Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2022

Open Access 01-12-2022 | Neuroblastoma | Review

Connecting telomere maintenance and regulation to the developmental origin and differentiation states of neuroblastoma tumor cells

Authors: Eun Young Yu, Nai-Kong V. Cheung, Neal F. Lue

Published in: Journal of Hematology & Oncology | Issue 1/2022

Login to get access

Abstract

A cardinal feature that distinguishes clinically high-risk neuroblastoma from low-risk tumors is telomere maintenance. Specifically, neuroblastoma tumors with either active telomerase or alternative lengthening of telomeres exhibit aggressive growth characteristics that lead to poor outcomes, whereas tumors without telomere maintenance can be managed with observation or minimal treatment. Even though the need for cancer cells to maintain telomere DNA—in order to sustain cell proliferation—is well established, recent studies suggest that the neural crest origin of neuroblastoma may enforce unique relationships between telomeres and tumor malignancy. Specifically in neuroblastoma, telomere structure and telomerase activity are correlated with the adrenergic/mesenchymal differentiation states, and manipulating telomerase activity can trigger tumor cell differentiation. Both findings may reflect features of normal neural crest development. This review summarizes recent advances in the characterization of telomere structure and telomere maintenance mechanisms in neuroblastoma and discusses the findings in the context of relevant literature on telomeres during embryonic and neural development. Understanding the canonical and non-canonical roles of telomere maintenance in neuroblastoma could reveal vulnerabilities for telomere-directed therapies with potential applications to other pediatric malignancies.
Literature
9.
go back to reference Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA. Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res. 1989;49:219–25.PubMed Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA. Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res. 1989;49:219–25.PubMed
10.
go back to reference Ross RA, Spengler BA, Domenech C, Porubcin M, Rettig WJ, Biedler JL. Human neuroblastoma I-type cells are malignant neural crest stem cells. Cell Growth Differ. 1995;6:449–56.PubMed Ross RA, Spengler BA, Domenech C, Porubcin M, Rettig WJ, Biedler JL. Human neuroblastoma I-type cells are malignant neural crest stem cells. Cell Growth Differ. 1995;6:449–56.PubMed
14.
15.
18.
go back to reference van Wezel EM, van Zogchel LM, van Wijk J, Timmerman I, Vo NK, Zappeij-Kannegieter L, DeCarolis B, Simon T, van Noesel MM, Molenaar JJ, et al. Mesenchymal neuroblastoma cells are undetected by current mRNA marker panels: the development of a specific neuroblastoma mesenchymal minimal residual disease panel. JCO Precis Oncol. 2019. https://doi.org/10.1200/po.18.00413.CrossRefPubMedPubMedCentral van Wezel EM, van Zogchel LM, van Wijk J, Timmerman I, Vo NK, Zappeij-Kannegieter L, DeCarolis B, Simon T, van Noesel MM, Molenaar JJ, et al. Mesenchymal neuroblastoma cells are undetected by current mRNA marker panels: the development of a specific neuroblastoma mesenchymal minimal residual disease panel. JCO Precis Oncol. 2019. https://​doi.​org/​10.​1200/​po.​18.​00413.CrossRefPubMedPubMedCentral
22.
24.
go back to reference Amoroso L, Ognibene M, Morini M, Conte M, Di Cataldo A, Tondo A, D’Angelo P, Castellano A, Garaventa A, Lasorsa VA, et al. Genomic coamplification of CDK4/MDM2/FRS2 is associated with very poor prognosis and atypical clinical features in neuroblastoma patients. Genes Chromosomes Cancer. 2020;59:277–85. https://doi.org/10.1002/gcc.22827.CrossRefPubMed Amoroso L, Ognibene M, Morini M, Conte M, Di Cataldo A, Tondo A, D’Angelo P, Castellano A, Garaventa A, Lasorsa VA, et al. Genomic coamplification of CDK4/MDM2/FRS2 is associated with very poor prognosis and atypical clinical features in neuroblastoma patients. Genes Chromosomes Cancer. 2020;59:277–85. https://​doi.​org/​10.​1002/​gcc.​22827.CrossRefPubMed
26.
go back to reference Izycka-Swieszewska E, Drozynska E, Rzepko R, Kobierska-Gulida G, Grajkowska W, Perek D, Balcerska A. Analysis of PI3K/AKT/mTOR signalling pathway in high risk neuroblastic tumours. Pol J Pathol. 2010;61:192–8.PubMed Izycka-Swieszewska E, Drozynska E, Rzepko R, Kobierska-Gulida G, Grajkowska W, Perek D, Balcerska A. Analysis of PI3K/AKT/mTOR signalling pathway in high risk neuroblastic tumours. Pol J Pathol. 2010;61:192–8.PubMed
27.
go back to reference Gundem G, Cheung IY, Roberts SS, Medina-Martínez JS, Feng Y, Levine MF, Arango Ossa JE, Zhou Y, Chadoutaud L, Rita M et al. Clonal heterogeneity before treatment underlies spatial and temporal evolution in neuroblastoma. Adv Neuroblastoma Res. 2021. Gundem G, Cheung IY, Roberts SS, Medina-Martínez JS, Feng Y, Levine MF, Arango Ossa JE, Zhou Y, Chadoutaud L, Rita M et al. Clonal heterogeneity before treatment underlies spatial and temporal evolution in neuroblastoma. Adv Neuroblastoma Res. 2021.
68.
81.
go back to reference Walsh KM, Whitehead TP, de Smith AJ, Smirnov IV, Park M, Endicott AA, Francis SS, Codd V. Group, ECT; Samani, NJ; et al. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis.2016; 37:576–582. https://doi.org/10.1093/carcin/bgw037. Walsh KM, Whitehead TP, de Smith AJ, Smirnov IV, Park M, Endicott AA, Francis SS, Codd V. Group, ECT; Samani, NJ; et al. Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis.2016; 37:576–582. https://​doi.​org/​10.​1093/​carcin/​bgw037.
124.
go back to reference Moreno L, Barone G, DuBois SG, Molenaar J, Fischer M, Schulte J, Eggert A, Schleiermacher G, Speleman F, Chesler L, et al. Accelerating drug development for neuroblastoma: summary of the second neuroblastoma drug development strategy forum from innovative therapies for children with cancer and international society of paediatric oncology Europe neuroblastoma. Eur J Cancer. 2020;136:52–68. https://doi.org/10.1016/j.ejca.2020.05.010.CrossRefPubMed Moreno L, Barone G, DuBois SG, Molenaar J, Fischer M, Schulte J, Eggert A, Schleiermacher G, Speleman F, Chesler L, et al. Accelerating drug development for neuroblastoma: summary of the second neuroblastoma drug development strategy forum from innovative therapies for children with cancer and international society of paediatric oncology Europe neuroblastoma. Eur J Cancer. 2020;136:52–68. https://​doi.​org/​10.​1016/​j.​ejca.​2020.​05.​010.CrossRefPubMed
138.
139.
go back to reference Matsuo T, Shimose S, Kubo T, Fujimori J, Yasunaga Y, Ochi M. Telomeres and telomerase in sarcomas. Anticancer Res. 2009;29:3833–6.PubMed Matsuo T, Shimose S, Kubo T, Fujimori J, Yasunaga Y, Ochi M. Telomeres and telomerase in sarcomas. Anticancer Res. 2009;29:3833–6.PubMed
Metadata
Title
Connecting telomere maintenance and regulation to the developmental origin and differentiation states of neuroblastoma tumor cells
Authors
Eun Young Yu
Nai-Kong V. Cheung
Neal F. Lue
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2022
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-022-01337-w

Other articles of this Issue 1/2022

Journal of Hematology & Oncology 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine