Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 5/2011

01-10-2011

N-acetylglucosamine Conjugated to Nanoparticles Enhances Myocyte Uptake and Improves Delivery of a Small Molecule p38 Inhibitor for Post-infarct Healing

Authors: Warren D. Gray, Paolin Che, Milton Brown, Xinghai Ning, Niren Murthy, Michael E. Davis

Published in: Journal of Cardiovascular Translational Research | Issue 5/2011

Login to get access

Abstract

An estimated 985,000 new myocardial infarctions will occur in the USA in 2011. While many will survive the initial insult, the early damage will eventually lead to heart failure for which the only definitive cure is transplantation. Cardiomyocyte (CM) apoptosis is a large contributor to cardiac dysfunction, and although potential therapeutic molecules exist to inhibit apoptotic pathways, drug delivery methods are lacking. This damage is largely regional and thus localized delivery of therapeutics holds great potential; however, CMs are relatively non-phagocytic, which limits existing options that rely on phagocytosis. Recently, the sugar N-acetylglucosamine (GlcNAc) was shown to be bound and internalized by CMs, providing a potential mechanism for drug delivery. Here we demonstrate efficacy of a drug delivery system comprising a drug-loaded biodegradable polyketal nanoparticle that is surface-decorated with GlcNAc. Inclusion of the sugar enhanced uptake by CMs as measured by intracellular activated fluorescence. When delivered in vivo following ischemia–reperfusion injury, GlcNAc-decorated particles loaded with the p38 inhibitor SB239063 reduced apoptotic events and infarct size and improved acute cardiac function. This was in contrast to our published data demonstrating no acute effect of non-sugar-decorated, p38 inhibitor-loaded particles. These data suggest a novel therapeutic option to enhance uptake of drug-loaded nanoparticles to CMs and perhaps reduce the large amount of CM cell death following myocardial injury.
Literature
1.
go back to reference Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Heart disease and stroke statistics—2010 update: A report from the American Heart Association. Circulation, 121(7), e46.PubMedCrossRef Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). Heart disease and stroke statistics—2010 update: A report from the American Heart Association. Circulation, 121(7), e46.PubMedCrossRef
2.
go back to reference Maulik, N., Yoshida, T., & Das, D. K. (1998). Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radical Biology & Medicine, 24(5), 869–875.CrossRef Maulik, N., Yoshida, T., & Das, D. K. (1998). Oxidative stress developed during the reperfusion of ischemic myocardium induces apoptosis. Free Radical Biology & Medicine, 24(5), 869–875.CrossRef
3.
go back to reference Bialik, S., Geenen, D. L., Sasson, I. E., Cheng, R., Horner, J. W., Evans, S. M., et al. (1997). Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. The Journal of Clinical Investigation, 100(6), 1363.PubMedCrossRef Bialik, S., Geenen, D. L., Sasson, I. E., Cheng, R., Horner, J. W., Evans, S. M., et al. (1997). Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. The Journal of Clinical Investigation, 100(6), 1363.PubMedCrossRef
4.
go back to reference McGill, C. J., & Brooks, G. (1995). Cell cycle control mechanisms and their role in cardiac growth. Cardiovascular Research, 30(4), 557–569.PubMed McGill, C. J., & Brooks, G. (1995). Cell cycle control mechanisms and their role in cardiac growth. Cardiovascular Research, 30(4), 557–569.PubMed
5.
go back to reference Rumyantsev, P. P. (1977). Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. International Review of Cytology, 51, 187–273.CrossRef Rumyantsev, P. P. (1977). Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. International Review of Cytology, 51, 187–273.CrossRef
6.
go back to reference Kajstura, J., Leri, A., Finato, N., Di Loreto, C., Beltrami, C. A., & Anversa, P. (1998). Myocyte proliferation in end-stage cardiac failure in humans. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 8801.PubMedCrossRef Kajstura, J., Leri, A., Finato, N., Di Loreto, C., Beltrami, C. A., & Anversa, P. (1998). Myocyte proliferation in end-stage cardiac failure in humans. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 8801.PubMedCrossRef
7.
go back to reference Garg, S., Narula, J., & Chandrashekhar, Y. (2005). Apoptosis and heart failure: Clinical relevance and therapeutic target. Journal of Molecular and Cell Cardiology, 38(1), 73–79.CrossRef Garg, S., Narula, J., & Chandrashekhar, Y. (2005). Apoptosis and heart failure: Clinical relevance and therapeutic target. Journal of Molecular and Cell Cardiology, 38(1), 73–79.CrossRef
8.
go back to reference Park, M., Shen, Y. T., Gaussin, V., Heyndrickx, G. R., Bartunek, J., Resuello, R. R. G., et al. (2009). Apoptosis predominates in nonmyocytes in heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 297(2), H785.PubMedCrossRef Park, M., Shen, Y. T., Gaussin, V., Heyndrickx, G. R., Bartunek, J., Resuello, R. R. G., et al. (2009). Apoptosis predominates in nonmyocytes in heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 297(2), H785.PubMedCrossRef
10.
go back to reference Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 75(2), 241–251.PubMedCrossRef Hockenbery, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., & Korsmeyer, S. J. (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 75(2), 241–251.PubMedCrossRef
11.
go back to reference Maulik, N., Engelman, R. M., Rousou, J. A., Flack, J. E., III, Deaton, D., & Das, D. K. (1999). Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation, 100(90002), II–369. Maulik, N., Engelman, R. M., Rousou, J. A., Flack, J. E., III, Deaton, D., & Das, D. K. (1999). Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation, 100(90002), II–369.
12.
go back to reference Huang, J., Ito, Y., Morikawa, M., Uchida, H., Kobune, M., Sasaki, K., et al. (2003). Bcl-xL gene transfer protects the heart against ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 311(1), 64–70.PubMedCrossRef Huang, J., Ito, Y., Morikawa, M., Uchida, H., Kobune, M., Sasaki, K., et al. (2003). Bcl-xL gene transfer protects the heart against ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 311(1), 64–70.PubMedCrossRef
14.
go back to reference Jolly, S., Kane, W., Bailie, M., Abrams, G., & Lucchesi, B. (1984). Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circulation Research, 54(3), 277.PubMed Jolly, S., Kane, W., Bailie, M., Abrams, G., & Lucchesi, B. (1984). Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circulation Research, 54(3), 277.PubMed
15.
go back to reference Khaper, N., Kaur, K., Li, T., Farahmand, F., & Singal, P. (2003). Antioxidant enzyme gene expression in congestive heart failure following mycardial infarction. Molecular and Cellular Biochemistry, 251(1), 9–15.PubMedCrossRef Khaper, N., Kaur, K., Li, T., Farahmand, F., & Singal, P. (2003). Antioxidant enzyme gene expression in congestive heart failure following mycardial infarction. Molecular and Cellular Biochemistry, 251(1), 9–15.PubMedCrossRef
16.
go back to reference Andreka, P., Zang, J., Dougherty, C., Slepak, T. I., Webster, K. A., & Bishopric, N. H. (2001). Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circulation Research, 88(3), 305.PubMed Andreka, P., Zang, J., Dougherty, C., Slepak, T. I., Webster, K. A., & Bishopric, N. H. (2001). Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circulation Research, 88(3), 305.PubMed
17.
go back to reference Minamino, T., Yujiri, T., Papst, P. J., Chan, E. D., Johnson, G. L., & Terada, N. (1999). MEKK1 suppresses oxidative stress-induced apoptosis of embryonic stem cell-derived cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 15127.PubMedCrossRef Minamino, T., Yujiri, T., Papst, P. J., Chan, E. D., Johnson, G. L., & Terada, N. (1999). MEKK1 suppresses oxidative stress-induced apoptosis of embryonic stem cell-derived cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 15127.PubMedCrossRef
18.
go back to reference Franke, T. F., Kaplan, D. R., & Cantley, L. C. (1997). PI3K: Downstream AKTion blocks apoptosis. Cell, 88(4), 435.PubMedCrossRef Franke, T. F., Kaplan, D. R., & Cantley, L. C. (1997). PI3K: Downstream AKTion blocks apoptosis. Cell, 88(4), 435.PubMedCrossRef
19.
go back to reference Wang, Y., Huang, S., Sah, V. P., Ross, J., Brown, J. H., Han, J., et al. (1998). Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. Journal of Biological Chemistry, 273(4), 2161.PubMedCrossRef Wang, Y., Huang, S., Sah, V. P., Ross, J., Brown, J. H., Han, J., et al. (1998). Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. Journal of Biological Chemistry, 273(4), 2161.PubMedCrossRef
20.
go back to reference Chen, Z., Chua, C. C., Ho, Y. S., Hamdy, R. C., & Chua, B. H. L. (2001). Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. American Journal of Physiology. Heart and Circulatory Physiology, 280(5), H2313.PubMed Chen, Z., Chua, C. C., Ho, Y. S., Hamdy, R. C., & Chua, B. H. L. (2001). Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. American Journal of Physiology. Heart and Circulatory Physiology, 280(5), H2313.PubMed
21.
go back to reference Chen, Z., Siu, B., Ho, Y. S., Vincent, R., Chua, C. C., Hamdy, R. C., et al. (1998). Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. Journal of Molecular and Cell Cardiology, 30(11), 2281–2289.CrossRef Chen, Z., Siu, B., Ho, Y. S., Vincent, R., Chua, C. C., Hamdy, R. C., et al. (1998). Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. Journal of Molecular and Cell Cardiology, 30(11), 2281–2289.CrossRef
22.
go back to reference Chua, C. C., Gao, J., Ho, Y. S., Xiong, Y., Xu, X., Chen, Z., et al. (2007). Overexpression of IAP-2 attenuates apoptosis and protects against myocardial ischemia/reperfusion injury in transgenic mice. Biochimica et Biophysica Acta, 1773(4), 577–583.PubMedCrossRef Chua, C. C., Gao, J., Ho, Y. S., Xiong, Y., Xu, X., Chen, Z., et al. (2007). Overexpression of IAP-2 attenuates apoptosis and protects against myocardial ischemia/reperfusion injury in transgenic mice. Biochimica et Biophysica Acta, 1773(4), 577–583.PubMedCrossRef
23.
go back to reference Matherne, G. P., Linden, J., Byford, A. M., Gauthier, N. S., & Headrick, J. P. (1997). Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6541.PubMedCrossRef Matherne, G. P., Linden, J., Byford, A. M., Gauthier, N. S., & Headrick, J. P. (1997). Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6541.PubMedCrossRef
24.
go back to reference Matsui, T., Tao, J., del Monte, F., Lee, K. H., Li, L., Picard, M., et al. (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation, 104(3), 330.PubMed Matsui, T., Tao, J., del Monte, F., Lee, K. H., Li, L., Picard, M., et al. (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation, 104(3), 330.PubMed
25.
go back to reference Harris, J. M., & Chess, R. B. (2003). Effect of pegylation on pharmaceuticals. Nature Reviews. Drug Discovery, 2(3), 214–221.PubMedCrossRef Harris, J. M., & Chess, R. B. (2003). Effect of pegylation on pharmaceuticals. Nature Reviews. Drug Discovery, 2(3), 214–221.PubMedCrossRef
26.
go back to reference Hsieh, P. C. H., Davis, M. E., Gannon, J., MacGillivray, C., & Lee, R. T. (2006). Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. The Journal of Clinical Investigation, 116(1), 237–248.PubMedCrossRef Hsieh, P. C. H., Davis, M. E., Gannon, J., MacGillivray, C., & Lee, R. T. (2006). Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. The Journal of Clinical Investigation, 116(1), 237–248.PubMedCrossRef
27.
go back to reference Lee, S., & Murthy, N. (2007). Targeted delivery of catalase and superoxide dismutase to macrophages using folate. Biochemical and Biophysical Research Communications, 360(1), 275–279.PubMedCrossRef Lee, S., & Murthy, N. (2007). Targeted delivery of catalase and superoxide dismutase to macrophages using folate. Biochemical and Biophysical Research Communications, 360(1), 275–279.PubMedCrossRef
28.
go back to reference Lee, S., Yang, S. C., Heffernan, M. J., Taylor, W. R., & Murthy, N. (2007). Polyketal microparticles: A new delivery vehicle for superoxide dismutase. Bioconjugate Chemistry, 18(1), 4–7.PubMedCrossRef Lee, S., Yang, S. C., Heffernan, M. J., Taylor, W. R., & Murthy, N. (2007). Polyketal microparticles: A new delivery vehicle for superoxide dismutase. Bioconjugate Chemistry, 18(1), 4–7.PubMedCrossRef
29.
go back to reference Sy, J., Phelps, E., García, A., Murthy, N., & Davis, M. (2010). Surface functionalization of polyketal microparticles with nitrilotriacetic acid–nickel complexes for efficient protein capture and delivery. Biomaterials, 31(18), 4987–4994.PubMedCrossRef Sy, J., Phelps, E., García, A., Murthy, N., & Davis, M. (2010). Surface functionalization of polyketal microparticles with nitrilotriacetic acid–nickel complexes for efficient protein capture and delivery. Biomaterials, 31(18), 4987–4994.PubMedCrossRef
30.
go back to reference Sy, J., Seshadri, G., Yang, S., Brown, M., Oh, T., Dikalov, S., et al. (2008). Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nature Materials, 7(11), 863–868.PubMedCrossRef Sy, J., Seshadri, G., Yang, S., Brown, M., Oh, T., Dikalov, S., et al. (2008). Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nature Materials, 7(11), 863–868.PubMedCrossRef
31.
go back to reference Sutton, M. G., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 101(25), 2981.PubMed Sutton, M. G., & Sharpe, N. (2000). Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation, 101(25), 2981.PubMed
32.
go back to reference Aso, S., Ise, H., Takahashi, M., Kobayashi, S., Morimoto, H., Izawa, A., et al. (2007). Effective uptake of N-acetylglucosamine-conjugated liposomes by cardiomyocytes in vitro. Journal of Controlled Release, 122(2), 189–198.PubMedCrossRef Aso, S., Ise, H., Takahashi, M., Kobayashi, S., Morimoto, H., Izawa, A., et al. (2007). Effective uptake of N-acetylglucosamine-conjugated liposomes by cardiomyocytes in vitro. Journal of Controlled Release, 122(2), 189–198.PubMedCrossRef
33.
go back to reference Ise, H., Kobayashi, S., Goto, M., Sato, T., Kawakubo, M., Takahashi, M., et al. (2010). Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces. Glycobiology, 20(7), 843.PubMedCrossRef Ise, H., Kobayashi, S., Goto, M., Sato, T., Kawakubo, M., Takahashi, M., et al. (2010). Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces. Glycobiology, 20(7), 843.PubMedCrossRef
34.
go back to reference Vemuri, S., & Rhodes, C. (1995). Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharmaceutica Acta Helvetiae, 70(2), 95–111.PubMedCrossRef Vemuri, S., & Rhodes, C. (1995). Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharmaceutica Acta Helvetiae, 70(2), 95–111.PubMedCrossRef
35.
go back to reference Seshadri, G., Sy, J. C., Brown, M., Dikalov, S., Yang, S. C., Murthy, N., et al. (2010). The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia–reperfusion injury. Biomater, 31(6), 1372–1379.CrossRef Seshadri, G., Sy, J. C., Brown, M., Dikalov, S., Yang, S. C., Murthy, N., et al. (2010). The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia–reperfusion injury. Biomater, 31(6), 1372–1379.CrossRef
36.
go back to reference Yuan, X. B., Gu, M. Q., Kang, C. S., Zhao, Y. H., Tian, N. J., Pu, P. Y., et al. (2007). Surface biofunctionalization of PLA nanoparticles through amphiphilic polysaccharide coating and ligand coupling: Evaluation of biofunctionalization and drug releasing behavior. Carbohydrate Polymers, 67(3), 417–426.CrossRef Yuan, X. B., Gu, M. Q., Kang, C. S., Zhao, Y. H., Tian, N. J., Pu, P. Y., et al. (2007). Surface biofunctionalization of PLA nanoparticles through amphiphilic polysaccharide coating and ligand coupling: Evaluation of biofunctionalization and drug releasing behavior. Carbohydrate Polymers, 67(3), 417–426.CrossRef
37.
go back to reference Granger, B. L., & Lazarides, E. (1979). Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell, 18(4), 1053–1063.PubMedCrossRef Granger, B. L., & Lazarides, E. (1979). Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell, 18(4), 1053–1063.PubMedCrossRef
38.
go back to reference Li, Z., Mericskay, M., Agbulut, O., Butler-Browne, G., Carlsson, L., Thornell, L. E., et al. (1997). Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. The Journal of Cell Biology, 139(1), 129–144.PubMedCrossRef Li, Z., Mericskay, M., Agbulut, O., Butler-Browne, G., Carlsson, L., Thornell, L. E., et al. (1997). Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. The Journal of Cell Biology, 139(1), 129–144.PubMedCrossRef
39.
go back to reference Bogoyevitch, M. A., Gillespie-Brown, J., Ketterman, A. J., Fuller, S. J., Ben-Levy, R., Ashworth, A., et al. (1996). Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circulation Research, 79(2), 162–173.PubMed Bogoyevitch, M. A., Gillespie-Brown, J., Ketterman, A. J., Fuller, S. J., Ben-Levy, R., Ashworth, A., et al. (1996). Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circulation Research, 79(2), 162–173.PubMed
40.
go back to reference Pombo, C. M., Bonventre, J. V., Avruch, J., Woodgett, J. R., Kyriakis, J. M., & Force, T. (1994). The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. Journal of Biological Chemistry, 269(42), 26546–26551.PubMed Pombo, C. M., Bonventre, J. V., Avruch, J., Woodgett, J. R., Kyriakis, J. M., & Force, T. (1994). The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. Journal of Biological Chemistry, 269(42), 26546–26551.PubMed
41.
go back to reference Yin, T., Sandhu, G., Wolfgang, C. D., Burrier, A., Webb, R. L., Rigel, D. F., et al. (1997). Tissue specific pattern of stress kinase activation in ischemia/reperfused heart and kidney. Journal of Biological Chemistry, 272, 19943–19950.PubMedCrossRef Yin, T., Sandhu, G., Wolfgang, C. D., Burrier, A., Webb, R. L., Rigel, D. F., et al. (1997). Tissue specific pattern of stress kinase activation in ischemia/reperfused heart and kidney. Journal of Biological Chemistry, 272, 19943–19950.PubMedCrossRef
42.
go back to reference Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.PubMedCrossRef Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.PubMedCrossRef
43.
go back to reference Krause, K., Jaquet, K., Schneider, C., Haupt, S., Lioznov, M. V., Otte, K. M., et al. (2009). Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: First-in-man study. Heart, 95(14), 1145–1152.PubMedCrossRef Krause, K., Jaquet, K., Schneider, C., Haupt, S., Lioznov, M. V., Otte, K. M., et al. (2009). Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: First-in-man study. Heart, 95(14), 1145–1152.PubMedCrossRef
44.
go back to reference Herreros, J., Prosper, F., Perez, A., Gavira, J. J., Garcia-Velloso, M. J., Barba, J., et al. (2003). Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. European Heart Journal, 24(22), 2012–2020.PubMedCrossRef Herreros, J., Prosper, F., Perez, A., Gavira, J. J., Garcia-Velloso, M. J., Barba, J., et al. (2003). Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. European Heart Journal, 24(22), 2012–2020.PubMedCrossRef
45.
go back to reference Li, Q., Li, B., Wang, X., Leri, A., Jana, K. P., Liu, Y., et al. (1997). Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. The Journal of Clinical Investigation, 100(8), 1991–1999.PubMedCrossRef Li, Q., Li, B., Wang, X., Leri, A., Jana, K. P., Liu, Y., et al. (1997). Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. The Journal of Clinical Investigation, 100(8), 1991–1999.PubMedCrossRef
46.
go back to reference Sabbah, H. N., Sharov, V. G., Gupta, R. C., Todor, A., Singh, V., & Goldstein, S. (2000). Chronic therapy with metoprolol attenuates cardiomyocyte apoptosis in dogs with heart failure. Journal of the American College of Cardiology, 36(5), 1698–1705.PubMedCrossRef Sabbah, H. N., Sharov, V. G., Gupta, R. C., Todor, A., Singh, V., & Goldstein, S. (2000). Chronic therapy with metoprolol attenuates cardiomyocyte apoptosis in dogs with heart failure. Journal of the American College of Cardiology, 36(5), 1698–1705.PubMedCrossRef
47.
go back to reference Jones, S. P., Zachara, N. E., Ngoh, G. A., Hill, B. G., Teshima, Y., Bhatnagar, A., et al. (2008). Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation, 117(9), 1172.PubMedCrossRef Jones, S. P., Zachara, N. E., Ngoh, G. A., Hill, B. G., Teshima, Y., Bhatnagar, A., et al. (2008). Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation, 117(9), 1172.PubMedCrossRef
Metadata
Title
N-acetylglucosamine Conjugated to Nanoparticles Enhances Myocyte Uptake and Improves Delivery of a Small Molecule p38 Inhibitor for Post-infarct Healing
Authors
Warren D. Gray
Paolin Che
Milton Brown
Xinghai Ning
Niren Murthy
Michael E. Davis
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 5/2011
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-011-9292-0

Other articles of this Issue 5/2011

Journal of Cardiovascular Translational Research 5/2011 Go to the issue