Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Nerve Stimulation | Review

Safety of long-term electrical peripheral nerve stimulation: review of the state of the art

Authors: Clara Günter, Jean Delbeke, Max Ortiz-Catalan

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

Electrical stimulation of peripheral nerves is used in a variety of applications such as restoring motor function in paralyzed limbs, and more recently, as means to provide intuitive sensory feedback in limb prostheses. However, literature on the safety requirements for stimulation is scarce, particularly for chronic applications. Some aspects of nerve interfacing such as the effect of stimulation parameters on electrochemical processes and charge limitations have been reviewed, but often only for applications in the central nervous system. This review focuses on the safety of electrical stimulation of peripheral nerve in humans.

Methods

We analyzed early animal studies evaluating damage thresholds, as well as more recent investigations in humans. Safety requirements were divided into two main categories: passive and active safety. We made the distinction between short-term (< 30 days) and chronic (> 30 days) applications, as well as between electrode preservation (biostability) and body tissue healthy survival (harmlessness). In addition, transferability of experimental results between different tissues and species was considered.

Results

At present, extraneural electrodes have shown superior long-term stability in comparison to intraneural electrodes. Safety limitations on pulse amplitude (and consequently, charge injection) are dependent on geometrical factors such as electrode placement, size, and proximity to the stimulated fiber. In contrast, other parameters such as stimulation frequency and percentage of effective stimulation time are more generally applicable. Currently, chronic stimulation at frequencies below 30 Hz and percentages of effective stimulation time below 50% is considered safe, but more precise data drawn from large databases are necessary. Unfortunately, stimulation protocols are not systematically documented in the literature, which limits the feasibility of meta-analysis and impedes the generalization of conclusions. We therefore propose a standardized list of parameters necessary to define electrical stimulation and allow future studies to contribute to meta-analyses.

Conclusion

The safety of chronic continuous peripheral nerve stimulation at frequencies higher than 30 Hz has yet to be documented. Precise parameter values leading to stimulation-induced depression of neuronal excitability (SIDNE) and neuronal damage, as well as the transition between the two, are still lacking. At present, neural damage mechanisms through electrical stimulation remain obscure.
Literature
1.
go back to reference Agnew WF, McCreery DB. Considerations for safety with chronically implanted nerve electrodes. Epilepsia. 1990;31:S27–32.PubMedCrossRef Agnew WF, McCreery DB. Considerations for safety with chronically implanted nerve electrodes. Epilepsia. 1990;31:S27–32.PubMedCrossRef
2.
go back to reference Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171–98.PubMedCrossRef Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171–98.PubMedCrossRef
3.
5.
go back to reference Elefteriades JA, Quin JA, Hogan JF, Holcomb WG, Letsou GV, Chlosta WF, et al. Long-term follow-up of pacing of the conditioned diaphragm in quadriplegia. Pacing Clin Electrophysiol. 2002;25:897–906.PubMedCrossRef Elefteriades JA, Quin JA, Hogan JF, Holcomb WG, Letsou GV, Chlosta WF, et al. Long-term follow-up of pacing of the conditioned diaphragm in quadriplegia. Pacing Clin Electrophysiol. 2002;25:897–906.PubMedCrossRef
6.
go back to reference Waters RL, McNeal DR, Faloon W, Clifford B. Functional electrical stimulation of the peroneal nerve for hemiplegia. Long-term clinical follow-up. J Bone Jt Surg. 1985;67:792–3.CrossRef Waters RL, McNeal DR, Faloon W, Clifford B. Functional electrical stimulation of the peroneal nerve for hemiplegia. Long-term clinical follow-up. J Bone Jt Surg. 1985;67:792–3.CrossRef
7.
go back to reference Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13:468–72.PubMedCrossRef Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13:468–72.PubMedCrossRef
8.
go back to reference Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg Am. 2004;29:605–15.PubMedCrossRef Dhillon GS, Lawrence SM, Hutchinson DT, Horch KW. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J Hand Surg Am. 2004;29:605–15.PubMedCrossRef
9.
go back to reference Dhillon GS, Krüger TB, Sandhu JS, Horch KW. Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees. J Neurophysiol Am Physiological Soc. 2005;93:2625–33.CrossRef Dhillon GS, Krüger TB, Sandhu JS, Horch KW. Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees. J Neurophysiol Am Physiological Soc. 2005;93:2625–33.CrossRef
10.
go back to reference Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010;121:777–83.PubMedCrossRef Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010;121:777–83.PubMedCrossRef
11.
go back to reference Horch KW, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng. IEEE. 2011;19:483–9.CrossRef Horch KW, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng. IEEE. 2011;19:483–9.CrossRef
12.
go back to reference Clark GA, Wendelken S, Page DM, Davis T, Wark HAC, Normann RA, et al. Using multiple high-count electrode arrays in human median and ulnar nerves to restore sensorimotor function after previous transradial amputation of the hand. 36th Annu Int Conf Proc IEEE Eng Med Biol Soc. 2014:1977–80. https://ieeexplore.ieee.org/document/6944001. Clark GA, Wendelken S, Page DM, Davis T, Wark HAC, Normann RA, et al. Using multiple high-count electrode arrays in human median and ulnar nerves to restore sensorimotor function after previous transradial amputation of the hand. 36th Annu Int Conf Proc IEEE Eng Med Biol Soc. 2014:1977–80. https://​ieeexplore.​ieee.​org/​document/​6944001.
13.
go back to reference Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci Transl Med. 2014;6:222ra19.PubMedCrossRef Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci Transl Med. 2014;6:222ra19.PubMedCrossRef
14.
go back to reference Davis TS, Wark HAC, Hutchinson DT, Warren DJ, O’Neill K, Scheinblum T, et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng. 2016;13:03600.CrossRef Davis TS, Wark HAC, Hutchinson DT, Warren DJ, O’Neill K, Scheinblum T, et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng. 2016;13:03600.CrossRef
15.
go back to reference Oddo CM, Raspopovic S, Artoni F, Mazzoni A, Spigler G, Petrini FM, et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. elife. 2016;5:1–27.CrossRef Oddo CM, Raspopovic S, Artoni F, Mazzoni A, Spigler G, Petrini FM, et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. elife. 2016;5:1–27.CrossRef
16.
go back to reference Wendelken S, Page DM, Davis T, Wark HAC, Kluger DT, Duncan C, et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah slanted electrode arrays (USEAs) implanted in residual peripheral arm nerves. J Neuroeng Rehabil. 2017;14:121.PubMedPubMedCentralCrossRef Wendelken S, Page DM, Davis T, Wark HAC, Kluger DT, Duncan C, et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah slanted electrode arrays (USEAs) implanted in residual peripheral arm nerves. J Neuroeng Rehabil. 2017;14:121.PubMedPubMedCentralCrossRef
17.
go back to reference Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6:257ra138.PubMedPubMedCentralCrossRef Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6:257ra138.PubMedPubMedCentralCrossRef
18.
go back to reference Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med. 2014;6:257re6.PubMedCrossRef Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med. 2014;6:257re6.PubMedCrossRef
19.
go back to reference Graczyk EL, Schiefer MA, Saal HP, Delhaye BP, Bensmaia SJ, Tyler DJ. The neural basis of perceived intensity in natural and artificial touch. Sci Transl Med. 2016;8:362ra142.PubMedPubMedCentralCrossRef Graczyk EL, Schiefer MA, Saal HP, Delhaye BP, Bensmaia SJ, Tyler DJ. The neural basis of perceived intensity in natural and artificial touch. Sci Transl Med. 2016;8:362ra142.PubMedPubMedCentralCrossRef
20.
go back to reference Mastinu E, Doguet P, Botquin Y, Håkansson B, Ortiz-Catalan M. Embedded system for prosthetic control using implanted neuromuscular interfaces accessed via an Osseointegrated implant. IEEE Trans Biomed Circuits Syst. 2017;11:867–77.PubMedCrossRef Mastinu E, Doguet P, Botquin Y, Håkansson B, Ortiz-Catalan M. Embedded system for prosthetic control using implanted neuromuscular interfaces accessed via an Osseointegrated implant. IEEE Trans Biomed Circuits Syst. 2017;11:867–77.PubMedCrossRef
21.
go back to reference Schiefer MA, Tan DW, Sidek SM, Tyler DJ. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng. 2016;13:016001.PubMedCrossRef Schiefer MA, Tan DW, Sidek SM, Tyler DJ. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng. 2016;13:016001.PubMedCrossRef
22.
go back to reference Ortiz-Catalan M, Mastinu E, Brånemark R, Håkansson B. Direct Neural Sensory Feedback and Control via Osseointegration. Cape Town: XVI World Congr Int Soc Prosthetics Orthot (ISPO); 2017. Ortiz-Catalan M, Mastinu E, Brånemark R, Håkansson B. Direct Neural Sensory Feedback and Control via Osseointegration. Cape Town: XVI World Congr Int Soc Prosthetics Orthot (ISPO); 2017.
23.
go back to reference Hartline DK, Colman DR. Rapid conduction and the evolution of Giant axons and myelinated fibers. Curr Biol. 2007;17:29–35.CrossRef Hartline DK, Colman DR. Rapid conduction and the evolution of Giant axons and myelinated fibers. Curr Biol. 2007;17:29–35.CrossRef
24.
go back to reference Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci. 2009;10:345–59.PubMedCrossRef Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci. 2009;10:345–59.PubMedCrossRef
25.
go back to reference Kim Y, Romero-Ortega MI. Material considerations for peripheral nerve interfacing. MRS Bull. 2012;37:573–80.CrossRef Kim Y, Romero-Ortega MI. Material considerations for peripheral nerve interfacing. MRS Bull. 2012;37:573–80.CrossRef
26.
go back to reference Christie BP, Freeberg M, Memberg WD, Pinault GJC, Hoyen HA, Tyler DJ, et al. Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves. J Neuroeng Rehabil. 2017;14:70.PubMedPubMedCentralCrossRef Christie BP, Freeberg M, Memberg WD, Pinault GJC, Hoyen HA, Tyler DJ, et al. Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves. J Neuroeng Rehabil. 2017;14:70.PubMedPubMedCentralCrossRef
27.
go back to reference Tyler DJ, Durand DM. Functionally selective peripheral nerve stimulation with a flat Interface nerve electrode. IEEE Trans Neural Syst Rehabil Eng. 2002;10:294–303.PubMedCrossRef Tyler DJ, Durand DM. Functionally selective peripheral nerve stimulation with a flat Interface nerve electrode. IEEE Trans Neural Syst Rehabil Eng. 2002;10:294–303.PubMedCrossRef
28.
go back to reference Nielsen TN, Sevcencu C, Struijk JJ. Comparison of mono-, bi-, and Tripolar configurations for stimulation and recording with an Interfascicular Interface. IEEE Trans Neural Syst Rehabil Eng. 2014;22:88–95.PubMedCrossRef Nielsen TN, Sevcencu C, Struijk JJ. Comparison of mono-, bi-, and Tripolar configurations for stimulation and recording with an Interfascicular Interface. IEEE Trans Neural Syst Rehabil Eng. 2014;22:88–95.PubMedCrossRef
29.
go back to reference Badi AN, Hillman T, Shelton C, Normann RA. A technique for implantation of a 3-dimensional penetrating electrode array in the modiolar nerve of cats and humans. Arch Otolaryngol - Head Neck Surg. 2002;128:1019–25.PubMedCrossRef Badi AN, Hillman T, Shelton C, Normann RA. A technique for implantation of a 3-dimensional penetrating electrode array in the modiolar nerve of cats and humans. Arch Otolaryngol - Head Neck Surg. 2002;128:1019–25.PubMedCrossRef
30.
go back to reference Bowman BR, Erickson RC. Acute and chronic implantation of coiled wire intraneural electrodes during cyclical electrical stimulation. Ann Biomed Eng. 1985;13:75–93.PubMedCrossRef Bowman BR, Erickson RC. Acute and chronic implantation of coiled wire intraneural electrodes during cyclical electrical stimulation. Ann Biomed Eng. 1985;13:75–93.PubMedCrossRef
31.
go back to reference Lacour SP, Fitzgerald JJ, Lago N, Tarte E, Mcmahon S, Fawcett J. Long Micro-Channel electrode arrays: a novel type of regenerative peripheral nerve Interface. IEEE Trans Neural Syst Rehabil Eng. 2009;17:454–60.PubMedCrossRef Lacour SP, Fitzgerald JJ, Lago N, Tarte E, Mcmahon S, Fawcett J. Long Micro-Channel electrode arrays: a novel type of regenerative peripheral nerve Interface. IEEE Trans Neural Syst Rehabil Eng. 2009;17:454–60.PubMedCrossRef
32.
go back to reference Stieglitz T, Beutel H, Meyer J-U. A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sensors Actuators. 1997;60:240–3.CrossRef Stieglitz T, Beutel H, Meyer J-U. A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sensors Actuators. 1997;60:240–3.CrossRef
33.
go back to reference Garde K, Keefer E, Botterman B, Galvan P, Romero-Ortega MI. Early interfaced neural activity from chronic amputated nerves. Front Neuroeng. 2009;2:1–11.CrossRef Garde K, Keefer E, Botterman B, Galvan P, Romero-Ortega MI. Early interfaced neural activity from chronic amputated nerves. Front Neuroeng. 2009;2:1–11.CrossRef
34.
go back to reference Mannard A, Stein RB, Charles D. Regeneration electrode Units : implants for recording from single peripheral nerve fibers in freely moving animals. Science. 2018;183:547–9.CrossRef Mannard A, Stein RB, Charles D. Regeneration electrode Units : implants for recording from single peripheral nerve fibers in freely moving animals. Science. 2018;183:547–9.CrossRef
35.
go back to reference Lacour SP, Atta R, FitzGerald JJ, Blamire M, Tarte E, Fawcett J. Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sensors Actuators A Phys. 2008;147:456–63.CrossRef Lacour SP, Atta R, FitzGerald JJ, Blamire M, Tarte E, Fawcett J. Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sensors Actuators A Phys. 2008;147:456–63.CrossRef
36.
go back to reference Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst. 2005;10:229–58.PubMedCrossRef Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst. 2005;10:229–58.PubMedCrossRef
37.
go back to reference Ortiz-Catalan M, Brånemark R, Håkansson B, Delbeke J. On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online. 2012;11:33.PubMedPubMedCentralCrossRef Ortiz-Catalan M, Brånemark R, Håkansson B, Delbeke J. On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online. 2012;11:33.PubMedPubMedCentralCrossRef
38.
go back to reference Brummer SB, Turner MJ. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng. 1977;24:59–63.PubMedCrossRef Brummer SB, Turner MJ. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng. 1977;24:59–63.PubMedCrossRef
39.
go back to reference Nashold BS Jr, Goldner JL, Mullen JB, Bright DS. Long-term pain control by direct peripheral-nerve stimulation. J Bone Jt Surg. 1982;64:1–10.CrossRef Nashold BS Jr, Goldner JL, Mullen JB, Bright DS. Long-term pain control by direct peripheral-nerve stimulation. J Bone Jt Surg. 1982;64:1–10.CrossRef
40.
go back to reference Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31:81–110.CrossRef Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31:81–110.CrossRef
41.
go back to reference Rickett T, Connell S, Bastijanic J, Hegde S, Shi R. Functional and mechanical evaluation of nerve stretch injury. J Med Syst. 2011;35:787–93.PubMedCrossRef Rickett T, Connell S, Bastijanic J, Hegde S, Shi R. Functional and mechanical evaluation of nerve stretch injury. J Med Syst. 2011;35:787–93.PubMedCrossRef
42.
go back to reference Olsson Y. Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol. 1990;5:265–311.PubMed Olsson Y. Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol. 1990;5:265–311.PubMed
43.
go back to reference Kim JH, Manuelidis EE, Glenn WWL, Fukuda Y, Cole DS, Hogan JF. Light and electron microscopic studies of phrenic nerves after long-term electrical stimulation. J Neurosurg. 1983;58:84–91.PubMedCrossRef Kim JH, Manuelidis EE, Glenn WWL, Fukuda Y, Cole DS, Hogan JF. Light and electron microscopic studies of phrenic nerves after long-term electrical stimulation. J Neurosurg. 1983;58:84–91.PubMedCrossRef
44.
go back to reference Agnew WF, McCreery DB, Yuen TGH, Bullara LA. Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann Biomed Eng. 1989;17:39–60.PubMedCrossRef Agnew WF, McCreery DB, Yuen TGH, Bullara LA. Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann Biomed Eng. 1989;17:39–60.PubMedCrossRef
45.
go back to reference McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Damage in peripheral nerve from continuous electrical stimulation: comparison of two stimulus waveforms. Med Biol Eng Comput. 1992;30:109–14.PubMedCrossRef McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Damage in peripheral nerve from continuous electrical stimulation: comparison of two stimulus waveforms. Med Biol Eng Comput. 1992;30:109–14.PubMedCrossRef
46.
go back to reference Naples GG, Mortimer JT, Scheiner A, Sweeney JD. A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans Biomed Eng. 1988;35:905–16.PubMedCrossRef Naples GG, Mortimer JT, Scheiner A, Sweeney JD. A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans Biomed Eng. 1988;35:905–16.PubMedCrossRef
47.
go back to reference Mortimer JT, Agnew WF, Horch KW, Citron P, Creasey G, Kantor C. Perspectives on new electrode Technology for Stimulating Peripheral Nerves with implantable motor prostheses. IEEE Trans Rehabil Eng. 1995;3:145–54.CrossRef Mortimer JT, Agnew WF, Horch KW, Citron P, Creasey G, Kantor C. Perspectives on new electrode Technology for Stimulating Peripheral Nerves with implantable motor prostheses. IEEE Trans Rehabil Eng. 1995;3:145–54.CrossRef
48.
go back to reference Loeb GE, Peck RA. Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J Neurosci Methods Elsevier. 1996;64:95–103.CrossRef Loeb GE, Peck RA. Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J Neurosci Methods Elsevier. 1996;64:95–103.CrossRef
49.
go back to reference Prodanov D, Delbeke J. Mechanical and biological interactions of implants with the brain and their impact on implant design. Front Neurosci. 2016;10:11.PubMedPubMedCentralCrossRef Prodanov D, Delbeke J. Mechanical and biological interactions of implants with the brain and their impact on implant design. Front Neurosci. 2016;10:11.PubMedPubMedCentralCrossRef
50.
go back to reference Kilgore KL, Peckham PH, Keith MW, Montague FW, Hart RL, Gazdik MM, et al. Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J Rehabil Res Dev. 2003;40:457–68.PubMedCrossRef Kilgore KL, Peckham PH, Keith MW, Montague FW, Hart RL, Gazdik MM, et al. Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J Rehabil Res Dev. 2003;40:457–68.PubMedCrossRef
51.
go back to reference Grill WM, Mortimer JT. Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes. IEEE Trans Rehabil Eng. 1998;6:364–73.PubMedCrossRef Grill WM, Mortimer JT. Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes. IEEE Trans Rehabil Eng. 1998;6:364–73.PubMedCrossRef
52.
go back to reference Grill WM, Mortimer JT. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J Biomed Mater Res. 2000;50:215–26.PubMedCrossRef Grill WM, Mortimer JT. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J Biomed Mater Res. 2000;50:215–26.PubMedCrossRef
53.
go back to reference Girsch W, Koller R, Gruber H, Holle J, Liegl C, Losert U, et al. Histological assessment of nerve lesions caused by epineurial electrode application in rat sciatic nerve. J Neurosurg. 1991;74:636–42.PubMedCrossRef Girsch W, Koller R, Gruber H, Holle J, Liegl C, Losert U, et al. Histological assessment of nerve lesions caused by epineurial electrode application in rat sciatic nerve. J Neurosurg. 1991;74:636–42.PubMedCrossRef
54.
go back to reference Larsen JO, Thomsen M, Haugland M, Sinkjær T. Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons. Acta Neuropathol. 1998;96:365–78.PubMedCrossRef Larsen JO, Thomsen M, Haugland M, Sinkjær T. Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons. Acta Neuropathol. 1998;96:365–78.PubMedCrossRef
55.
go back to reference Christensen MB, Pearce SM, Ledbetter NM, Warren DJ, Clark GA, Tresco PA. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomater. 2014;10:4650–60 Acta Materialia Inc.PubMedCrossRef Christensen MB, Pearce SM, Ledbetter NM, Warren DJ, Clark GA, Tresco PA. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomater. 2014;10:4650–60 Acta Materialia Inc.PubMedCrossRef
56.
go back to reference Lago N, Yoshida K, Koch KP, Navarro X. Assessment of biocompatibility of chronically implanted polyimide and platinum Intrafascicular electrodes. IEEE Trans Biomed Eng. 2007;54:281–90.PubMedCrossRef Lago N, Yoshida K, Koch KP, Navarro X. Assessment of biocompatibility of chronically implanted polyimide and platinum Intrafascicular electrodes. IEEE Trans Biomed Eng. 2007;54:281–90.PubMedCrossRef
57.
go back to reference Clippinger FW, Avery R, Titus BR. A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosthet Res. 1974;10–22:247–58. Clippinger FW, Avery R, Titus BR. A sensory feedback system for an upper-limb amputation prosthesis. Bull Prosthet Res. 1974;10–22:247–58.
59.
go back to reference Weiss G. Sur la possibilité de rendre comparables entre eux les appareils servant a l’excitation électrique. Arch Ital Biol. 1901;35:413–46. Weiss G. Sur la possibilité de rendre comparables entre eux les appareils servant a l’excitation électrique. Arch Ital Biol. 1901;35:413–46.
60.
go back to reference Lapicque L. Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. J Physiol Pathol générale. 1907;9:620–35. Lapicque L. Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. J Physiol Pathol générale. 1907;9:620–35.
61.
go back to reference Robblee LS, Rose TL. The electrochemistry of electrical stimulation. Annu Intemational Conf IEEE Eng Med Biol Soc. 1990;12:1479–80. Robblee LS, Rose TL. The electrochemistry of electrical stimulation. Annu Intemational Conf IEEE Eng Med Biol Soc. 1990;12:1479–80.
62.
go back to reference McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann Biomed Eng. 1988;16:463–81.PubMedCrossRef McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann Biomed Eng. 1988;16:463–81.PubMedCrossRef
63.
go back to reference Agnew WF, Yuen TGH, McCreery DB. Morphologic changes after prolonged electrical stimulation of the cat’s cortex at defined charge densities. Exp Neurol. 1983;79:397–411.PubMedCrossRef Agnew WF, Yuen TGH, McCreery DB. Morphologic changes after prolonged electrical stimulation of the cat’s cortex at defined charge densities. Exp Neurol. 1983;79:397–411.PubMedCrossRef
64.
go back to reference McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng. 1990;37:996–1001.PubMedCrossRef McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng. 1990;37:996–1001.PubMedCrossRef
65.
go back to reference Shannon RV. A model of save levels for electrical stimulation. IEEE Trans Biomed Eng. 1992;39:424–6.PubMedCrossRef Shannon RV. A model of save levels for electrical stimulation. IEEE Trans Biomed Eng. 1992;39:424–6.PubMedCrossRef
66.
go back to reference Behrend MR, Ahuja AK, Weiland JD. Dynamic Curent Density of the Disk Electrode Double-Layer. IEEE Trans Biomed Eng. 2008;55:1056–62.PubMedCrossRef Behrend MR, Ahuja AK, Weiland JD. Dynamic Curent Density of the Disk Electrode Double-Layer. IEEE Trans Biomed Eng. 2008;55:1056–62.PubMedCrossRef
67.
go back to reference Cantrell DR, Inayat S, Taflove A, Ruoff RS, Troy JB. Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodes. J Neural Eng. 2008;5:54–67.PubMedCrossRef Cantrell DR, Inayat S, Taflove A, Ruoff RS, Troy JB. Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodes. J Neural Eng. 2008;5:54–67.PubMedCrossRef
68.
go back to reference Hudak EM, Mortimer JT, Martin HB. Platinum for neural stimulation: voltammetry considerations. J Neural Eng. 2010;7:026005. Hudak EM, Mortimer JT, Martin HB. Platinum for neural stimulation: voltammetry considerations. J Neural Eng. 2010;7:026005.
69.
go back to reference Krasteva VT, Papazov SP. Estimation of current density distribution under electrodes for external defibrillation. Biomed Eng Online. 2002;1:1–13.CrossRef Krasteva VT, Papazov SP. Estimation of current density distribution under electrodes for external defibrillation. Biomed Eng Online. 2002;1:1–13.CrossRef
70.
go back to reference Ksienski DA. A minimum profile uniform current density electrode. IEEE Trans Biomed Eng. 1992;39:682–92.PubMedCrossRef Ksienski DA. A minimum profile uniform current density electrode. IEEE Trans Biomed Eng. 1992;39:682–92.PubMedCrossRef
71.
go back to reference Rubinstein JT, Spelman FA, Soma M, Suesserman MF. Current density profiles of surface mounted and recessed electrodes for neural prostheses. IEEE Trans Biomed Eng. 1987;34:864–75.PubMedCrossRef Rubinstein JT, Spelman FA, Soma M, Suesserman MF. Current density profiles of surface mounted and recessed electrodes for neural prostheses. IEEE Trans Biomed Eng. 1987;34:864–75.PubMedCrossRef
72.
go back to reference Suesserman MF, Spelman FA, Rubinstein JT. In vitro measurement and characterization of current density profiles produced by nonrecessed, simple recessed, and radially varying recessed stimulating electrodes. IEEE Trans Biomed Eng. 1991;38:401–8.PubMedCrossRef Suesserman MF, Spelman FA, Rubinstein JT. In vitro measurement and characterization of current density profiles produced by nonrecessed, simple recessed, and radially varying recessed stimulating electrodes. IEEE Trans Biomed Eng. 1991;38:401–8.PubMedCrossRef
73.
go back to reference Wei XF, Grill WM. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. J Neural Eng. 2005;2:139–47.PubMedCrossRef Wei XF, Grill WM. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. J Neural Eng. 2005;2:139–47.PubMedCrossRef
74.
go back to reference Wei XF, Grill WM. Analysis of high-perimeter planar electrodes for efficient neural stimulation. Front Neuroeng. 2009;2:1–10.CrossRef Wei XF, Grill WM. Analysis of high-perimeter planar electrodes for efficient neural stimulation. Front Neuroeng. 2009;2:1–10.CrossRef
75.
go back to reference Gorman PH, Mortimer JT. The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans Biomed Eng. 1983;30:407–14.PubMedCrossRef Gorman PH, Mortimer JT. The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans Biomed Eng. 1983;30:407–14.PubMedCrossRef
76.
go back to reference DeGiorgio CM, Schachter SC, Handforth A, Salinsky M, Thompson J, Uthman B, et al. Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia. 2000;41:1195–200.PubMedCrossRef DeGiorgio CM, Schachter SC, Handforth A, Salinsky M, Thompson J, Uthman B, et al. Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia. 2000;41:1195–200.PubMedCrossRef
77.
go back to reference Mortimer JT, Kaufman D, Roessmann U. Intramuscular electrical stimulation: tissue damage. Ann Biomed Eng. 1980;8:235–44.PubMedCrossRef Mortimer JT, Kaufman D, Roessmann U. Intramuscular electrical stimulation: tissue damage. Ann Biomed Eng. 1980;8:235–44.PubMedCrossRef
78.
go back to reference Lilly JC. Injury and excitation by electric currents. In: Sheer DE, editor. Electr Stimul brain. Austin: University of Texas Press; 1961. p. 60–4. Lilly JC. Injury and excitation by electric currents. In: Sheer DE, editor. Electr Stimul brain. Austin: University of Texas Press; 1961. p. 60–4.
79.
go back to reference Crago PE, Peckham PH, Mortimer JT, Van Der Meulen JP. The choice of pulse duration for chronic electrical stimulation via surface, nerve, and intramuscular electrodes. Ann Biomed Eng. 1974;2:252–64.PubMedCrossRef Crago PE, Peckham PH, Mortimer JT, Van Der Meulen JP. The choice of pulse duration for chronic electrical stimulation via surface, nerve, and intramuscular electrodes. Ann Biomed Eng. 1974;2:252–64.PubMedCrossRef
80.
go back to reference Butterwick A, Vankov A, Huie P, Freyvert Y, Palanker D. Tissue damage by pulsed electrical stimulation. IEEE Trans Biomed Eng IEEE. 2007;54:2261–7.CrossRef Butterwick A, Vankov A, Huie P, Freyvert Y, Palanker D. Tissue damage by pulsed electrical stimulation. IEEE Trans Biomed Eng IEEE. 2007;54:2261–7.CrossRef
81.
go back to reference Prado-Guitierrez P, Fewster LM, Heasman JM, McKay CM, Shepherd RK. Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival. Hear Res. 2006;215:47–55.PubMedPubMedCentralCrossRef Prado-Guitierrez P, Fewster LM, Heasman JM, McKay CM, Shepherd RK. Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival. Hear Res. 2006;215:47–55.PubMedPubMedCentralCrossRef
82.
go back to reference Rattay F. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng. 1986;33:974–7.PubMedCrossRef Rattay F. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng. 1986;33:974–7.PubMedCrossRef
83.
go back to reference Ben-Menachem E, Mañon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia. 1994;35:616–26.PubMedCrossRef Ben-Menachem E, Mañon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia. 1994;35:616–26.PubMedCrossRef
84.
go back to reference Pasluosta C, Kiele P, Stieglitz T. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin Neurophysiol. 2018;129:851–62.PubMedCrossRef Pasluosta C, Kiele P, Stieglitz T. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin Neurophysiol. 2018;129:851–62.PubMedCrossRef
85.
go back to reference Lilly JC, Hughes JR, Alvord EC, Galkin TW. Brief, noninjurious electric waveform for stimulation of the brain. Adv Sci. 1955;121:468–9. Lilly JC, Hughes JR, Alvord EC, Galkin TW. Brief, noninjurious electric waveform for stimulation of the brain. Adv Sci. 1955;121:468–9.
86.
go back to reference Scheiner A, Mortimer JT, Roessmann U. Imbalanced biphasic electrical stimulation: muscle tissue damage. Ann Biomed Eng. 1990;18:407–25.PubMedCrossRef Scheiner A, Mortimer JT, Roessmann U. Imbalanced biphasic electrical stimulation: muscle tissue damage. Ann Biomed Eng. 1990;18:407–25.PubMedCrossRef
87.
go back to reference Wessale JL, Geddes LA, Ayers GM, Foster KS. Comparison of rectangular and exponential current pulses for evoking sensation. Ann Biomed Eng. 1992;20:237–44.PubMedCrossRef Wessale JL, Geddes LA, Ayers GM, Foster KS. Comparison of rectangular and exponential current pulses for evoking sensation. Ann Biomed Eng. 1992;20:237–44.PubMedCrossRef
89.
go back to reference Wongsarnpigoon A, Woock JP, Grill WM. Efficiency analysis of waveform shape for electrical excitation of nerve fibers. IEEE Trans Neural Syst Rehabil Eng. 2010;18:319–28.PubMedPubMedCentralCrossRef Wongsarnpigoon A, Woock JP, Grill WM. Efficiency analysis of waveform shape for electrical excitation of nerve fibers. IEEE Trans Neural Syst Rehabil Eng. 2010;18:319–28.PubMedPubMedCentralCrossRef
90.
go back to reference Qing KY, Ward MP, Irazoqui PP. Burst-modulated waveforms optimize electrical stimuli for charge efficiency and Fiber selectivity. IEEE Trans Neural Syst Rehabil Eng. 2015;23:936–45.PubMedCrossRef Qing KY, Ward MP, Irazoqui PP. Burst-modulated waveforms optimize electrical stimuli for charge efficiency and Fiber selectivity. IEEE Trans Neural Syst Rehabil Eng. 2015;23:936–45.PubMedCrossRef
91.
go back to reference Van den Honert C, Mortimer JT. The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann Biomed Eng. 1979;7:117–25.PubMedCrossRef Van den Honert C, Mortimer JT. The response of the myelinated nerve fiber to short duration biphasic stimulating currents. Ann Biomed Eng. 1979;7:117–25.PubMedCrossRef
92.
go back to reference McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat. Med Biol Eng Comput. 1995;33:426–9.PubMedCrossRef McCreery DB, Agnew WF, Yuen TGH, Bullara LA. Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat. Med Biol Eng Comput. 1995;33:426–9.PubMedCrossRef
93.
go back to reference Fisher LE, Miller ME, Bailey SN, Davis JA, Anderson JS, Rhode L, et al. Standing after spinal cord injury with four-contact nerve-cuff electrodes for quadriceps stimulation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:473–8.PubMedPubMedCentralCrossRef Fisher LE, Miller ME, Bailey SN, Davis JA, Anderson JS, Rhode L, et al. Standing after spinal cord injury with four-contact nerve-cuff electrodes for quadriceps stimulation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:473–8.PubMedPubMedCentralCrossRef
94.
go back to reference McCreery DB, Yuen TGH, Agnew WF, Bullara LA. A characterization of the effects on neuronal excitability due to prolonged microstimulation with chronically implanted microelectrodes. IEEE Trans Biomed Eng. 1997;44:931–9.PubMedCrossRef McCreery DB, Yuen TGH, Agnew WF, Bullara LA. A characterization of the effects on neuronal excitability due to prolonged microstimulation with chronically implanted microelectrodes. IEEE Trans Biomed Eng. 1997;44:931–9.PubMedCrossRef
95.
go back to reference Ochoa J, Torebjörk E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol. 1983;342:633–54.PubMedPubMedCentralCrossRef Ochoa J, Torebjörk E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol. 1983;342:633–54.PubMedPubMedCentralCrossRef
96.
go back to reference Tykocinski M, Shepherd RK, Clark GM. Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. Hear Res. 1995;88:124–42.PubMedCrossRef Tykocinski M, Shepherd RK, Clark GM. Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. Hear Res. 1995;88:124–42.PubMedCrossRef
97.
go back to reference Anani AB, Ikeda K, Körner LM. Human ability to discriminate various parameters in afferent electrical nerve stimulation with particular reference to prostheses sensory feedback. Med Biol Eng Comput. 1977;15:363–73.PubMedCrossRef Anani AB, Ikeda K, Körner LM. Human ability to discriminate various parameters in afferent electrical nerve stimulation with particular reference to prostheses sensory feedback. Med Biol Eng Comput. 1977;15:363–73.PubMedCrossRef
99.
go back to reference Yuen TGH, Agnew WF, Bullara LA, Jacques S, McCreery DB. Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery. 1981;9:292–9.PubMed Yuen TGH, Agnew WF, Bullara LA, Jacques S, McCreery DB. Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery. 1981;9:292–9.PubMed
100.
go back to reference Agnew WF, McCreery DB, Yuen TGH, Bullara LA. Local anaesthetic block protects against electrically-induced damage in peripheral nerve. J Biomed Eng. 1990;12:301–8.PubMedCrossRef Agnew WF, McCreery DB, Yuen TGH, Bullara LA. Local anaesthetic block protects against electrically-induced damage in peripheral nerve. J Biomed Eng. 1990;12:301–8.PubMedCrossRef
101.
go back to reference Weber DJ, Friesen R, Miller LE. Interfacing the somatosensory system to restore touch and proprioception: essential considerations. J Mot Behav. 2012;44:403–18.PubMedCrossRef Weber DJ, Friesen R, Miller LE. Interfacing the somatosensory system to restore touch and proprioception: essential considerations. J Mot Behav. 2012;44:403–18.PubMedCrossRef
102.
go back to reference Maffiuletti NA, Roig M, Karatzanos E, Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Med. 2013;11:137.PubMedPubMedCentralCrossRef Maffiuletti NA, Roig M, Karatzanos E, Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: a systematic review. BMC Med. 2013;11:137.PubMedPubMedCentralCrossRef
103.
go back to reference Ranck JBJ. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417–40.PubMedCrossRef Ranck JBJ. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417–40.PubMedCrossRef
104.
go back to reference Olausson H, Wessberg J, Morrison I, McGlone F, Vallbo Å. The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev. 2010;34:185–91.PubMedCrossRef Olausson H, Wessberg J, Morrison I, McGlone F, Vallbo Å. The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev. 2010;34:185–91.PubMedCrossRef
105.
go back to reference Griffin JW, George R, Ho T. Macrophage Systems in Peripheral Nerves. A Review J Neuropathol Exp Neurol. 1993;52:553–60.PubMedCrossRef Griffin JW, George R, Ho T. Macrophage Systems in Peripheral Nerves. A Review J Neuropathol Exp Neurol. 1993;52:553–60.PubMedCrossRef
106.
go back to reference Frostick SP, Yin Q, Kemp GJ. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery. 1998;18:397–405.PubMedCrossRef Frostick SP, Yin Q, Kemp GJ. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery. 1998;18:397–405.PubMedCrossRef
107.
go back to reference Al-majed AA, Tam SL, Gordon T. Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral Motoneurons. Cell Mol Neurobiol. 2004;24:379–402.PubMedCrossRef Al-majed AA, Tam SL, Gordon T. Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral Motoneurons. Cell Mol Neurobiol. 2004;24:379–402.PubMedCrossRef
108.
go back to reference Tam SL, Gordon T. Mechanisms controlling axonal sprouting at the neuromuscular junction. J Neurocytol. 2003;32:961–74.PubMedCrossRef Tam SL, Gordon T. Mechanisms controlling axonal sprouting at the neuromuscular junction. J Neurocytol. 2003;32:961–74.PubMedCrossRef
109.
go back to reference Tam SL, Gordon T. Neuromuscular activity impairs axonal sprouting in partially Denervated muscles by inhibiting bridge formation of Perisynaptic Schwann cells. J Neurobiol. 2003;57:221–34.PubMedCrossRef Tam SL, Gordon T. Neuromuscular activity impairs axonal sprouting in partially Denervated muscles by inhibiting bridge formation of Perisynaptic Schwann cells. J Neurobiol. 2003;57:221–34.PubMedCrossRef
110.
go back to reference Geremia NM, Gordon T, Brushart TM, Al-majed AA, VMK V. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp. Neurol. 2007;205:347–59. Geremia NM, Gordon T, Brushart TM, Al-majed AA, VMK V. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp. Neurol. 2007;205:347–59.
112.
go back to reference Varon SS, Bunge RP. Trophic mechanisms in the peripheral nervous system. Annu Rev Neurosci. 1978;1:327–61.PubMedCrossRef Varon SS, Bunge RP. Trophic mechanisms in the peripheral nervous system. Annu Rev Neurosci. 1978;1:327–61.PubMedCrossRef
113.
go back to reference Agnew WF, McCreery DB, Yuen TGH, Bullara LA. Evolution and resolution of stimulation-induced axonal injury in peripheral nerve. Muscle Nerve. 1999;22:1393–402.PubMedCrossRef Agnew WF, McCreery DB, Yuen TGH, Bullara LA. Evolution and resolution of stimulation-induced axonal injury in peripheral nerve. Muscle Nerve. 1999;22:1393–402.PubMedCrossRef
114.
go back to reference Graczyk EL, Delhaye B, Schiefer MA, Bensmaia SJ, Tyler DJ. Sensory adaptation to electrical stimulation of the somatosensory nerves. J Neural Eng. 2018;15:046002.PubMedCrossRefPubMedCentral Graczyk EL, Delhaye B, Schiefer MA, Bensmaia SJ, Tyler DJ. Sensory adaptation to electrical stimulation of the somatosensory nerves. J Neural Eng. 2018;15:046002.PubMedCrossRefPubMedCentral
115.
go back to reference Walker CF, Lockhead GR, Markle DR, McElhaney JH. Parameters of stimulation and perception in an artificial sensory feedback system. J Bioeng. 1977;1:251–6.PubMed Walker CF, Lockhead GR, Markle DR, McElhaney JH. Parameters of stimulation and perception in an artificial sensory feedback system. J Bioeng. 1977;1:251–6.PubMed
116.
go back to reference Anani AB, Körner LM. Afferent electrical nerve stimulation: human tracking performance relevant to prosthesis sensory feedback. Med Biol Eng Comput. 1979;36:1–4. Anani AB, Körner LM. Afferent electrical nerve stimulation: human tracking performance relevant to prosthesis sensory feedback. Med Biol Eng Comput. 1979;36:1–4.
117.
go back to reference Vandoninck V, Van Balken MR, Agrò EF, Petta F, Caltagirone C, Heesakkers JPFA, et al. Posterior tibial nerve stimulation in the treatment of urge incontinence. Neurourol Urodyn. 2003;22:17–23.PubMedCrossRef Vandoninck V, Van Balken MR, Agrò EF, Petta F, Caltagirone C, Heesakkers JPFA, et al. Posterior tibial nerve stimulation in the treatment of urge incontinence. Neurourol Urodyn. 2003;22:17–23.PubMedCrossRef
118.
go back to reference Abdellaoui A, Préfaut C, Gouzi F, Couillard A, Coisy-Quivy M, Hugon G, et al. Skeletal muscle effects of electrostimulation after COPD exacerbation: a pilot study. Eur Respir J. 2011;38:781–8.PubMedCrossRef Abdellaoui A, Préfaut C, Gouzi F, Couillard A, Coisy-Quivy M, Hugon G, et al. Skeletal muscle effects of electrostimulation after COPD exacerbation: a pilot study. Eur Respir J. 2011;38:781–8.PubMedCrossRef
Metadata
Title
Safety of long-term electrical peripheral nerve stimulation: review of the state of the art
Authors
Clara Günter
Jean Delbeke
Max Ortiz-Catalan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-018-0474-8

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue