Skip to main content
Log in

Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Arrays of platinum (faradaic) and anodized, sintered tantalum pentoxide (capacitor) electrodes were implanted bilaterally in the subdural space of the parietal cortex of the cat. Two weeks after implantation both types of electrodes were pulsed for seven hours with identical waveforms consisting of controlled-current, chargebalanced, symmetric, anodic-first pulse pairs, 400 μsec/phase and a charge density of 80–100 μC/cm2 (microcoulombs per square cm) at 50 pps (pulses per second). One group of animals was sacrificed immediately following stimulation and a second smaller group one week after stimulation. Tissues beneath both types of pulsed electrodes were damaged, but the difference in damage for the two electrode types was not statistically significant. Tissue beneath unpulsed electrodes was normal. At the ultrastructural level, in animals killed immediately after stimulation, shrunken and hyperchromic neurons were intermixed with neurons showing early intracellular edema. Glial cells appeared essentially normal. In animals killed one week after stimulation most of the damaged neurons had recovered, but the presence of shrunken, vacuolated and degenerating neurons showed that some of the cells were damaged irreversibly. It is concluded that most of the neural damage from stimulations of the brain surface at the level used in this study derives from processes associated with passage of the stimulus current through tissue, such as neuronal hyperactivity rather than electrochemical reactions associated with current injection across the electrode-tissue interface, since such reactions occur only with the faradaic electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agnew, W.F.; McCreery, D.B. Consideration for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurg. 20:143–147; 1987.

    CAS  Google Scholar 

  2. Agnew, W.F.; Yuen, T.G.H.; McCreery, D.B. Morphologic changes after prolonged electrical stimulation of the cat's cortex at defined charge densities. Exp. Neurol. 79:397–411; 1983.

    Article  CAS  PubMed  Google Scholar 

  3. Agnew, W.F.; Yuen, T.G.H.; Bullara, L.A.; Jacques, D.; Pudenz, R.H. Intracellular calcium deposition in brain following electrical stimulation. Neurol. Res. 1:187–202; 1979.

    CAS  PubMed  Google Scholar 

  4. Agnew, W.F.; Yuen, T.G.H.; Pudenz, R.H.; Bullara, L.A. Electrical stimulation of the brain: IV. Ultrastructural studies. Surg. Neurol. 4:438–448; 1975.

    CAS  PubMed  Google Scholar 

  5. Auer, R.N. Hypoglycemic brain damage. Doctoral Thesis, University of Lund; 1985.

  6. Auer, R.N.; Wieloch, T.; Olsson, Y.; Siesjo, B.K. The distribution of hypoglycemic brain damage. Acta. Neuropath. 64:177–191; 1984.

    CAS  PubMed  Google Scholar 

  7. Bartlett, J.R.; Doty, R.W.; Lee, B.B.; Negrao, N.; Overman, W.H. Deleterious effects of prolonged electrical excitation of striate cortex in Macaques. Brain Behav. & Evol. 14:46–66; 1977.

    CAS  Google Scholar 

  8. Bernstein, J.J.; Hench, L.L.; Johnson, P.F.; Dawson, W.W.; Hunter, G. Electrical stimulation of the cortex with tantalum pentoxide capacitor electrodes. In: Hambrect, F.T.; Reswick, J.B., eds. Functional Electrical Stimulation. New York: Marcel Dekker, Inc.; Basel 1977.

    Google Scholar 

  9. Brummer, S.B.; Turner, M.J. Electrical stimulation with Pt electrodes; analysis of dissolved platinum and other dissolved electrochemical products. Brain, Behav. & Evol. 14:23–45; 1977.

    Google Scholar 

  10. Brummer, S.B.; Turner, M.J. Electrical stimulation with Pt electrodes. II. Estimation of maximum surface redox (theoretical non-gassing) limits. IEEE Trans. Biomed. Engr. BME 24: 440–443; 1977a.

    CAS  Google Scholar 

  11. Brummer, S.B.; Turner, M.J. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans. Biomed. Eng. 24:59–63; 1977b.

    CAS  PubMed  Google Scholar 

  12. Guyton, D.L.; Hambrecht, F.T. Theory and design of capacitor electrodes for chronic stimulation. Med. Biol. Engr. 12:613–620; 1974.

    CAS  Google Scholar 

  13. Guyton, D.L.; Hambrecht, F.T. Capacitor electrodes stimulate nerve or muscle without oxidation-reduction reactions. Science (United States) 6. 181:74–76; 1973.

    CAS  Google Scholar 

  14. Johnson, P.F.; Bernstein, J.J.; Hunter, G.; Dawson, W.W.; Hench, L.L. Anin vitro andin vivo analysis of anodized tantalum capacitive electrodes: Corrosion response, physiology, and histology. J. Biomed. Mater. Res. 11:637–656; 1977.

    CAS  PubMed  Google Scholar 

  15. Lamb, B.S.; Webb, R.C. Vascular effects of free radicals generated by electrical stimulation. Am. J. Physiol. 247:709–714; 1984.

    Google Scholar 

  16. Lassman, H.; Petsche, U.; Kitz, K.; Baran, H.; Sperl, G.; Settelberger, F.; Hornykiewicz, O. The role of brain edema in epileptic brain damage induced by systemic kainic acid injection. Neuroscience 13:691–704; 1984.

    Google Scholar 

  17. McCreery, D.B.; Agnew, W.F. Changes in the extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densities. Exp. Neurol. 79:371–396; 1983.

    Article  CAS  PubMed  Google Scholar 

  18. Miyazaki, S.; Ikeda, K. Capacitive electrode for chronic stimulation of nerve. Rep. Inst. Med. Dent. Eng. 63–74; 1974.

  19. Olney, J.W.; de Gubareff, T. “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant pathway. II. Ultrastructural analysis of acute hippocampal pathology. Brain Res. Bul. 10:699–712; 1983.

    CAS  Google Scholar 

  20. Olney, J.W.; Fuller, T.A.; de Gubareff, T. Kainate-like neurotoxicity of folates. Nature. 292:165–167; 1981.

    Article  CAS  PubMed  Google Scholar 

  21. Petito, C.K.; Pulsinelli, W.A.; Jacobson, G.; Plum, F. Edema and vascular permeability in cerebral ischemia: Comparison between ischemic neuronal damage and infarction. J. Neuropth. Exper. Neurol. 41:423–436; 1982.

    CAS  Google Scholar 

  22. Pinard, E.; Tremblay, E.; Ben-Ari, Y.; Seylaz, J. Blood flow compensates oxygen demand in the vulnerable CA3 region of the hippocampus during kainate-induced seizures. Neuroscience 13:1039–1049; 1984.

    Article  CAS  PubMed  Google Scholar 

  23. Pudenz, R.H.; Agnew, W.F.; Bullara, L.A. Effects of electrical stimulation of the brain. Brain Behavior and Evol. 14:103–135; 1977.

    CAS  Google Scholar 

  24. Pudenz, R.H.; Bullara, L.A.; Jacques, D.; Hambrecht, F.T. Electrical stimulation of the brain III: The neural damage model. Surg. Neurol. 4:384–400; 1975.

    Google Scholar 

  25. Robblee, L.S.; Kelliher, E.M.; Langmuir, M.E.; Vartanian, H.; McHardy, J. Preparation of etched tantalum semimicro capacitor stimulation electrodes. EIC Laboratories, Inc., Newton, MA. J. Biomed. Mater. Res. (United States). 17:327–343; 1983.

    Google Scholar 

  26. Robblee, L.S.; McHardy, J.; Agnew, W.F.; Bullara, L.A. Electrical stimulation with Pt electrodes. VII. Dissolution of Pt electrodes during electrical stimulation of the cat cerebral cortex. J. Neurosci. Meth. 9:301–330; 1983.

    CAS  Google Scholar 

  27. Rose, T.L.; Kelliher, E.M.; Robblee, L.S. Assessment of capacitor electrodes for intracortical neural stimulation. EIC Laboratories, Inc., Norwood, MA 02062. J. Neurosci. Meth. (Netherlands) 12:181–193; 1985.

    CAS  Google Scholar 

  28. Schmidt, E.M.; Hambrecht, F.T.; McIntosh, J.S. Intracortical capacitor electrodes: Preliminary evaluation. J. Neurosci. Methods 5:33–39; 1982.

    Article  CAS  PubMed  Google Scholar 

  29. Sloviter, R.S.; Damiano, B.P. On the relationship between kainic acid-induced electrophysiological effects and hippocampal damage in rats. Neurosci. Lett. 24:279–284; 1981.

    Article  CAS  PubMed  Google Scholar 

  30. Young, R.R.; Cracco, R.Q. Clinical neurophysiology of conduction in central motor pathways. Ann. Neurol. 18:606–610; 1985.

    CAS  PubMed  Google Scholar 

  31. Yuen, T.G.H.; Agnew, W.F.; Bullara, L.A.; Jacques, D.; McCreery, D.B. Histological evaluation of neural damage from electrical stimulation: Considerations for the selection of parameters for clinical application. Neurosurg. 9:292–299; 1981.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCreery, D.B., Agnew, W.F., Yuen, T.G.H. et al. Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann Biomed Eng 16, 463–481 (1988). https://doi.org/10.1007/BF02368010

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368010

Keywords

Navigation