Skip to main content
Top
Published in: Molecular Autism 1/2016

Open Access 01-12-2016 | Research

Name recognition in autism: EEG evidence of altered patterns of brain activity and connectivity

Authors: Anna Nowicka, Hanna B. Cygan, Paweł Tacikowski, Paweł Ostaszewski, Rafał Kuś

Published in: Molecular Autism | Issue 1/2016

Login to get access

Abstract

Background

Impaired orienting to social stimuli is one of the core early symptoms of autism spectrum disorder (ASD). However, in contrast to faces, name processing has rarely been studied in individuals with ASD. Here, we investigated brain activity and functional connectivity associated with recognition of names in the high-functioning ASD group and in the control group.

Methods

EEG was recorded in 15 young males with ASD and 15 matched one-to-one control individuals. EEG data were analyzed with the event-related potential (ERP), event-related desynchronization and event-related synchronization (ERD/S), as well as coherence and direct transfer function (DTF) methods. Four categories of names were presented visually: one’s own, close-other’s, famous, and unknown.

Results

Differences between the ASD and control groups were found for ERP, coherence, and DTF. In individuals with ASD, P300 (a positive ERP component) to own-name and to a close-other’s name were similar whereas in control participants, P300 to own-name was enhanced when compared to all other names. Analysis of coherence and DTF revealed disruption of fronto-posterior task-related connectivity in individuals with ASD within the beta range frequencies. Moreover, DTF indicated the directionality of those impaired connections—they were going from parieto-occipital to frontal regions. DTF also showed inter-group differences in short-range connectivity: weaker connections within the frontal region and stronger connections within the occipital region in the ASD group in comparison to the control group.

Conclusions

Our findings suggest a lack of the self-preference effect and impaired functioning of the attentional network during recognition of visually presented names in individuals with ASD.
Appendix
Available only for authorised users
Literature
1.
5.
go back to reference Lombardo MV, Baron-Cohen S. Unraveling the paradox of the autistic self. WIREs Cogn Sci. 2010;1:393–403.CrossRef Lombardo MV, Baron-Cohen S. Unraveling the paradox of the autistic self. WIREs Cogn Sci. 2010;1:393–403.CrossRef
7.
go back to reference Campatelli G, Federico RR, Apicella F, Sicca F, Muratori F. Face processing in children with ASD: Literature review. Res Autism Spect Dis. 2013;7:444–54.CrossRef Campatelli G, Federico RR, Apicella F, Sicca F, Muratori F. Face processing in children with ASD: Literature review. Res Autism Spect Dis. 2013;7:444–54.CrossRef
9.
10.
go back to reference Weigelt S, Koldewyn K, Kanwisher N. Face identity recognition in autism spectrum disorders: a review of behavioral studies. Neurosci Biobehav Rev. 2012;36:1060–84.PubMedCrossRef Weigelt S, Koldewyn K, Kanwisher N. Face identity recognition in autism spectrum disorders: a review of behavioral studies. Neurosci Biobehav Rev. 2012;36:1060–84.PubMedCrossRef
11.
go back to reference Tacikowski P, Jednorog K, Marchewka A, Nowicka A. How multiple repetitions influence the processing of self-, famous and unknown names and faces: an ERP study. Int J Psychophysiol. 2011;79:219–30.PubMedCrossRef Tacikowski P, Jednorog K, Marchewka A, Nowicka A. How multiple repetitions influence the processing of self-, famous and unknown names and faces: an ERP study. Int J Psychophysiol. 2011;79:219–30.PubMedCrossRef
12.
go back to reference Tacikowski P, Nowicka A. Allocation of attention to self-name and self-face: An ERP study. Biol Psychol. 2010;84:318–24.PubMedCrossRef Tacikowski P, Nowicka A. Allocation of attention to self-name and self-face: An ERP study. Biol Psychol. 2010;84:318–24.PubMedCrossRef
13.
go back to reference Kotlewska I, Nowicka A. Present self, past self and close-other: event-related study of face and name detection. Biol Psychol. 2015;110:201–11.PubMedCrossRef Kotlewska I, Nowicka A. Present self, past self and close-other: event-related study of face and name detection. Biol Psychol. 2015;110:201–11.PubMedCrossRef
14.
15.
go back to reference Gray HM, Ambady N, Lowenthal WT, Deldin P. P300 as an index of attention to self-relevant stimuli. J Exp Soc Psychol. 2004;40:216–24.CrossRef Gray HM, Ambady N, Lowenthal WT, Deldin P. P300 as an index of attention to self-relevant stimuli. J Exp Soc Psychol. 2004;40:216–24.CrossRef
16.
go back to reference Cherry EC. Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am. 1953;25:975–9.CrossRef Cherry EC. Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am. 1953;25:975–9.CrossRef
17.
go back to reference Wood N, Cowan N. The cocktail party phenomenon revisited: how frequent are the attention shifts to one’s own name in an irrelevant auditory channel. J Exp Psychol Learn. 1995;21:255–60.CrossRef Wood N, Cowan N. The cocktail party phenomenon revisited: how frequent are the attention shifts to one’s own name in an irrelevant auditory channel. J Exp Psychol Learn. 1995;21:255–60.CrossRef
18.
go back to reference Arnell KM, Shapiro KL, Sorensen RE. Reduced repetition blindness for one's own name. Vis Cogn. 1999;6:609–35.CrossRef Arnell KM, Shapiro KL, Sorensen RE. Reduced repetition blindness for one's own name. Vis Cogn. 1999;6:609–35.CrossRef
19.
go back to reference Moray N. Attention in dichotic-listening—affective cues and the influence of instructions. Q J Exp Psychol. 1959;11:56–60.CrossRef Moray N. Attention in dichotic-listening—affective cues and the influence of instructions. Q J Exp Psychol. 1959;11:56–60.CrossRef
20.
go back to reference Shapiro KL, Caldwell J, Sorensen RE. Personal names and the attentional blink: a visual “cocktail party” effect. J Exp Psychol Hum. 1997;23:504–14.CrossRef Shapiro KL, Caldwell J, Sorensen RE. Personal names and the attentional blink: a visual “cocktail party” effect. J Exp Psychol Hum. 1997;23:504–14.CrossRef
21.
go back to reference Grossmann T, Parise E, Friederici AD. The detection of communicative signals directed at the self in infant prefrontal cortex. Front Hum Neurosci. 2010;4:201.PubMedPubMedCentralCrossRef Grossmann T, Parise E, Friederici AD. The detection of communicative signals directed at the self in infant prefrontal cortex. Front Hum Neurosci. 2010;4:201.PubMedPubMedCentralCrossRef
22.
go back to reference Mandel DR, Jusczyk PW, Nelson DG. Does sentential prosody help infants organize and remember speech information? Cognition. 1994;53:155–80.PubMedCrossRef Mandel DR, Jusczyk PW, Nelson DG. Does sentential prosody help infants organize and remember speech information? Cognition. 1994;53:155–80.PubMedCrossRef
24.
go back to reference Watson RS. The named and the nameless: gender and person in Chinese society. Am Ethnol. 1986;13:619–31.CrossRef Watson RS. The named and the nameless: gender and person in Chinese society. Am Ethnol. 1986;13:619–31.CrossRef
25.
go back to reference Martinelli P, Sperduti M, Piolino P. Neural substrates of the self-memory system: new insights from a meta-analysis. Hum Brain Mapp. 2013;34:1515–29.PubMedCrossRef Martinelli P, Sperduti M, Piolino P. Neural substrates of the self-memory system: new insights from a meta-analysis. Hum Brain Mapp. 2013;34:1515–29.PubMedCrossRef
26.
go back to reference Nadig AS, Ozonoff S, Young GS, Rozga A, Sigman M, Rogers SJ. A prospective study of response to name in infants at risk for autism. Arch Pediatr Adolesc Med. 2007;161:378–83.PubMedCrossRef Nadig AS, Ozonoff S, Young GS, Rozga A, Sigman M, Rogers SJ. A prospective study of response to name in infants at risk for autism. Arch Pediatr Adolesc Med. 2007;161:378–83.PubMedCrossRef
27.
go back to reference Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P. Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci. 2005;23:143–52.PubMedCrossRef Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P. Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci. 2005;23:143–52.PubMedCrossRef
28.
go back to reference Carmody DP, Moreno R, Mars AE, Seshadri K, Lambert GH, Lewis M. Brief report: brain activation to social words in a sedated child with autism. J Autism Dev Disord. 2007;37:1381–5.PubMedCrossRef Carmody DP, Moreno R, Mars AE, Seshadri K, Lambert GH, Lewis M. Brief report: brain activation to social words in a sedated child with autism. J Autism Dev Disord. 2007;37:1381–5.PubMedCrossRef
29.
go back to reference Cygan HB, Tacikowski P, Ostaszewski P, Chojnicka I, Nowicka A. Neural correlates of own name and own face detection in autism spectrum disorder. PLoS One. 2014;9:86020.CrossRef Cygan HB, Tacikowski P, Ostaszewski P, Chojnicka I, Nowicka A. Neural correlates of own name and own face detection in autism spectrum disorder. PLoS One. 2014;9:86020.CrossRef
31.
32.
go back to reference Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.PubMedCrossRef Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222.PubMedCrossRef
34.
36.
go back to reference Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007;53:63–88.PubMedCrossRef Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007;53:63–88.PubMedCrossRef
37.
go back to reference Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev. 2007;31:377–95.PubMedCrossRef Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev. 2007;31:377–95.PubMedCrossRef
38.
go back to reference Palva S, Palva JM. New vistas for α-frequency band oscillations. Trends Neurosci. 2007;30:150–8.PubMedCrossRef Palva S, Palva JM. New vistas for α-frequency band oscillations. Trends Neurosci. 2007;30:150–8.PubMedCrossRef
39.
go back to reference Rihs TA, Michel CM, Thut G. Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. Eur J Neurosci. 2007;25:603–10.PubMedCrossRef Rihs TA, Michel CM, Thut G. Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. Eur J Neurosci. 2007;25:603–10.PubMedCrossRef
40.
go back to reference Awh E, Jonides J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci. 2001;5:119–26.PubMedCrossRef Awh E, Jonides J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci. 2001;5:119–26.PubMedCrossRef
41.
go back to reference Constantinidis C, Franowicz MN, Goldman-Rakic PS. Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J Neurosci. 2001;21:3646–55.PubMed Constantinidis C, Franowicz MN, Goldman-Rakic PS. Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J Neurosci. 2001;21:3646–55.PubMed
42.
43.
go back to reference Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol. 2001;43:41–58.PubMedCrossRef Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol. 2001;43:41–58.PubMedCrossRef
44.
go back to reference Gola M, Magnusk M, Szumska I, Wróbel A. EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. Int J Psychophysiol. 2013;89:334–41.PubMedCrossRef Gola M, Magnusk M, Szumska I, Wróbel A. EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects. Int J Psychophysiol. 2013;89:334–41.PubMedCrossRef
45.
go back to reference Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci U S A. 2004;101:13050–5.PubMedPubMedCentralCrossRef Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci U S A. 2004;101:13050–5.PubMedPubMedCentralCrossRef
46.
go back to reference Basile LFH, Anghinah R, Ribeiro P, Ramos RT, Piedade R, Ballester G, Brunetti EP. Interindividual variability in EEG correlates of attention and limits of functional mapping. Int J Psychophysiol. 2007;65:238–51.PubMedCrossRef Basile LFH, Anghinah R, Ribeiro P, Ramos RT, Piedade R, Ballester G, Brunetti EP. Interindividual variability in EEG correlates of attention and limits of functional mapping. Int J Psychophysiol. 2007;65:238–51.PubMedCrossRef
47.
go back to reference Hanslmayer S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bauml K. Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage. 2007;37:1465–73.CrossRef Hanslmayer S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bauml K. Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage. 2007;37:1465–73.CrossRef
48.
go back to reference Engel AK, Fries P. Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol. 2010;20:156–65.PubMedCrossRef Engel AK, Fries P. Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol. 2010;20:156–65.PubMedCrossRef
49.
go back to reference Baker CI, Liu J, Wald LL, Kwong KK, Benner T, Kanwisher N. Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci U S A. 2007;104:9087–92.PubMedPubMedCentralCrossRef Baker CI, Liu J, Wald LL, Kwong KK, Benner T, Kanwisher N. Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci U S A. 2007;104:9087–92.PubMedPubMedCentralCrossRef
50.
go back to reference Portin K, Hari R. Human parieto-occipital visual cortex: lack of retinotopy and foveal magnification. Proc Biol Sci. 1999;26:981–5.CrossRef Portin K, Hari R. Human parieto-occipital visual cortex: lack of retinotopy and foveal magnification. Proc Biol Sci. 1999;26:981–5.CrossRef
51.
go back to reference Volz KG, Schubotz RI, von Cramon DY. Decision-making and the frontal lobes. Curr Opin Neurol. 2006;19:401–6.PubMedCrossRef Volz KG, Schubotz RI, von Cramon DY. Decision-making and the frontal lobes. Curr Opin Neurol. 2006;19:401–6.PubMedCrossRef
52.
go back to reference Fuster J. The prefrontal cortex. 4th ed. London: Academic; 2008. Fuster J. The prefrontal cortex. 4th ed. London: Academic; 2008.
54.
go back to reference Vissers ME, Cohen MX, Geurts HM. Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci Biobehav Rev. 2012;36:604–25.PubMedCrossRef Vissers ME, Cohen MX, Geurts HM. Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci Biobehav Rev. 2012;36:604–25.PubMedCrossRef
55.
go back to reference Wass S. Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn. 2011;75:18–28.PubMedCrossRef Wass S. Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn. 2011;75:18–28.PubMedCrossRef
56.
go back to reference Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y, Sweeney JA. Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord. 2013;5:24.PubMedPubMedCentralCrossRef Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y, Sweeney JA. Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord. 2013;5:24.PubMedPubMedCentralCrossRef
57.
go back to reference Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M. A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia. 2011;49:254–63.PubMedCrossRef Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M. A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia. 2011;49:254–63.PubMedCrossRef
58.
go back to reference Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62:270–3.PubMedPubMedCentralCrossRef Murias M, Webb SJ, Greenson J, Dawson G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62:270–3.PubMedPubMedCentralCrossRef
59.
go back to reference Pfurtscheller G, Lopes da Silva F. Event-related desynchronization (ERD) and event-related synchronization (ERS). In: Niedermayer E, Lopes da Silva F, editors. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 5th ed. Philadelphia, PA: Lippincot, Williams, & Wilkins; 1999. p. 958–965. Pfurtscheller G, Lopes da Silva F. Event-related desynchronization (ERD) and event-related synchronization (ERS). In: Niedermayer E, Lopes da Silva F, editors. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 5th ed. Philadelphia, PA: Lippincot, Williams, & Wilkins; 1999. p. 958–965.
60.
go back to reference Lachaux JP, Lutz A, Rudrauf D, Cosmelli D, Le Van Quyen M, Martinerie J, Varela F. Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol Clin. 2002;32:157–74.PubMedCrossRef Lachaux JP, Lutz A, Rudrauf D, Cosmelli D, Le Van Quyen M, Martinerie J, Varela F. Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol Clin. 2002;32:157–74.PubMedCrossRef
61.
go back to reference Kamiński MJ, Blinowska KJ. A new method of the description of the information flow in the brain structures. Biol Cybern. 1991;65:203–10.PubMedCrossRef Kamiński MJ, Blinowska KJ. A new method of the description of the information flow in the brain structures. Biol Cybern. 1991;65:203–10.PubMedCrossRef
62.
go back to reference Kamiński MJ, Ding M, Truccolo WA, Bressler SL. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern. 2001;85:145–57.PubMedCrossRef Kamiński MJ, Ding M, Truccolo WA, Bressler SL. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern. 2001;85:145–57.PubMedCrossRef
63.
go back to reference Brzeziński J, Gaul M, Hornowska E, Jaworowska A, Machowski A, Zakrzewska M. WAIS-R (PL) – Skala inteligencji Wechslera dla dorosłych – wersja zrewidowana. Warszawa: Pracownia Testów Psychologicznych Polskiego Towarzystwa Psychologicznego; 2004. Brzeziński J, Gaul M, Hornowska E, Jaworowska A, Machowski A, Zakrzewska M. WAIS-R (PL) – Skala inteligencji Wechslera dla dorosłych – wersja zrewidowana. Warszawa: Pracownia Testów Psychologicznych Polskiego Towarzystwa Psychologicznego; 2004.
64.
go back to reference Lord C, Rutter M, DiLavore PC, Risi S. ADOS. Autism diagnostic observation schedule. Manual. Los Angeles: Western Psychological Services; 1999. Lord C, Rutter M, DiLavore PC, Risi S. ADOS. Autism diagnostic observation schedule. Manual. Los Angeles: Western Psychological Services; 1999.
65.
go back to reference Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop SL. ADOS. Autism Diagnostic Observation Schedule, second edition (ADOS-2). Manual (part I): Modules 1–4. Torrane: Western Psychological Services; 2012. Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop SL. ADOS. Autism Diagnostic Observation Schedule, second edition (ADOS-2). Manual (part I): Modules 1–4. Torrane: Western Psychological Services; 2012.
66.
go back to reference Rutter M, Le Couteur A, Lord C. ADI-R. Autism diagnostic interview revised. Manual. Los Angeles: Western Psychological Services; 2003. Rutter M, Le Couteur A, Lord C. ADI-R. Autism diagnostic interview revised. Manual. Los Angeles: Western Psychological Services; 2003.
67.
go back to reference Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord. 2001;31:5–17.PubMedCrossRef Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord. 2001;31:5–17.PubMedCrossRef
68.
go back to reference Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRef Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRef
69.
go back to reference Tacikowski P, Brechmann A, Nowicka A. Cross-modal pattern of brain activations associated with the processing of self- and significant other's name. Hum Brain Mapp. 2013;34:2069–77.PubMedCrossRef Tacikowski P, Brechmann A, Nowicka A. Cross-modal pattern of brain activations associated with the processing of self- and significant other's name. Hum Brain Mapp. 2013;34:2069–77.PubMedCrossRef
70.
go back to reference Kotlewska I, Nowicka A. Present-self, past-self and the close-other: neural correlates of assigning trait adjectives to oneself and others. 2016. doi:10.1111/ejn.13293. Kotlewska I, Nowicka A. Present-self, past-self and the close-other: neural correlates of assigning trait adjectives to oneself and others. 2016. doi:10.​1111/​ejn.​13293.
71.
go back to reference Greenhouse SW, Geisser S. On methods in the analysis of profile data. Psychometrika. 1959;24:95–112.CrossRef Greenhouse SW, Geisser S. On methods in the analysis of profile data. Psychometrika. 1959;24:95–112.CrossRef
72.
go back to reference Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7:1129–59.PubMedCrossRef Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7:1129–59.PubMedCrossRef
73.
go back to reference Jung T, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski T. Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp. 2001;14:166–85.PubMedCrossRef Jung T, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski T. Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp. 2001;14:166–85.PubMedCrossRef
74.
go back to reference Luck SJ. Ten simple rules for designing ERP experiments. In: Handy TC, editor. Event-related potentials. A methods handbook. Cambridge: The MIT Press; 2005. p. 209–27. Luck SJ. Ten simple rules for designing ERP experiments. In: Handy TC, editor. Event-related potentials. A methods handbook. Cambridge: The MIT Press; 2005. p. 209–27.
75.
go back to reference Fan W, Chen J, Wang XY, Cai R, Tan Q, Chen Y, Yang Q, Zhang S, Wu Y, Yang Z, Wang XA, Zhong Y. Electrophysiological correlation of the degree of self-reference effect. PLoS One. 2013;8:e80289.PubMedPubMedCentralCrossRef Fan W, Chen J, Wang XY, Cai R, Tan Q, Chen Y, Yang Q, Zhang S, Wu Y, Yang Z, Wang XA, Zhong Y. Electrophysiological correlation of the degree of self-reference effect. PLoS One. 2013;8:e80289.PubMedPubMedCentralCrossRef
76.
go back to reference Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol. 1993;86:283–93.PubMedCrossRef Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol. 1993;86:283–93.PubMedCrossRef
77.
go back to reference Andrew C, Pfurtscheller G. Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalogr Clin Neurophysiol. 1996;98:144–8.PubMedCrossRef Andrew C, Pfurtscheller G. Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalogr Clin Neurophysiol. 1996;98:144–8.PubMedCrossRef
78.
go back to reference Kus R, Blinowska KJ, Kamiński M, Basinska-Starzycka A. Transmission of information during continuous attention test. Acta Neurobiol Exp. 2008;68:103–12. Kus R, Blinowska KJ, Kamiński M, Basinska-Starzycka A. Transmission of information during continuous attention test. Acta Neurobiol Exp. 2008;68:103–12.
79.
go back to reference Kaminski M, Blinowska KJ. Directed transfer function is not influenced by volume conduction – inexpedient pre-processing should be avoided. Front Comput Neurosci. 2014;8:61.PubMedPubMedCentralCrossRef Kaminski M, Blinowska KJ. Directed transfer function is not influenced by volume conduction – inexpedient pre-processing should be avoided. Front Comput Neurosci. 2014;8:61.PubMedPubMedCentralCrossRef
80.
go back to reference van Driel J, Ridderinkhof KR, Cohen MX. Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-processing dynamics. J Neurosci. 2012;47:16795–806.CrossRef van Driel J, Ridderinkhof KR, Cohen MX. Not all errors are alike: theta and alpha EEG dynamics relate to differences in error-processing dynamics. J Neurosci. 2012;47:16795–806.CrossRef
81.
go back to reference Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI. Circular analysis in systems neuroscience—the dangers of double dipping. Nat Neurosci. 2009;12:535–40.PubMedPubMedCentralCrossRef Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI. Circular analysis in systems neuroscience—the dangers of double dipping. Nat Neurosci. 2009;12:535–40.PubMedPubMedCentralCrossRef
83.
84.
go back to reference Kamiński J, Brzezicka A, Gola M, Wróbel A. Beta band oscillations engagement in human alertness process. Int J Psychophysiol. 2012;85:125–8.PubMedCrossRef Kamiński J, Brzezicka A, Gola M, Wróbel A. Beta band oscillations engagement in human alertness process. Int J Psychophysiol. 2012;85:125–8.PubMedCrossRef
85.
go back to reference Kus R, Kamiński M, Blinowska KJ. Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE Trans Biomed Eng. 2004;51:1501–10.PubMedCrossRef Kus R, Kamiński M, Blinowska KJ. Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE Trans Biomed Eng. 2004;51:1501–10.PubMedCrossRef
86.
go back to reference Wróbel A. Beta activity: a carrier for visual attention. Acta Neurobiol Exp. 2000;60:247–60. Wróbel A. Beta activity: a carrier for visual attention. Acta Neurobiol Exp. 2000;60:247–60.
87.
go back to reference Wyczesany M, Ligeza T, Grzybowski S. Effective connectivity during visual processing is affected by emotional state. Brain Imaging Behav. 2015;9:717–28.PubMedCrossRef Wyczesany M, Ligeza T, Grzybowski S. Effective connectivity during visual processing is affected by emotional state. Brain Imaging Behav. 2015;9:717–28.PubMedCrossRef
88.
go back to reference Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.CrossRef Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.CrossRef
89.
go back to reference Gunji A, Inagaki M, Inoue Y, Takeshima Y, Kaga M. Event-related potentials of self-face recognition in children with pervasive developmental disorders. Brain Dev. 2009;31:139–47.PubMedCrossRef Gunji A, Inagaki M, Inoue Y, Takeshima Y, Kaga M. Event-related potentials of self-face recognition in children with pervasive developmental disorders. Brain Dev. 2009;31:139–47.PubMedCrossRef
90.
go back to reference Lombardo MV, Chakrabarti B, Bullmore ET, Sadek SA, Pasco G, Wheelwrigh SJ, et al. Atypical neural self-representation in autism. Brain. 2010;133:611–24.PubMedCrossRef Lombardo MV, Chakrabarti B, Bullmore ET, Sadek SA, Pasco G, Wheelwrigh SJ, et al. Atypical neural self-representation in autism. Brain. 2010;133:611–24.PubMedCrossRef
91.
go back to reference Henderson HA, Zahka NE, Kojkowski NM, Inge AP, Schwartz CB, Hileman CM, et al. Self-referenced memory, social cognition, and symptom presentation in autism. J Child Psychol Psychiatry. 2009;50:853–61.PubMedPubMedCentralCrossRef Henderson HA, Zahka NE, Kojkowski NM, Inge AP, Schwartz CB, Hileman CM, et al. Self-referenced memory, social cognition, and symptom presentation in autism. J Child Psychol Psychiatry. 2009;50:853–61.PubMedPubMedCentralCrossRef
92.
go back to reference Toichi M, Kamio Y, Okada T, Sakihama M, Youngstrom EA, Findling RL, et al. A lack of self-consciousness in autism. Am J Psychiatry. 2002;159:1422–4.PubMedCrossRef Toichi M, Kamio Y, Okada T, Sakihama M, Youngstrom EA, Findling RL, et al. A lack of self-consciousness in autism. Am J Psychiatry. 2002;159:1422–4.PubMedCrossRef
93.
go back to reference Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol. 2008;119:1002–9.PubMedCrossRef Coben R, Clarke AR, Hudspeth W, Barry RJ. EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol. 2008;119:1002–9.PubMedCrossRef
95.
go back to reference Peters JM, Taquet M, Vega C, Jeste SS, Fernández IS, Tan J, et al. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med. 2013;11:54.PubMedPubMedCentralCrossRef Peters JM, Taquet M, Vega C, Jeste SS, Fernández IS, Tan J, et al. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Med. 2013;11:54.PubMedPubMedCentralCrossRef
96.
go back to reference Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci. 2004;24:9228–31.PubMedCrossRef Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci. 2004;24:9228–31.PubMedCrossRef
97.
go back to reference Léveillé C, Barbeau EB, Bolduc C, Limoges E, Berthiaume C, Chevrier E, et al. Enhanced connectivity between visual cortex and other regions of the brain in autism: a REM sleep EEG coherence study. Autism Res. 2010;3:280–5.PubMedCrossRef Léveillé C, Barbeau EB, Bolduc C, Limoges E, Berthiaume C, Chevrier E, et al. Enhanced connectivity between visual cortex and other regions of the brain in autism: a REM sleep EEG coherence study. Autism Res. 2010;3:280–5.PubMedCrossRef
98.
go back to reference Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Schmid L. Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clin Neurophysiol. 2012;123:1798–809.PubMedCrossRef Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Schmid L. Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clin Neurophysiol. 2012;123:1798–809.PubMedCrossRef
99.
go back to reference Catarino A, Andrade A, Churches O, Wagner AP, Baron-Cohen S, Ring H. Task-related functional connectivity in autism spectrum conditions: an EEG study using wavelet transform coherence. Mol Autism. 2013;4:1.PubMedPubMedCentralCrossRef Catarino A, Andrade A, Churches O, Wagner AP, Baron-Cohen S, Ring H. Task-related functional connectivity in autism spectrum conditions: an EEG study using wavelet transform coherence. Mol Autism. 2013;4:1.PubMedPubMedCentralCrossRef
100.
go back to reference Perez Velazquez JLP, Barcelo F, Hung Y, Leshchenko Y, Nenadovic V, Belkas J, et al. Decreased brain coordinated activity in autism spectrum disorders during executive tasks: reduced long-range synchronization in the fronto-parietal networks. Int J Psychophysiol. 2009;73:341–9.PubMedCrossRef Perez Velazquez JLP, Barcelo F, Hung Y, Leshchenko Y, Nenadovic V, Belkas J, et al. Decreased brain coordinated activity in autism spectrum disorders during executive tasks: reduced long-range synchronization in the fronto-parietal networks. Int J Psychophysiol. 2009;73:341–9.PubMedCrossRef
101.
go back to reference Just MA, Keller TA, Malave VL, Kana RK, Varma S. Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev. 2012;36:1292–313.PubMedPubMedCentralCrossRef Just MA, Keller TA, Malave VL, Kana RK, Varma S. Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev. 2012;36:1292–313.PubMedPubMedCentralCrossRef
102.
go back to reference Maximo JO, Keown CL, Nair A, Müller RA. Approaches to local connectivity in autism using resting state functional connectivity MRI. Front Hum Neurosci. 2013;7:605.PubMedPubMedCentralCrossRef Maximo JO, Keown CL, Nair A, Müller RA. Approaches to local connectivity in autism using resting state functional connectivity MRI. Front Hum Neurosci. 2013;7:605.PubMedPubMedCentralCrossRef
103.
go back to reference Courchesne E, Lincoln AJ, Yeung-Courchesne R, EImasian R, Grillon C. Pathophysiologic findings in nonretarded autism and receptive developmental language disorders. J Autism Dev Disord. 1989;19:1–17.PubMedCrossRef Courchesne E, Lincoln AJ, Yeung-Courchesne R, EImasian R, Grillon C. Pathophysiologic findings in nonretarded autism and receptive developmental language disorders. J Autism Dev Disord. 1989;19:1–17.PubMedCrossRef
104.
go back to reference Lincoln AJ, Courchesne E, Harms L, Allen M. Contextual probability evaluation in autistic, receptive developmental language disorder, and control children: event-related brain potential evidence. J Autism Dev Disord. 1993;23:37–58.PubMedCrossRef Lincoln AJ, Courchesne E, Harms L, Allen M. Contextual probability evaluation in autistic, receptive developmental language disorder, and control children: event-related brain potential evidence. J Autism Dev Disord. 1993;23:37–58.PubMedCrossRef
105.
go back to reference Klimesch W. Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol. 1996;24:61–100.PubMedCrossRef Klimesch W. Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol. 1996;24:61–100.PubMedCrossRef
106.
go back to reference Aftanas LI, Reva NV, Varlamov AA, Pavlov SV, Makhnev VP. Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neurosci Behav Physiol. 2004;34:859–67.PubMedCrossRef Aftanas LI, Reva NV, Varlamov AA, Pavlov SV, Makhnev VP. Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neurosci Behav Physiol. 2004;34:859–67.PubMedCrossRef
Metadata
Title
Name recognition in autism: EEG evidence of altered patterns of brain activity and connectivity
Authors
Anna Nowicka
Hanna B. Cygan
Paweł Tacikowski
Paweł Ostaszewski
Rafał Kuś
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Autism / Issue 1/2016
Electronic ISSN: 2040-2392
DOI
https://doi.org/10.1186/s13229-016-0102-z

Other articles of this Issue 1/2016

Molecular Autism 1/2016 Go to the issue