Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 5/2011

01-10-2011

Bioengineering the Infarcted Heart by Applying Bio-inspired Materials

Authors: Emil Ruvinov, Tamar Harel-Adar, Smadar Cohen

Published in: Journal of Cardiovascular Translational Research | Issue 5/2011

Login to get access

Abstract

Induction of cardiac muscle regeneration following myocardial infarction (MI) represents a major challenge in cardiovascular therapy, as the current clinical approaches are limited in their ability to regenerate a new muscle tissue and to replace infarcted myocardium. Here, we describe the conception of two strategies based on bio-inspired materials, aimed at myocardial repair after MI. In the first strategy, alginate biomaterial was designed with affinity-binding moieties, enabling the binding of heparin-binding proteins and their controlled presentation and release. The combined features of this unique alginate hydrogel, as a temporary extracellular matrix replacement and a depot for bio-molecules such as insulin-like growth factor-1 and hepatocyte growth factor, led to improvements in cardiac structure and function, as demonstrated by the biomaterial’s abilities to thicken the scar and prevent left-ventricular remodeling and dilatation. Endogenous regeneration occurring at the infarct as manifested by the enhanced angiogenesis, cardiomyocyte proliferation, and appearance of cardiac-related stem cells is likely to have contributed to this. In the second strategy, phosphatidylserine (PS)-presenting liposomes were developed to mimic apoptotic cells bodies, specifically their capability of immunomodulating activated macrophages into anti-inflammatory state. In a rat model of acute MI, targeting of PS-presenting liposomes to infarct macrophages after injection via the femoral vein was demonstrated by magnetic resonance imaging. The treatment promoted angiogenesis, the preservation of small scars, and prevention of ventricular dilatation and remodeling. Collectively, the two bio-inspired material-based strategies presented herein represent unique and clinical accessible approaches for myocardial infarct repair.
Literature
2.
go back to reference Lloyd-Jones, D., Adams, R. J., Brown, T. M., et al. (2010). Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation, 121(7), e46–e215.PubMedCrossRef Lloyd-Jones, D., Adams, R. J., Brown, T. M., et al. (2010). Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation, 121(7), e46–e215.PubMedCrossRef
3.
go back to reference McMurray, J. J. (2010). Clinical practice. Systolic heart failure. The New England Journal of Medicine, 362(3), 228–238.PubMedCrossRef McMurray, J. J. (2010). Clinical practice. Systolic heart failure. The New England Journal of Medicine, 362(3), 228–238.PubMedCrossRef
4.
go back to reference Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102.PubMedCrossRef Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102.PubMedCrossRef
5.
go back to reference Kajstura, J., Urbanek, K., Perl, S., Hosoda, T., Zheng, H., Ogorek, B., et al. (2010). Cardiomyogenesis in the adult human heart. Circulation Research, 107(2), 305–315.PubMedCrossRef Kajstura, J., Urbanek, K., Perl, S., Hosoda, T., Zheng, H., Ogorek, B., et al. (2010). Cardiomyogenesis in the adult human heart. Circulation Research, 107(2), 305–315.PubMedCrossRef
6.
go back to reference Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13(8), 970–974.PubMedCrossRef Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13(8), 970–974.PubMedCrossRef
7.
go back to reference Parmacek, M. S., & Epstein, J. A. (2009). Cardiomyocyte renewal. New England Journal of Medicine, 361(1), 86–88.PubMedCrossRef Parmacek, M. S., & Epstein, J. A. (2009). Cardiomyocyte renewal. New England Journal of Medicine, 361(1), 86–88.PubMedCrossRef
8.
go back to reference Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078–1080.PubMedCrossRef Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078–1080.PubMedCrossRef
9.
go back to reference Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., & Belmonte, J. C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464(7288), 606–609.PubMedCrossRef Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., & Belmonte, J. C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464(7288), 606–609.PubMedCrossRef
10.
go back to reference Novoyatleva, T., Diehl, F., van Amerongen, M. J., Patra, C., Ferrazzi, F., Bellazzi, R., et al. (2010). TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovascular Research, 85(4), 681–690.PubMedCrossRef Novoyatleva, T., Diehl, F., van Amerongen, M. J., Patra, C., Ferrazzi, F., Bellazzi, R., et al. (2010). TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovascular Research, 85(4), 681–690.PubMedCrossRef
11.
go back to reference Bersell, K., Arab, S., Haring, B., & Kuhn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138(2), 257–270.PubMedCrossRef Bersell, K., Arab, S., Haring, B., & Kuhn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138(2), 257–270.PubMedCrossRef
12.
go back to reference Hassink, R. J., Pasumarthi, K. B., Nakajima, H., Rubart, M., Soonpaa, M. H., de la Riviere, A. B., et al. (2008). Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovascular Research, 78(1), 18–25.PubMedCrossRef Hassink, R. J., Pasumarthi, K. B., Nakajima, H., Rubart, M., Soonpaa, M. H., de la Riviere, A. B., et al. (2008). Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovascular Research, 78(1), 18–25.PubMedCrossRef
13.
go back to reference Campa, V. M., Gutierrez-Lanza, R., Cerignoli, F., Diaz-Trelles, R., Nelson, B., Tsuji, T., et al. (2008). Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. The Journal of Cell Biology, 183(1), 129–141.PubMedCrossRef Campa, V. M., Gutierrez-Lanza, R., Cerignoli, F., Diaz-Trelles, R., Nelson, B., Tsuji, T., et al. (2008). Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. The Journal of Cell Biology, 183(1), 129–141.PubMedCrossRef
14.
go back to reference Ahuja, P., Sdek, P., & MacLellan, W. R. (2007). Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiological Reviews, 87(2), 521–544.PubMedCrossRef Ahuja, P., Sdek, P., & MacLellan, W. R. (2007). Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiological Reviews, 87(2), 521–544.PubMedCrossRef
16.
go back to reference Ruvinov, E., Dvir, T., Leor, J., & Cohen, S. (2008). Myocardial repair: From salvage to tissue reconstruction. Expert Review of Cardiovascular Therapy, 6(5), 669–686.PubMedCrossRef Ruvinov, E., Dvir, T., Leor, J., & Cohen, S. (2008). Myocardial repair: From salvage to tissue reconstruction. Expert Review of Cardiovascular Therapy, 6(5), 669–686.PubMedCrossRef
17.
go back to reference Abbate, A., Bussani, R., Amin, M. S., Vetrovec, G. W., & Baldi, A. (2006). Acute myocardial infarction and heart failure: Role of apoptosis. The International Journal of Biochemistry & Cell Biology, 38(11), 1834–1840.CrossRef Abbate, A., Bussani, R., Amin, M. S., Vetrovec, G. W., & Baldi, A. (2006). Acute myocardial infarction and heart failure: Role of apoptosis. The International Journal of Biochemistry & Cell Biology, 38(11), 1834–1840.CrossRef
18.
go back to reference Garg, S., Narula, J., & Chandrashekhar, Y. (2005). Apoptosis and heart failure: Clinical relevance and therapeutic target. Journal of Molecular and Cellular Cardiology, 38(1), 73–79.PubMedCrossRef Garg, S., Narula, J., & Chandrashekhar, Y. (2005). Apoptosis and heart failure: Clinical relevance and therapeutic target. Journal of Molecular and Cellular Cardiology, 38(1), 73–79.PubMedCrossRef
19.
go back to reference Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94(12), 1543–1553.PubMedCrossRef Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94(12), 1543–1553.PubMedCrossRef
20.
go back to reference Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47.PubMedCrossRef Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47.PubMedCrossRef
21.
go back to reference Leask, A. (2007). TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovascular Research, 74(2), 207–212.PubMedCrossRef Leask, A. (2007). TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovascular Research, 74(2), 207–212.PubMedCrossRef
22.
go back to reference Vanhoutte, D., Schellings, M., Pinto, Y., & Heymans, S. (2006). Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovascular Research, 69(3), 604–613.PubMedCrossRef Vanhoutte, D., Schellings, M., Pinto, Y., & Heymans, S. (2006). Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovascular Research, 69(3), 604–613.PubMedCrossRef
23.
go back to reference Renault, M. A., & Losordo, D. W. (2007). Therapeutic myocardial angiogenesis. Microvascular Research, 74(2–3), 159–171.PubMedCrossRef Renault, M. A., & Losordo, D. W. (2007). Therapeutic myocardial angiogenesis. Microvascular Research, 74(2–3), 159–171.PubMedCrossRef
24.
go back to reference Tomanek, R. J., Zheng, W., & Yue, X. (2004). Growth factor activation in myocardial vascularization: Therapeutic implications. Molecular and Cellular Biochemistry, 264(1–2), 3–11.PubMedCrossRef Tomanek, R. J., Zheng, W., & Yue, X. (2004). Growth factor activation in myocardial vascularization: Therapeutic implications. Molecular and Cellular Biochemistry, 264(1–2), 3–11.PubMedCrossRef
25.
go back to reference Zampetaki, A., Kirton, J. P., & Xu, Q. (2008). Vascular repair by endothelial progenitor cells. Cardiovascular Research, 78(3), 413–421.PubMedCrossRef Zampetaki, A., Kirton, J. P., & Xu, Q. (2008). Vascular repair by endothelial progenitor cells. Cardiovascular Research, 78(3), 413–421.PubMedCrossRef
27.
go back to reference Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–942.PubMedCrossRef Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–942.PubMedCrossRef
28.
go back to reference Chavakis, E., Koyanagi, M., & Dimmeler, S. (2010). Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation, 121(2), 325–335.PubMedCrossRef Chavakis, E., Koyanagi, M., & Dimmeler, S. (2010). Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation, 121(2), 325–335.PubMedCrossRef
29.
go back to reference Hansson, E. M., Lindsay, M. E., & Chien, K. R. (2009). Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell, 5(4), 364–377.PubMedCrossRef Hansson, E. M., Lindsay, M. E., & Chien, K. R. (2009). Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell, 5(4), 364–377.PubMedCrossRef
30.
go back to reference Dimmeler, S., Burchfield, J., & Zeiher, A. M. (2008). Cell-based therapy of myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(2), 208–216.PubMedCrossRef Dimmeler, S., Burchfield, J., & Zeiher, A. M. (2008). Cell-based therapy of myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(2), 208–216.PubMedCrossRef
31.
go back to reference Maltais, S., Tremblay, J. P., Perrault, L. P., & Ly, H. Q. (2010). The paracrine effect: pivotal mechanism in cell-based cardiac repair. Journal of Cardiovascular Translational Research, 3(6), 652–662.PubMedCrossRef Maltais, S., Tremblay, J. P., Perrault, L. P., & Ly, H. Q. (2010). The paracrine effect: pivotal mechanism in cell-based cardiac repair. Journal of Cardiovascular Translational Research, 3(6), 652–662.PubMedCrossRef
32.
33.
go back to reference Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.PubMedCrossRef Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.PubMedCrossRef
34.
go back to reference Laflamme, M. A., Zbinden, S., Epstein, S. E., & Murry, C. E. (2007). Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annual Review of Pathology, 2, 307–339.PubMedCrossRef Laflamme, M. A., Zbinden, S., Epstein, S. E., & Murry, C. E. (2007). Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annual Review of Pathology, 2, 307–339.PubMedCrossRef
35.
go back to reference Beohar, N., Rapp, J., Pandya, S., & Losordo, D. W. (2010). Rebuilding the damaged heart the potential of cytokines and growth factors in the treatment of ischemic heart disease. Journal of the American College of Cardiology, 56(16), 1287–1297.PubMedCrossRef Beohar, N., Rapp, J., Pandya, S., & Losordo, D. W. (2010). Rebuilding the damaged heart the potential of cytokines and growth factors in the treatment of ischemic heart disease. Journal of the American College of Cardiology, 56(16), 1287–1297.PubMedCrossRef
36.
go back to reference Vandervelde, S., van Luyn, M. J., Tio, R. A., & Harmsen, M. C. (2005). Signaling factors in stem cell-mediated repair of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 39(2), 363–376.PubMedCrossRef Vandervelde, S., van Luyn, M. J., Tio, R. A., & Harmsen, M. C. (2005). Signaling factors in stem cell-mediated repair of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 39(2), 363–376.PubMedCrossRef
37.
go back to reference Hausenloy, D. J., & Yellon, D. M. (2009). Cardioprotective growth factors. Cardiovascular Research, 83(2), 179–194.PubMedCrossRef Hausenloy, D. J., & Yellon, D. M. (2009). Cardioprotective growth factors. Cardiovascular Research, 83(2), 179–194.PubMedCrossRef
38.
go back to reference Zohlnhofer, D., Dibra, A., Koppara, T., de Waha, A., Ripa, R. S., Kastrup, J., et al. (2008). Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. Journal of the American College of Cardiology, 51(15), 1429–1437.PubMedCrossRef Zohlnhofer, D., Dibra, A., Koppara, T., de Waha, A., Ripa, R. S., Kastrup, J., et al. (2008). Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. Journal of the American College of Cardiology, 51(15), 1429–1437.PubMedCrossRef
39.
go back to reference Abdel-Latif, A., Bolli, R., Zuba-Surma, E. K., Tleyjeh, I. M., Hornung, C. A., & Dawn, B. (2008). Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. American Heart Journal, 156(2), 216–226.PubMedCrossRef Abdel-Latif, A., Bolli, R., Zuba-Surma, E. K., Tleyjeh, I. M., Hornung, C. A., & Dawn, B. (2008). Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. American Heart Journal, 156(2), 216–226.PubMedCrossRef
40.
go back to reference Lee, T. M., Chen, C. C., & Chang, N. C. (2009). Granulocyte colony-stimulating factor increases sympathetic reinnervation and the arrhythmogenic response to programmed electrical stimulation after myocardial infarction in rats. The American Journal of Physiology, 297(2), H512–H522. Lee, T. M., Chen, C. C., & Chang, N. C. (2009). Granulocyte colony-stimulating factor increases sympathetic reinnervation and the arrhythmogenic response to programmed electrical stimulation after myocardial infarction in rats. The American Journal of Physiology, 297(2), H512–H522.
41.
go back to reference Christman, K. L., & Lee, R. J. (2006). Biomaterials for the treatment of myocardial infarction. Journal of the American College of Cardiology, 48(5), 907–913.PubMedCrossRef Christman, K. L., & Lee, R. J. (2006). Biomaterials for the treatment of myocardial infarction. Journal of the American College of Cardiology, 48(5), 907–913.PubMedCrossRef
42.
go back to reference Nelson, D. M., Ma, Z., Fujimoto, K. L., Hashizume, R., & Wagner, W. R. (2011). Intra-myocardial biomaterial injection therapy in the treatment of heart failure: Materials, outcomes and challenges. Acta Biomaterialia, 7(1), 1–15.PubMedCrossRef Nelson, D. M., Ma, Z., Fujimoto, K. L., Hashizume, R., & Wagner, W. R. (2011). Intra-myocardial biomaterial injection therapy in the treatment of heart failure: Materials, outcomes and challenges. Acta Biomaterialia, 7(1), 1–15.PubMedCrossRef
43.
go back to reference Miyagawa, S., Roth, M., Saito, A., Sawa, Y., & Kostin, S. (2011). Tissue-engineered cardiac constructs for cardiac repair. The Annals of Thoracic Surgery, 91(1), 320–329.PubMedCrossRef Miyagawa, S., Roth, M., Saito, A., Sawa, Y., & Kostin, S. (2011). Tissue-engineered cardiac constructs for cardiac repair. The Annals of Thoracic Surgery, 91(1), 320–329.PubMedCrossRef
44.
go back to reference Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., et al. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187.PubMedCrossRef Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., et al. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187.PubMedCrossRef
45.
go back to reference Jugdutt, B. I. (2003). Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough? Circulation, 108(11), 1395–1403.PubMedCrossRef Jugdutt, B. I. (2003). Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough? Circulation, 108(11), 1395–1403.PubMedCrossRef
46.
go back to reference Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological Reviews, 87(4), 1285–1342.PubMedCrossRef Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiological Reviews, 87(4), 1285–1342.PubMedCrossRef
47.
go back to reference Iraqi, W., Rossignol, P., Angioi, M., Fay, R., Nuee, J., Ketelslegers, J. M., et al. (2009). Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: Insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) Study. Circulation, 119(18), 2471–2479.PubMedCrossRef Iraqi, W., Rossignol, P., Angioi, M., Fay, R., Nuee, J., Ketelslegers, J. M., et al. (2009). Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: Insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) Study. Circulation, 119(18), 2471–2479.PubMedCrossRef
48.
go back to reference Akhyari, P., Kamiya, H., Haverich, A., Karck, M., & Lichtenberg, A. (2008). Myocardial tissue engineering: The extracellular matrix. European Journal of Cardio-Thoracic Surgery, 34(2), 229–241.PubMedCrossRef Akhyari, P., Kamiya, H., Haverich, A., Karck, M., & Lichtenberg, A. (2008). Myocardial tissue engineering: The extracellular matrix. European Journal of Cardio-Thoracic Surgery, 34(2), 229–241.PubMedCrossRef
49.
go back to reference Dobaczewski, M., Gonzalez-Quesada, C., & Frangogiannis, N. G. (2010). The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. Journal of Molecular and Cellular Cardiology, 48(3), 504–511.PubMedCrossRef Dobaczewski, M., Gonzalez-Quesada, C., & Frangogiannis, N. G. (2010). The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. Journal of Molecular and Cellular Cardiology, 48(3), 504–511.PubMedCrossRef
50.
go back to reference Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117(11), 1388–1396.PubMedCrossRef Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117(11), 1388–1396.PubMedCrossRef
51.
go back to reference Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., et al. (2009). Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. Journal of the American College of Cardiology, 54(11), 1014–1023.PubMedCrossRef Leor, J., Tuvia, S., Guetta, V., Manczur, F., Castel, D., Willenz, U., et al. (2009). Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. Journal of the American College of Cardiology, 54(11), 1014–1023.PubMedCrossRef
52.
go back to reference Dai, W., Wold, L. E., Dow, J. S., & Kloner, R. A. (2005). Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: A novel approach to preserve cardiac function after myocardial infarction. Journal of the American College of Cardiology, 46(4), 714–719.PubMedCrossRef Dai, W., Wold, L. E., Dow, J. S., & Kloner, R. A. (2005). Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: A novel approach to preserve cardiac function after myocardial infarction. Journal of the American College of Cardiology, 46(4), 714–719.PubMedCrossRef
53.
go back to reference Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–409.PubMedCrossRef Christman, K. L., Fok, H. H., Sievers, R. E., Fang, Q., & Lee, R. J. (2004). Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Engineering, 10(3–4), 403–409.PubMedCrossRef
54.
go back to reference Christman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660.PubMedCrossRef Christman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660.PubMedCrossRef
55.
go back to reference Masuda, S., Shimizu, T., Yamato, M., & Okano, T. (2008). Cell sheet engineering for heart tissue repair. Advanced Drug Delivery Reviews, 60(2), 277–285.PubMedCrossRef Masuda, S., Shimizu, T., Yamato, M., & Okano, T. (2008). Cell sheet engineering for heart tissue repair. Advanced Drug Delivery Reviews, 60(2), 277–285.PubMedCrossRef
56.
go back to reference Shimizu, T., Yamato, M., Kikuchi, A., & Okano, T. (2003). Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 24(13), 2309–2316.PubMedCrossRef Shimizu, T., Yamato, M., Kikuchi, A., & Okano, T. (2003). Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 24(13), 2309–2316.PubMedCrossRef
57.
go back to reference Wang, T., Wu, D. Q., Jiang, X. J., Zhang, X. Z., Li, X. Y., Zhang, J. F., et al. (2009). Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. European Journal of Heart Failure, 11(1), 14–19.PubMedCrossRef Wang, T., Wu, D. Q., Jiang, X. J., Zhang, X. Z., Li, X. Y., Zhang, J. F., et al. (2009). Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. European Journal of Heart Failure, 11(1), 14–19.PubMedCrossRef
58.
go back to reference Yu, J., Christman, K. L., Chin, E., Sievers, R. E., Saeed, M., & Lee, R. J. (2009). Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. The Journal of Thoracic and Cardiovascular Surgery, 137(1), 180–187.PubMedCrossRef Yu, J., Christman, K. L., Chin, E., Sievers, R. E., Saeed, M., & Lee, R. J. (2009). Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. The Journal of Thoracic and Cardiovascular Surgery, 137(1), 180–187.PubMedCrossRef
59.
go back to reference Mukherjee, R., Zavadzkas, J. A., Saunders, S. M., McLean, J. E., Jeffords, L. B., Beck, C., et al. (2008). Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. The Annals of Thoracic Surgery, 86(4), 1268–1276.PubMedCrossRef Mukherjee, R., Zavadzkas, J. A., Saunders, S. M., McLean, J. E., Jeffords, L. B., Beck, C., et al. (2008). Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. The Annals of Thoracic Surgery, 86(4), 1268–1276.PubMedCrossRef
60.
go back to reference Ifkovits, J. L., Tous, E., Minakawa, M., Morita, M., Robb, J. D., Koomalsingh, K. J., et al. (2010). Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11507–11512.PubMedCrossRef Ifkovits, J. L., Tous, E., Minakawa, M., Morita, M., Robb, J. D., Koomalsingh, K. J., et al. (2010). Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11507–11512.PubMedCrossRef
61.
go back to reference Wall, S. T., Walker, J. C., Healy, K. E., Ratcliffe, M. B., & Guccione, J. M. (2006). Theoretical impact of the injection of material into the myocardium: A finite element model simulation. Circulation, 114(24), 2627–2635.PubMedCrossRef Wall, S. T., Walker, J. C., Healy, K. E., Ratcliffe, M. B., & Guccione, J. M. (2006). Theoretical impact of the injection of material into the myocardium: A finite element model simulation. Circulation, 114(24), 2627–2635.PubMedCrossRef
62.
go back to reference Gaudette, G. R., & Cohen, I. S. (2006). Cardiac regeneration: materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation, 114(24), 2575–2577.PubMedCrossRef Gaudette, G. R., & Cohen, I. S. (2006). Cardiac regeneration: materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation, 114(24), 2575–2577.PubMedCrossRef
63.
go back to reference Davis, M. E., Hsieh, P. C., Grodzinsky, A. J., & Lee, R. T. (2005). Custom design of the cardiac microenvironment with biomaterials. Circulation Research, 97(1), 8–15.PubMedCrossRef Davis, M. E., Hsieh, P. C., Grodzinsky, A. J., & Lee, R. T. (2005). Custom design of the cardiac microenvironment with biomaterials. Circulation Research, 97(1), 8–15.PubMedCrossRef
64.
go back to reference Freeman, I., Kedem, A., & Cohen, S. (2008). The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials, 29(22), 3260–3268.PubMedCrossRef Freeman, I., Kedem, A., & Cohen, S. (2008). The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials, 29(22), 3260–3268.PubMedCrossRef
65.
go back to reference Freeman, I., & Cohen, S. (2009). The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials, 30(11), 2122–2131.PubMedCrossRef Freeman, I., & Cohen, S. (2009). The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials, 30(11), 2122–2131.PubMedCrossRef
66.
go back to reference Shriver, Z., Liu, D., & Sasisekharan, R. (2002). Emerging views of heparan sulfate glycosaminoglycan structure/activity relationships modulating dynamic biological functions. European Journal of Heart Failure, 12(2), 71–77. Shriver, Z., Liu, D., & Sasisekharan, R. (2002). Emerging views of heparan sulfate glycosaminoglycan structure/activity relationships modulating dynamic biological functions. European Journal of Heart Failure, 12(2), 71–77.
67.
go back to reference Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., et al. (2009). Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14990–14995.PubMedCrossRef Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., et al. (2009). Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14990–14995.PubMedCrossRef
68.
go back to reference Conti, E., Carrozza, C., Capoluongo, E., Volpe, M., Crea, F., Zuppi, C., et al. (2004). Insulin-like growth factor-1 as a vascular protective factor. Circulation, 110, 2260–2265.PubMedCrossRef Conti, E., Carrozza, C., Capoluongo, E., Volpe, M., Crea, F., Zuppi, C., et al. (2004). Insulin-like growth factor-1 as a vascular protective factor. Circulation, 110, 2260–2265.PubMedCrossRef
69.
go back to reference Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., & Matsuda, H. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. Journal of Clinical Investigation, 106(12), 1511–1519.PubMedCrossRef Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., & Matsuda, H. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. Journal of Clinical Investigation, 106(12), 1511–1519.PubMedCrossRef
70.
go back to reference Ruvinov, E., Leor, J., & Cohen, S. (2011). The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials, 32(2), 565–578.PubMedCrossRef Ruvinov, E., Leor, J., & Cohen, S. (2011). The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials, 32(2), 565–578.PubMedCrossRef
71.
go back to reference Suleiman, M. S., Singh, R. J., & Stewart, C. E. (2007). Apoptosis and the cardiac action of insulin-like growth factor I. Pharmacology & Therapeutics, 114(3), 278–294.CrossRef Suleiman, M. S., Singh, R. J., & Stewart, C. E. (2007). Apoptosis and the cardiac action of insulin-like growth factor I. Pharmacology & Therapeutics, 114(3), 278–294.CrossRef
72.
go back to reference Li, Q., Li, B., Wang, X., Leri, A., Jana, K. P., Liu, Y., et al. (1997). Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. Journal of Clinical Investigation, 100(8), 1991–1999.PubMedCrossRef Li, Q., Li, B., Wang, X., Leri, A., Jana, K. P., Liu, Y., et al. (1997). Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. Journal of Clinical Investigation, 100(8), 1991–1999.PubMedCrossRef
73.
go back to reference Webster, K. A. (2007). Programmed death as a therapeutic target to reduce myocardial infarction. Trends in Pharmacological Sciences, 28(9), 492–499.PubMedCrossRef Webster, K. A. (2007). Programmed death as a therapeutic target to reduce myocardial infarction. Trends in Pharmacological Sciences, 28(9), 492–499.PubMedCrossRef
74.
go back to reference Tomita, N., Morishita, R., Taniyama, Y., Koike, H., Aoki, M., Shimizu, H., et al. (2003). Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation, 107(10), 1411–1417.PubMedCrossRef Tomita, N., Morishita, R., Taniyama, Y., Koike, H., Aoki, M., Shimizu, H., et al. (2003). Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation, 107(10), 1411–1417.PubMedCrossRef
75.
go back to reference Nakamura, T., Matsumoto, K., Mizuno, S., Sawa, Y., & Matsuda, H. (2005). Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. American Journal of Physiology, 288(5), H2131–H2139.PubMed Nakamura, T., Matsumoto, K., Mizuno, S., Sawa, Y., & Matsuda, H. (2005). Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts. American Journal of Physiology, 288(5), H2131–H2139.PubMed
76.
go back to reference Wang, Y., Ahmad, N., Wani, M. A., & Ashraf, M. (2004). Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. Journal of Molecular and Cellular Cardiology, 37(5), 1041–1052.PubMedCrossRef Wang, Y., Ahmad, N., Wani, M. A., & Ashraf, M. (2004). Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. Journal of Molecular and Cellular Cardiology, 37(5), 1041–1052.PubMedCrossRef
77.
go back to reference Frantz, S., Bauersachs, J., & Ertl, G. (2009). Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovascular Research, 81(3), 474–481.PubMedCrossRef Frantz, S., Bauersachs, J., & Ertl, G. (2009). Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovascular Research, 81(3), 474–481.PubMedCrossRef
78.
go back to reference Ruvinov, E., Leor, J., & Cohen, S. (2010). The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials, 31(16), 4573–4582.PubMedCrossRef Ruvinov, E., Leor, J., & Cohen, S. (2010). The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials, 31(16), 4573–4582.PubMedCrossRef
79.
go back to reference Segers, V. F., & Lee, R. T. (2007). Local delivery of proteins and the use of self-assembling peptides. Drug Discovery Today, 12(13–14), 561–568.PubMedCrossRef Segers, V. F., & Lee, R. T. (2007). Local delivery of proteins and the use of self-assembling peptides. Drug Discovery Today, 12(13–14), 561–568.PubMedCrossRef
80.
go back to reference Hsieh, P. C., Davis, M. E., Gannon, J., MacGillivray, C., & Lee, R. T. (2006). Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. Journal of Clinical Investigation, 116(1), 237–248.PubMedCrossRef Hsieh, P. C., Davis, M. E., Gannon, J., MacGillivray, C., & Lee, R. T. (2006). Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. Journal of Clinical Investigation, 116(1), 237–248.PubMedCrossRef
81.
go back to reference Davis, M. E., Hsieh, P. C., Takahashi, T., Song, Q., Zhang, S., Kamm, R. D., et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8155–8160.PubMedCrossRef Davis, M. E., Hsieh, P. C., Takahashi, T., Song, Q., Zhang, S., Kamm, R. D., et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8155–8160.PubMedCrossRef
82.
go back to reference Segers, V. F., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116(15), 1683–1692.PubMedCrossRef Segers, V. F., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116(15), 1683–1692.PubMedCrossRef
83.
go back to reference Richardson, T. P., Peters, M. C., Ennett, A. B., & Mooney, D. J. (2001). Polymeric system for dual growth factor delivery. Nature Biotechnology, 19(11), 1029–1034.PubMedCrossRef Richardson, T. P., Peters, M. C., Ennett, A. B., & Mooney, D. J. (2001). Polymeric system for dual growth factor delivery. Nature Biotechnology, 19(11), 1029–1034.PubMedCrossRef
84.
go back to reference Lu, H., Xu, X., Zhang, M., Cao, R., Brakenhielm, E., Li, C., et al. (2007). Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12140–12145.PubMedCrossRef Lu, H., Xu, X., Zhang, M., Cao, R., Brakenhielm, E., Li, C., et al. (2007). Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12140–12145.PubMedCrossRef
85.
go back to reference Hao, X., Silva, E. A., Mansson-Broberg, A., Grinnemo, K. H., Siddiqui, A. J., Dellgren, G., et al. (2007). Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 75(1), 178–185.PubMedCrossRef Hao, X., Silva, E. A., Mansson-Broberg, A., Grinnemo, K. H., Siddiqui, A. J., Dellgren, G., et al. (2007). Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovascular Research, 75(1), 178–185.PubMedCrossRef
86.
go back to reference Lambert, J. M., Lopez, E. F., & Lindsey, M. L. (2008). Macrophage roles following myocardial infarction. International Journal of Cardiology, 130(2), 147–158.PubMedCrossRef Lambert, J. M., Lopez, E. F., & Lindsey, M. L. (2008). Macrophage roles following myocardial infarction. International Journal of Cardiology, 130(2), 147–158.PubMedCrossRef
87.
go back to reference Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Clinical Immunology, 204(12), 3037–3047. Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Clinical Immunology, 204(12), 3037–3047.
88.
go back to reference Troidl, C., Mollmann, H., Nef, H., Masseli, F., Voss, S., Szardien, S., et al. (2009). Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 13(9B), 3485–3496.PubMedCrossRef Troidl, C., Mollmann, H., Nef, H., Masseli, F., Voss, S., Szardien, S., et al. (2009). Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 13(9B), 3485–3496.PubMedCrossRef
89.
go back to reference Torre-Amione, G., Anker, S. D., Bourge, R. C., Colucci, W. S., Greenberg, B. H., Hildebrandt, P., et al. (2008). Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet, 371(9608), 228–236.PubMedCrossRef Torre-Amione, G., Anker, S. D., Bourge, R. C., Colucci, W. S., Greenberg, B. H., Hildebrandt, P., et al. (2008). Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet, 371(9608), 228–236.PubMedCrossRef
90.
go back to reference Leor, J., Rozen, L., Zuloff-Shani, A., Feinberg, M. S., Amsalem, Y., Barbash, I. M., et al. (2006). Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation, 114(1 Suppl), I94–I100.PubMed Leor, J., Rozen, L., Zuloff-Shani, A., Feinberg, M. S., Amsalem, Y., Barbash, I. M., et al. (2006). Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation, 114(1 Suppl), I94–I100.PubMed
91.
go back to reference Fürnrohr, B. G., Sheriff, A., Munoz, L., von Briesen, H., Urbonaviciute, V., Neubert, K., et al. (2005). Signals, receptors, and cytokines involved in the immunomodulatory and anti-inflammatory properties of apoptotic cells. Signal Transduction, 5(6), 356–365.CrossRef Fürnrohr, B. G., Sheriff, A., Munoz, L., von Briesen, H., Urbonaviciute, V., Neubert, K., et al. (2005). Signals, receptors, and cytokines involved in the immunomodulatory and anti-inflammatory properties of apoptotic cells. Signal Transduction, 5(6), 356–365.CrossRef
92.
go back to reference Bose, J., Gruber, A. D., Helming, L., Schiebe, S., Wegener, I., Hafner, M., et al. (2004). The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. Journal of Biology, 3(4), 15.PubMedCrossRef Bose, J., Gruber, A. D., Helming, L., Schiebe, S., Wegener, I., Hafner, M., et al. (2004). The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. Journal of Biology, 3(4), 15.PubMedCrossRef
93.
go back to reference Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., & Henson, P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. Journal of Immunology, 148(7), 2207–2216. Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., & Henson, P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. Journal of Immunology, 148(7), 2207–2216.
94.
go back to reference Huynh, M. L., Fadok, V. A., & Henson, P. M. (2002). Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. Journal of Clinical Investigation, 109(1), 41–50.PubMed Huynh, M. L., Fadok, V. A., & Henson, P. M. (2002). Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. Journal of Clinical Investigation, 109(1), 41–50.PubMed
95.
go back to reference Thum, T., Bauersachs, J., Poole-Wilson, P. A., Volk, H. D., & Anker, S. D. (2005). The dying stem cell hypothesis: immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. Journal of the American College of Cardiology, 46(10), 1799–1802.PubMedCrossRef Thum, T., Bauersachs, J., Poole-Wilson, P. A., Volk, H. D., & Anker, S. D. (2005). The dying stem cell hypothesis: immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. Journal of the American College of Cardiology, 46(10), 1799–1802.PubMedCrossRef
96.
go back to reference Harel-Adar, T., Ben Mordechai, T., Amsalem, Y., Feinberg, M. S., Leor, J., & Cohen, S. (2011). Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proceedings of the National Academy of Sciences of the United States of America, 108(5), 1827–1832.PubMedCrossRef Harel-Adar, T., Ben Mordechai, T., Amsalem, Y., Feinberg, M. S., Leor, J., & Cohen, S. (2011). Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proceedings of the National Academy of Sciences of the United States of America, 108(5), 1827–1832.PubMedCrossRef
97.
go back to reference van der Meer, P., Lipsic, E., Henning, R. H., Boddeus, K., van der Velden, J., Voors, A. A., et al. (2005). Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. Journal of the American College of Cardiology, 46(1), 125–133.PubMedCrossRef van der Meer, P., Lipsic, E., Henning, R. H., Boddeus, K., van der Velden, J., Voors, A. A., et al. (2005). Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. Journal of the American College of Cardiology, 46(1), 125–133.PubMedCrossRef
98.
go back to reference Parsa, C. J., Matsumoto, A., Kim, J., Riel, R. U., Pascal, L. S., Walton, G. B., et al. (2003). A novel protective effect of erythropoietin in the infarcted heart. Journal of Clinical Investigation, 112(7), 999–1007.PubMed Parsa, C. J., Matsumoto, A., Kim, J., Riel, R. U., Pascal, L. S., Walton, G. B., et al. (2003). A novel protective effect of erythropoietin in the infarcted heart. Journal of Clinical Investigation, 112(7), 999–1007.PubMed
99.
go back to reference Torella, D., Rota, M., Nurzinska, D., Musso, E., Monsen, A., Shiraishi, I., et al. (2004). Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circulation Research, 94, 514–524.PubMedCrossRef Torella, D., Rota, M., Nurzinska, D., Musso, E., Monsen, A., Shiraishi, I., et al. (2004). Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circulation Research, 94, 514–524.PubMedCrossRef
100.
go back to reference Liao, S., Porter, D., Scott, A., Newman, G., Doetschman, T., & Schultz Jel, J. (2007). The cardioprotective effect of the low molecular weight isoform of fibroblast growth factor-2: The role of JNK signaling. Journal of Molecular and Cellular Cardiology, 42(1), 106–120.PubMedCrossRef Liao, S., Porter, D., Scott, A., Newman, G., Doetschman, T., & Schultz Jel, J. (2007). The cardioprotective effect of the low molecular weight isoform of fibroblast growth factor-2: The role of JNK signaling. Journal of Molecular and Cellular Cardiology, 42(1), 106–120.PubMedCrossRef
101.
go back to reference Bougioukas, I., Didilis, V., Ypsilantis, P., Giatromanolaki, A., Sivridis, E., Lialiaris, T., et al. (2007). Intramyocardial injection of low-dose basic fibroblast growth factor or vascular endothelial growth factor induces angiogenesis in the infarcted rabbit myocardium. Cardiovascular Pathology, 16(2), 63–68.PubMedCrossRef Bougioukas, I., Didilis, V., Ypsilantis, P., Giatromanolaki, A., Sivridis, E., Lialiaris, T., et al. (2007). Intramyocardial injection of low-dose basic fibroblast growth factor or vascular endothelial growth factor induces angiogenesis in the infarcted rabbit myocardium. Cardiovascular Pathology, 16(2), 63–68.PubMedCrossRef
102.
go back to reference Harada, M., Qin, Y., Takano, H., Minamino, T., Zou, Y., Toko, H., et al. (2005). G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nature Medicine, 11(3), 305–311.PubMedCrossRef Harada, M., Qin, Y., Takano, H., Minamino, T., Zou, Y., Toko, H., et al. (2005). G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nature Medicine, 11(3), 305–311.PubMedCrossRef
103.
go back to reference Takano, H., Ueda, K., Hasegawa, H., & Komuro, I. (2007). G-CSF therapy for acute myocardial infarction. Trends in Pharmacological Sciences, 28(10), 512–517.PubMedCrossRef Takano, H., Ueda, K., Hasegawa, H., & Komuro, I. (2007). G-CSF therapy for acute myocardial infarction. Trends in Pharmacological Sciences, 28(10), 512–517.PubMedCrossRef
104.
go back to reference Kondo, I., Ohmori, K., Oshita, A., Takeuchi, H., Fuke, S., Shinomiya, K., et al. (2004). Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a "functional" gene using ultrasonic microbubble destruction. Journal of the American College of Cardiology, 44(3), 644–653.PubMedCrossRef Kondo, I., Ohmori, K., Oshita, A., Takeuchi, H., Fuke, S., Shinomiya, K., et al. (2004). Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a "functional" gene using ultrasonic microbubble destruction. Journal of the American College of Cardiology, 44(3), 644–653.PubMedCrossRef
105.
go back to reference Jayasankar, V., Woo, Y. J., Bish, L. T., Pirolli, T. J., Chatterjee, S., Berry, M. F., et al. (2003). Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation, 108(Suppl 1), II230–II236.PubMed Jayasankar, V., Woo, Y. J., Bish, L. T., Pirolli, T. J., Chatterjee, S., Berry, M. F., et al. (2003). Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation, 108(Suppl 1), II230–II236.PubMed
106.
go back to reference Hsieh, P. C. H., MacGillivray, C., Gannon, J., Cruz, F. U., & Lee, R. T. (2006). Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation, 114, 637–644.PubMedCrossRef Hsieh, P. C. H., MacGillivray, C., Gannon, J., Cruz, F. U., & Lee, R. T. (2006). Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation, 114, 637–644.PubMedCrossRef
107.
go back to reference Hiasa, K., Ishibashi, M., Ohtani, K., Inoue, S., Zhao, Q., Kitamoto, S., et al. (2004). Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation, 109(20), 2454–2461.PubMedCrossRef Hiasa, K., Ishibashi, M., Ohtani, K., Inoue, S., Zhao, Q., Kitamoto, S., et al. (2004). Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation, 109(20), 2454–2461.PubMedCrossRef
108.
go back to reference Hu, X., Dai, S., Wu, W. J., Tan, W., Zhu, X., Mu, J., et al. (2007). Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation, 116(6), 654–663.PubMedCrossRef Hu, X., Dai, S., Wu, W. J., Tan, W., Zhu, X., Mu, J., et al. (2007). Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation, 116(6), 654–663.PubMedCrossRef
109.
go back to reference Ferrarini, M., Arsic, N., Recchia, F. A., Zentilin, L., Zacchigna, S., Xu, X., et al. (2006). Adeno-associated virus-mediated transduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circulation Research, 98(7), 954–961.PubMedCrossRef Ferrarini, M., Arsic, N., Recchia, F. A., Zentilin, L., Zacchigna, S., Xu, X., et al. (2006). Adeno-associated virus-mediated transduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circulation Research, 98(7), 954–961.PubMedCrossRef
110.
go back to reference Vera Janavel, G., Crottogini, A., Cabeza Meckert, P., Cuniberti, L., Mele, A., Papouchado, M., et al. (2006). Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Therapy, 13(15), 1133–1142.PubMedCrossRef Vera Janavel, G., Crottogini, A., Cabeza Meckert, P., Cuniberti, L., Mele, A., Papouchado, M., et al. (2006). Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Therapy, 13(15), 1133–1142.PubMedCrossRef
Metadata
Title
Bioengineering the Infarcted Heart by Applying Bio-inspired Materials
Authors
Emil Ruvinov
Tamar Harel-Adar
Smadar Cohen
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 5/2011
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-011-9288-9

Other articles of this Issue 5/2011

Journal of Cardiovascular Translational Research 5/2011 Go to the issue