Skip to main content
Top
Published in: Medical Oncology 2/2012

01-06-2012 | Review Article

Nanoparticles targeting HLA-G for gene therapy in cancer

Authors: Ines Zidi, Nidhal Ben Amor

Published in: Medical Oncology | Issue 2/2012

Login to get access

Abstract

Cancer cells are aided by immune-tolerant functions of HLA-G to escape the immune surveillance. In general, cancer cells can express membranous HLA-G, secrete soluble HLA-G, produce HLA-G positive exosomes, and can be subjected to proteolytic cleavage by matrix metalloproteinases releasing shedding HLA-G1 in stressful conditions. Thus, the downregulation of HLA-G either in transcripts or proteins may affect positively cancer therapy. The aim of this study was to examine the molecular nanoparticles targeting HLA-G. Special focus was accorded to RNA interference particles. Although numerous studies have reported the importance of HLA-G gene expression modulation by nanoparticles, no studies have investigated clinically their efficiency in this modulation.
Literature
1.
go back to reference Rouas-Freiss N, et al. The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci USA. 1997;94:5249–54.PubMedCrossRef Rouas-Freiss N, et al. The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci USA. 1997;94:5249–54.PubMedCrossRef
2.
go back to reference Le Gal F, et al. HLA-G mediated-inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol. 1999;11:101–6. Le Gal F, et al. HLA-G mediated-inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol. 1999;11:101–6.
3.
go back to reference Riteau B, et al. HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol. 2001;166:5018–26.PubMed Riteau B, et al. HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol. 2001;166:5018–26.PubMed
4.
go back to reference Marchal-Bras-Goncalves R, et al. A soluble HLA-G protein that inhibits natural killer cell-mediated cytotoxicity. Transplant Proc. 2001;33:2355–9.PubMedCrossRef Marchal-Bras-Goncalves R, et al. A soluble HLA-G protein that inhibits natural killer cell-mediated cytotoxicity. Transplant Proc. 2001;33:2355–9.PubMedCrossRef
5.
go back to reference Le Rond S, et al. Alloreactive CD4+ and CD8+ T cells express the immunotolerant HLA-G molecule in mixed lymphocyte reactions : in vivo implications in transplanted patients. Eur J Immunol. 2004;34:649–60.PubMedCrossRef Le Rond S, et al. Alloreactive CD4+ and CD8+ T cells express the immunotolerant HLA-G molecule in mixed lymphocyte reactions : in vivo implications in transplanted patients. Eur J Immunol. 2004;34:649–60.PubMedCrossRef
6.
go back to reference Lila N, et al. Soluble HLA-G protein secreted by allo-specific CD4+ T cells suppresses the allo-proliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci USA. 2001;98:12150–5.PubMedCrossRef Lila N, et al. Soluble HLA-G protein secreted by allo-specific CD4+ T cells suppresses the allo-proliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci USA. 2001;98:12150–5.PubMedCrossRef
7.
go back to reference Amiot L, Ferrone S, Grosse-Wilde H, Seliger B. Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention? Cell Mol Life Sci. 2011;68(3):417–31.PubMedCrossRef Amiot L, Ferrone S, Grosse-Wilde H, Seliger B. Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention? Cell Mol Life Sci. 2011;68(3):417–31.PubMedCrossRef
8.
go back to reference Kanai T, et al. Human leukocyte antigen-G-expressing cells differently modulate the release of cytokines from mononuclear cells present in the decidua versus peripheral blood. Am J Reprod Immunol. 2001;45(2):94–9.PubMedCrossRef Kanai T, et al. Human leukocyte antigen-G-expressing cells differently modulate the release of cytokines from mononuclear cells present in the decidua versus peripheral blood. Am J Reprod Immunol. 2001;45(2):94–9.PubMedCrossRef
9.
go back to reference Kanai T, et al. Soluble HLA-G influences the release of cytokines from allogeneic peripheral blood mononuclear cells in culture. Mol Hum Reprod. 2001;7(2):195–200.PubMedCrossRef Kanai T, et al. Soluble HLA-G influences the release of cytokines from allogeneic peripheral blood mononuclear cells in culture. Mol Hum Reprod. 2001;7(2):195–200.PubMedCrossRef
10.
go back to reference Le Rond S, et al. Evidence to support the role of HLA-G5 in allograft acceptance through induction of immunosuppressive/regulatory T cells. J Immunol. 2006;176(5):3266–76.PubMed Le Rond S, et al. Evidence to support the role of HLA-G5 in allograft acceptance through induction of immunosuppressive/regulatory T cells. J Immunol. 2006;176(5):3266–76.PubMed
11.
go back to reference Chen HX, et al. Upregulation of human leukocyte antigen-G expression and its clinical significance in ductal breast cancer. Hum Immunol. 2010;71(9):892–8.PubMedCrossRef Chen HX, et al. Upregulation of human leukocyte antigen-G expression and its clinical significance in ductal breast cancer. Hum Immunol. 2010;71(9):892–8.PubMedCrossRef
12.
go back to reference Gregori S, et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood. 2010;116(6):935–44.PubMedCrossRef Gregori S, et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood. 2010;116(6):935–44.PubMedCrossRef
13.
go back to reference Park GM, et al. Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochem Biophs Res Commun. 2004;313:606–11.CrossRef Park GM, et al. Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochem Biophs Res Commun. 2004;313:606–11.CrossRef
14.
go back to reference Le Maoult J, Zafaranloo K, Le Danff C, Carosella ED. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 2005;19:662–4. Le Maoult J, Zafaranloo K, Le Danff C, Carosella ED. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 2005;19:662–4.
15.
go back to reference Moreau P, Flajollet S, Carosella ED. Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med. 2009;13(98):2973–89.PubMedCrossRef Moreau P, Flajollet S, Carosella ED. Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med. 2009;13(98):2973–89.PubMedCrossRef
16.
go back to reference Rouas-Freiss N, Moreau P, Ferrone S, Carosella ED. HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism? Cancer Res. 2005;65:10139–44.PubMedCrossRef Rouas-Freiss N, Moreau P, Ferrone S, Carosella ED. HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism? Cancer Res. 2005;65:10139–44.PubMedCrossRef
17.
go back to reference Rouas-Freiss N, et al. Expression of tolerogenic HLA-G molecules in cancer prevents antitumor responses. Semin Cancer Biol. 2007;17(6):413–21.PubMedCrossRef Rouas-Freiss N, et al. Expression of tolerogenic HLA-G molecules in cancer prevents antitumor responses. Semin Cancer Biol. 2007;17(6):413–21.PubMedCrossRef
18.
go back to reference Riteau B, et al. Exosomes bearing HLA-G are released by melanoma cells. Hum Immunol. 2003;64(11):1064–72.PubMedCrossRef Riteau B, et al. Exosomes bearing HLA-G are released by melanoma cells. Hum Immunol. 2003;64(11):1064–72.PubMedCrossRef
19.
go back to reference Sebti Y, et al. Expression of functional soluble human leucocyte antigen-G molecules in lymphoproliferative disorders. Br J Haematol. 2007;138(2):202–12.PubMedCrossRef Sebti Y, et al. Expression of functional soluble human leucocyte antigen-G molecules in lymphoproliferative disorders. Br J Haematol. 2007;138(2):202–12.PubMedCrossRef
20.
go back to reference Dong DD, et al. Human leukocyte antigen-G (HLA-G) expression in cervical lesions: association with cancer progression, HPV 16/18 infection, and host immune response. Reprod Sci. 2010;17(8):718–23.PubMedCrossRef Dong DD, et al. Human leukocyte antigen-G (HLA-G) expression in cervical lesions: association with cancer progression, HPV 16/18 infection, and host immune response. Reprod Sci. 2010;17(8):718–23.PubMedCrossRef
21.
go back to reference Basta P, et al. The Immunohistochemical analysis of RCAS1, HLA-G, and B7H4-positive macrophages in partial and complete hydatidiform mole in both applied therapeutic surgery and surgery followed by chemotherapy. Am J Reprod Immunol. 2011;65(2):164–72.PubMedCrossRef Basta P, et al. The Immunohistochemical analysis of RCAS1, HLA-G, and B7H4-positive macrophages in partial and complete hydatidiform mole in both applied therapeutic surgery and surgery followed by chemotherapy. Am J Reprod Immunol. 2011;65(2):164–72.PubMedCrossRef
22.
go back to reference Singer G, et al. HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res. 2003;9(12):4460–4.PubMed Singer G, et al. HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res. 2003;9(12):4460–4.PubMed
23.
go back to reference Kleinberg L, et al. Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch. 2006;449(1):31–9.PubMedCrossRef Kleinberg L, et al. Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch. 2006;449(1):31–9.PubMedCrossRef
24.
go back to reference Jain KK. The handbook of nanomedicine. Totowa: Humana Press; 2008. Jain KK. The handbook of nanomedicine. Totowa: Humana Press; 2008.
25.
go back to reference Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.PubMedCrossRef Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.PubMedCrossRef
26.
go back to reference Snustad DP, Simmons MJ. Principles of genetics. 4th ed. Hoboken: Wiley; 2006. Snustad DP, Simmons MJ. Principles of genetics. 4th ed. Hoboken: Wiley; 2006.
27.
go back to reference Nicholl DST. An introduction to genetic engineering. 3rd ed. New York: Cambridge University Press; 2008. Nicholl DST. An introduction to genetic engineering. 3rd ed. New York: Cambridge University Press; 2008.
28.
go back to reference Tokatlian T, Segura T. siRNA applications in nanomedecine. Nanomed Nanobiotechnol. 2010;2:305–15.CrossRef Tokatlian T, Segura T. siRNA applications in nanomedecine. Nanomed Nanobiotechnol. 2010;2:305–15.CrossRef
29.
go back to reference Ford LP, Toloue MM. Delivery of RNAi mediators. RNA. 2010;1:341–50.PubMed Ford LP, Toloue MM. Delivery of RNAi mediators. RNA. 2010;1:341–50.PubMed
30.
go back to reference Wengenmayer T, Poehlmann TG, Markert UR. Inhibition of HLA-G production in JEG-3 choriocarcinoma cells by RNA interference. Am J Reprod Immunol. 2004;51(3):189–91.PubMedCrossRef Wengenmayer T, Poehlmann TG, Markert UR. Inhibition of HLA-G production in JEG-3 choriocarcinoma cells by RNA interference. Am J Reprod Immunol. 2004;51(3):189–91.PubMedCrossRef
31.
go back to reference Chen JH, et al. Construction of eukaryotic expression plasmid expressing siRNA targeting HLA-G gene and detection of its specific downregulation effect. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2007;23(5):409–12.PubMed Chen JH, et al. Construction of eukaryotic expression plasmid expressing siRNA targeting HLA-G gene and detection of its specific downregulation effect. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2007;23(5):409–12.PubMed
32.
go back to reference Chen CL, Liao QP. Role of human leukocyte antigen-G small interference RNA in a choriocarcinoma cell line. Zhonghua Fu Chan Ke Za Zhi. 2005;40(8):549–52.PubMed Chen CL, Liao QP. Role of human leukocyte antigen-G small interference RNA in a choriocarcinoma cell line. Zhonghua Fu Chan Ke Za Zhi. 2005;40(8):549–52.PubMed
33.
go back to reference Drenzek JG, et al. Suppression of mamu-AG by RNA interference. Am J Reprod Immunol. 2009;61(6):453–61.PubMedCrossRef Drenzek JG, et al. Suppression of mamu-AG by RNA interference. Am J Reprod Immunol. 2009;61(6):453–61.PubMedCrossRef
34.
go back to reference Figueiredo C, Horn PA, Blasczyk R, Seltsam A. Regulating MHC expression for cellular therapeutics. Transfusion. 2007;47:18–27.PubMedCrossRef Figueiredo C, Horn PA, Blasczyk R, Seltsam A. Regulating MHC expression for cellular therapeutics. Transfusion. 2007;47:18–27.PubMedCrossRef
35.
go back to reference Chen LJ, et al. Inhibition of HLA-G expression via RNAi abolishes resistance of extravillous trophoblast cell line TEV-1 to NK lysis. Placenta. 2010;31(6):519–27.PubMedCrossRef Chen LJ, et al. Inhibition of HLA-G expression via RNAi abolishes resistance of extravillous trophoblast cell line TEV-1 to NK lysis. Placenta. 2010;31(6):519–27.PubMedCrossRef
37.
38.
go back to reference Rossbach M. Therapeutic implications of microRNAs in human cancer. J Nucleic Acids Investig. 2011;2:e2. Rossbach M. Therapeutic implications of microRNAs in human cancer. J Nucleic Acids Investig. 2011;2:e2.
39.
go back to reference Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008;24(10):489–97.PubMedCrossRef Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008;24(10):489–97.PubMedCrossRef
40.
go back to reference Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28:369–78.PubMedCrossRef Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28:369–78.PubMedCrossRef
41.
go back to reference Bandiera S, Hatem E, Lyonnet S, Henrion-Caude A. microRNAs in diseases: from candidate to modifier genes. Clin Genet. 2010;77:306–13.PubMedCrossRef Bandiera S, Hatem E, Lyonnet S, Henrion-Caude A. microRNAs in diseases: from candidate to modifier genes. Clin Genet. 2010;77:306–13.PubMedCrossRef
42.
go back to reference George GP, Mittal RD. MicroRNAs: potential biomarkers in cancer. Indian J Clin Biochem. 2010;25(1):4–14.CrossRef George GP, Mittal RD. MicroRNAs: potential biomarkers in cancer. Indian J Clin Biochem. 2010;25(1):4–14.CrossRef
43.
go back to reference O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010;12(2):201.PubMedCrossRef O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010;12(2):201.PubMedCrossRef
44.
go back to reference Yang L, Belaguli N, Berger DH. MicroRNA and colorectal cancer. World J Surg Oncol. 2009;33(4):638–46. Yang L, Belaguli N, Berger DH. MicroRNA and colorectal cancer. World J Surg Oncol. 2009;33(4):638–46.
45.
go back to reference Veit TD, Chies JA. Tolerance versus immune response–microRNAs as important elements in the regulation of the HLA-G gene expression. Transpl Immunol. 2009;20(4):229–31.PubMedCrossRef Veit TD, Chies JA. Tolerance versus immune response–microRNAs as important elements in the regulation of the HLA-G gene expression. Transpl Immunol. 2009;20(4):229–31.PubMedCrossRef
46.
go back to reference Tan Z, et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet. 2007;81(4):829–34.PubMedCrossRef Tan Z, et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet. 2007;81(4):829–34.PubMedCrossRef
47.
go back to reference Zhu XM, et al. Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytolysis in JEG-3 cells. Am J Obstet Gynecol. 2010;202(6):592.e1–7.CrossRef Zhu XM, et al. Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytolysis in JEG-3 cells. Am J Obstet Gynecol. 2010;202(6):592.e1–7.CrossRef
48.
go back to reference Castelli EC, et al. In silico analysis of microRNAS targeting the HLA-G 3′ untranslated region alleles and haplotypes. Hum Immunol. 2009;70(12):1020–5.PubMedCrossRef Castelli EC, et al. In silico analysis of microRNAS targeting the HLA-G 3′ untranslated region alleles and haplotypes. Hum Immunol. 2009;70(12):1020–5.PubMedCrossRef
49.
go back to reference John M, et al. Gene silencing by RNAi in mammalian cells. Current Protocols in Molecular Biology. New York: Wiley; 2003. p. 26.2.1–2.14. John M, et al. Gene silencing by RNAi in mammalian cells. Current Protocols in Molecular Biology. New York: Wiley; 2003. p. 26.2.1–2.14.
50.
go back to reference Iorns E, Lord CJ, Turner N, Ashworth A. Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov. 2007;6:556–68.PubMedCrossRef Iorns E, Lord CJ, Turner N, Ashworth A. Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov. 2007;6:556–68.PubMedCrossRef
51.
52.
go back to reference Chang CC, Murphy SP, Ferrone S. Differential in vivo and in vitro HLA-G expression in melanoma cells: potential mechanisms. Hum Immunol. 2003;64(11):1057–63.PubMedCrossRef Chang CC, Murphy SP, Ferrone S. Differential in vivo and in vitro HLA-G expression in melanoma cells: potential mechanisms. Hum Immunol. 2003;64(11):1057–63.PubMedCrossRef
53.
go back to reference Moreau P, et al. HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA. 2003;100(3):1191–6.PubMedCrossRef Moreau P, et al. HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA. 2003;100(3):1191–6.PubMedCrossRef
54.
go back to reference Mouillot G, et al. HLA-G gene activation in tumor cells involves cis-acting epigenetic changes. Int J Cancer. 2005;113(6):928–36.PubMedCrossRef Mouillot G, et al. HLA-G gene activation in tumor cells involves cis-acting epigenetic changes. Int J Cancer. 2005;113(6):928–36.PubMedCrossRef
55.
go back to reference Yan WH, Lin AF, Chang CC, Ferrone S. Induction of HLA-G expression in a melanoma cell line OCM-1A following the treatment with 5-aza-2′-deoxycytidine. Cell Res. 2005;15(7):523–31.PubMedCrossRef Yan WH, Lin AF, Chang CC, Ferrone S. Induction of HLA-G expression in a melanoma cell line OCM-1A following the treatment with 5-aza-2′-deoxycytidine. Cell Res. 2005;15(7):523–31.PubMedCrossRef
56.
go back to reference Polakova K, et al. Modulation of HLA-G expression. Neoplasma. 2007;54(6):455–62.PubMed Polakova K, et al. Modulation of HLA-G expression. Neoplasma. 2007;54(6):455–62.PubMed
57.
go back to reference Dunker K, et al. Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens. 2008;72(2):137–48.PubMedCrossRef Dunker K, et al. Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens. 2008;72(2):137–48.PubMedCrossRef
58.
go back to reference Menendez L, et al. Epigenetic changes within the promoter region of the HLA-G gene in ovarian tumors. Mol Cancer. 2008;7:43.PubMedCrossRef Menendez L, et al. Epigenetic changes within the promoter region of the HLA-G gene in ovarian tumors. Mol Cancer. 2008;7:43.PubMedCrossRef
59.
go back to reference Poláková K, Bandzuchová E, Kuba D, Russ G. Demethylating agent 5-aza-2′-deoxycytidine activates HLA-G expression in human leukemia cell lines. Leuk Res. 2009;33(4):518–24.PubMedCrossRef Poláková K, Bandzuchová E, Kuba D, Russ G. Demethylating agent 5-aza-2′-deoxycytidine activates HLA-G expression in human leukemia cell lines. Leuk Res. 2009;33(4):518–24.PubMedCrossRef
60.
go back to reference Polakova K, et al. Activation of HLA-G expression by 5-aza-2-deoxycytidine in malignant hematopoetic cells isolated from leukemia patients. Neoplasma. 2009;56(6):514–20.PubMedCrossRef Polakova K, et al. Activation of HLA-G expression by 5-aza-2-deoxycytidine in malignant hematopoetic cells isolated from leukemia patients. Neoplasma. 2009;56(6):514–20.PubMedCrossRef
61.
go back to reference Qiu X, et al. Equitoxic doses of 5-azacytidine and 5-aza-2′deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS One. 2010;5(9):e12994.PubMedCrossRef Qiu X, et al. Equitoxic doses of 5-azacytidine and 5-aza-2′deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS One. 2010;5(9):e12994.PubMedCrossRef
62.
go back to reference Vrba L, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5(1):e8697.PubMedCrossRef Vrba L, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5(1):e8697.PubMedCrossRef
63.
64.
Metadata
Title
Nanoparticles targeting HLA-G for gene therapy in cancer
Authors
Ines Zidi
Nidhal Ben Amor
Publication date
01-06-2012
Publisher
Springer US
Published in
Medical Oncology / Issue 2/2012
Print ISSN: 1357-0560
Electronic ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-011-9942-8

Other articles of this Issue 2/2012

Medical Oncology 2/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.