.PubMedPubMedCentralCrossRef Sorino C, Catena V, Bruno T, De Nicola F, Scalera S, Bossi G, et al. Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Nucleic Acids Res. 2020;48(11):5891–906.PubMedPubMedCentralCrossRef
29.
go back to reference Sorino C, Bruno T, Desantis A, Di Certo MG, Iezzi S, De Nicola F, et al. Centrosomal Che-1 protein is involved in the regulation of mitosis and DNA damage response by mediating pericentrin (PCNT)-dependent Chk1 protein localization. J Biol Chem. 2013;288(32):23348–57.PubMedPubMedCentralCrossRef Sorino C, Bruno T, Desantis A, Di Certo MG, Iezzi S, De Nicola F, et al. Centrosomal Che-1 protein is involved in the regulation of mitosis and DNA damage response by mediating pericentrin (PCNT)-dependent Chk1 protein localization. J Biol Chem. 2013;288(32):23348–57.PubMedPubMedCentralCrossRef
30.
go back to reference Marques-Santos LF, Grassi G, Bergami E, Faleri C, Balbi T, Salis A, et al. Cationic polystyrene nanoparticle and the sea urchin immune system: biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology. 2018;12(8):847–67.PubMedCrossRef Marques-Santos LF, Grassi G, Bergami E, Faleri C, Balbi T, Salis A, et al. Cationic polystyrene nanoparticle and the sea urchin immune system: biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology. 2018;12(8):847–67.PubMedCrossRef
31.
go back to reference Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, et al. Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res. 2011;10(12):5354–62.PubMedCrossRef Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, et al. Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res. 2011;10(12):5354–62.PubMedCrossRef
32.
go back to reference Yamagata AKD, Takeda Y, Miyamoto Y, Okada K, Inamatsu M, Yoshizato K. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics. 2002;2(9):1267–76.PubMedCrossRef Yamagata AKD, Takeda Y, Miyamoto Y, Okada K, Inamatsu M, Yoshizato K. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics. 2002;2(9):1267–76.PubMedCrossRef
33.
go back to reference Zaret K. Micrococcal nuclease analysis of chromatin structure. Curr Protoc Mol Biol. 2005;Chapter 21:Unit 21 1.PubMed Zaret K. Micrococcal nuclease analysis of chromatin structure. Curr Protoc Mol Biol. 2005;Chapter 21:Unit 21 1.PubMed
35.
go back to reference Folgiero V, Sorino C, Pallocca M, De Nicola F, Goeman F, Bertaina V, et al. Che-1 is targeted by c-Myc to sustain proliferation in pre-B-cell acute lymphoblastic leukemia. Embo Rep. 2018;19(3):e44871.PubMedPubMedCentralCrossRef Folgiero V, Sorino C, Pallocca M, De Nicola F, Goeman F, Bertaina V, et al. Che-1 is targeted by c-Myc to sustain proliferation in pre-B-cell acute lymphoblastic leukemia. Embo Rep. 2018;19(3):e44871.PubMedPubMedCentralCrossRef
36.
go back to reference Alayev A, Doubleday PF, Berger SM, Ballif BA, Holz MK. Phosphoproteomics reveals resveratrol-dependent inhibition of Akt/mTORC1/S6K1 signaling. J Proteome Res. 2014;13(12):5734–42.PubMedPubMedCentralCrossRef Alayev A, Doubleday PF, Berger SM, Ballif BA, Holz MK. Phosphoproteomics reveals resveratrol-dependent inhibition of Akt/mTORC1/S6K1 signaling. J Proteome Res. 2014;13(12):5734–42.PubMedPubMedCentralCrossRef
37.
go back to reference Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008;105(31):10762–7.PubMedPubMedCentralCrossRef Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008;105(31):10762–7.PubMedPubMedCentralCrossRef
38.
go back to reference Santamaria A, Wang B, Elowe S, Malik R, Zhang F, Bauer M, et al. The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics. 2011;10(1):M110 004457.PubMedCrossRef Santamaria A, Wang B, Elowe S, Malik R, Zhang F, Bauer M, et al. The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics. 2011;10(1):M110 004457.PubMedCrossRef
39.
go back to reference Valls E, de la Cruz X, Martinez-Balbas MA. The SV40 T antigen modulates CBP histone acetyltransferase activity. Nucleic Acids Res. 2003;31(12):3114–22.PubMedPubMedCentralCrossRef Valls E, de la Cruz X, Martinez-Balbas MA. The SV40 T antigen modulates CBP histone acetyltransferase activity. Nucleic Acids Res. 2003;31(12):3114–22.PubMedPubMedCentralCrossRef
40.
go back to reference Rihs HP, Jans DA, Fan H, Peters R. The rate of nuclear cytoplasmic protein-transport is determined by the casein kinase-ii site flanking the nuclear-localization sequence of the Sv40 T-antigen. EMBO J. 1991;10(3):633–9.PubMedPubMedCentralCrossRef Rihs HP, Jans DA, Fan H, Peters R. The rate of nuclear cytoplasmic protein-transport is determined by the casein kinase-ii site flanking the nuclear-localization sequence of the Sv40 T-antigen. EMBO J. 1991;10(3):633–9.PubMedPubMedCentralCrossRef
41.
go back to reference Lindfors K, Halttunen T, Nupponen N, Vihinen M, Visakorpi T, Maki M, et al. Identification of a novel transcription factor-like gene repressed during TGF-beta induced human intestinal epithelial cell differentiation. Gastroenterology. 2000;118(4):A289–A.CrossRef Lindfors K, Halttunen T, Nupponen N, Vihinen M, Visakorpi T, Maki M, et al. Identification of a novel transcription factor-like gene repressed during TGF-beta induced human intestinal epithelial cell differentiation. Gastroenterology. 2000;118(4):A289–A.CrossRef
42.
go back to reference Xiao CY, Jans P, Jans DA. Negative charge at the protein kinase CK2 site enhances recognition of the SV40 large T-antigen NLS by importin: effect of conformation. FEBS Lett. 1998;440(3):297–301.PubMedCrossRef Xiao CY, Jans P, Jans DA. Negative charge at the protein kinase CK2 site enhances recognition of the SV40 large T-antigen NLS by importin: effect of conformation. FEBS Lett. 1998;440(3):297–301.PubMedCrossRef
Metadata
Title
CK2-mediated phosphorylation of Che-1/AATF is required for its pro-proliferative activity
Authors
Valeria Catena
Tiziana Bruno
Simona Iezzi
Silvia Matteoni
Annalisa Salis
Cristina Sorino
Gianluca Damonte
Maurizio Fanciulli
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-02038-x

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine