Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2022

Open Access 01-12-2022 | Myocarditis | Research

Rosuvastatin exerts cardioprotective effect in lipopolysaccharide-mediated injury of cardiomyocytes in an MG53-dependent manner

Authors: Jiawei Zhuang, Gangyi Cheng, Jian Huang, Hongwei Guo, Yiquan Lai, Jiamao Wang, Zhonggui Shan, Shaoyi Zheng

Published in: BMC Cardiovascular Disorders | Issue 1/2022

Login to get access

Abstract

Background

Myocarditis is a cardiomyopathy associated with the inflammatory response. Rosuvastatin (RS) demonstrates cardioprotective effect in the clinical setting, although its cellular and molecular mechanisms in ameliorating myocarditis are largely unknown. MG53 (muscle-specific E3 ligase Mitsugumin 53), a newly identified striated muscle-specific protein, is involved in skeletal muscle membrane repair. We aimed to explore whether RS mediated the repair of cardiomyocytes in an MG53-dependent manner.

Methods

The RS-induced upregulation of MG53 was determined using RT-qPCR and western blotting. A lipopolysaccharide (LPS)-induced cell inflammatory model was constructed using rat cardiac muscle cell H9C2. Inflammatory injury was evaluated according to the alterations of cell viability, mitochondrial membrane potential, cell apoptosis, and expression of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1). Small interfering RNAs (siRNAs) were used to silence MG53. The cardioprotective effect of RS and the inhibition of this protection by MG53 silence were evaluated in the forementioned in vitro model. The underlying mechanism was finally investigated using western blotting to detected the expressions of apoptotic markers (Bcl-2, Bax, Cleaved caspase-9, Cleaved caspase-3), cell cycle regulatory factors (Cyclin A, Cyclin E1, Cyclin D1, CDK2), and components involved in NF-κB signaling pathway (p-IκBa, Iκba, p-p65, p65).

Results

RS ameliorated LPS-induced inflammatory injury. RS upregulated the expression of MG53. MG53 was crucial for the RS-mediated repair response in vitro. Ablation of MG53 inhibited the RS-mediated protective effect. Furthermore, RS and MG53 interact in multiple signaling pathways to modulate recovery.

Conclusion

RS exerts cardioprotective effect in an MG53-dependent manner. MG53 may serve as a novel drug target for myocarditis treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim KS, Hufnagel G, Chapman NM, Tracy S. The group B coxsackieviruses and myocarditis. Rev Med Virol. 2001;11(6):355–68.CrossRef Kim KS, Hufnagel G, Chapman NM, Tracy S. The group B coxsackieviruses and myocarditis. Rev Med Virol. 2001;11(6):355–68.CrossRef
2.
go back to reference Moonen M, Lancellotti P. Update on myocarditis. Rev Med Liege. 2018;73(5–6):269–76.PubMed Moonen M, Lancellotti P. Update on myocarditis. Rev Med Liege. 2018;73(5–6):269–76.PubMed
3.
go back to reference Guan J, Sun X, Liang Y, Dong W, Zhang L, Zhu J, Wang G. Atorvastatin attenuates Coxsackie virus B3m-induced viral myocarditis in mice. J Cardiovasc Pharmacol. 2010;56(5):540–7.CrossRef Guan J, Sun X, Liang Y, Dong W, Zhang L, Zhu J, Wang G. Atorvastatin attenuates Coxsackie virus B3m-induced viral myocarditis in mice. J Cardiovasc Pharmacol. 2010;56(5):540–7.CrossRef
4.
go back to reference Cizgici AY, Zencirkiran Agus H, Yildiz M. COVID-19 myopericarditis: it should be kept in mind in today’s conditions. Am J Emerg Med. 2020;38(7):1547.e1545-1547.e1546.CrossRef Cizgici AY, Zencirkiran Agus H, Yildiz M. COVID-19 myopericarditis: it should be kept in mind in today’s conditions. Am J Emerg Med. 2020;38(7):1547.e1545-1547.e1546.CrossRef
5.
go back to reference Parsamanesh N, Karami-Zarandi M, Banach M, Penson PE, Sahebkar A. Effects of statins on myocarditis: a review of underlying molecular mechanisms. Prog Cardiovasc Dis 2021. Parsamanesh N, Karami-Zarandi M, Banach M, Penson PE, Sahebkar A. Effects of statins on myocarditis: a review of underlying molecular mechanisms. Prog Cardiovasc Dis 2021.
6.
go back to reference Gotto AM Jr. Jeremiah Metzger Lecture: cholesterol, inflammation and atherosclerotic cardiovascular disease: Is it all LDL? Trans Am Clin Climatol Assoc. 2011;122:256–89.PubMedPubMedCentral Gotto AM Jr. Jeremiah Metzger Lecture: cholesterol, inflammation and atherosclerotic cardiovascular disease: Is it all LDL? Trans Am Clin Climatol Assoc. 2011;122:256–89.PubMedPubMedCentral
7.
go back to reference Jung HH. Statin use and outcome risks according to predicted CVD risk in Korea: a retrospective cohort study. PLoS ONE 2021;16(1):e0245609. Jung HH. Statin use and outcome risks according to predicted CVD risk in Korea: a retrospective cohort study. PLoS ONE 2021;16(1):e0245609.
8.
go back to reference Wu JL, Matsui S, Zong ZP, Nishikawa K, Sun BG, Katsuda S, Fu M. Amelioration of myocarditis by statin through inhibiting cross-talk between antigen presenting cells and lymphocytes in rats. J Mol Cell Cardiol. 2008;44(6):1023–31.CrossRef Wu JL, Matsui S, Zong ZP, Nishikawa K, Sun BG, Katsuda S, Fu M. Amelioration of myocarditis by statin through inhibiting cross-talk between antigen presenting cells and lymphocytes in rats. J Mol Cell Cardiol. 2008;44(6):1023–31.CrossRef
9.
go back to reference Tang Q, Huang J, Qian H, Chen L, Wang T, Wang H, Shen D, Wu H, Xiong R. Antiarrhythmic effect of atorvastatin on autoimmune myocarditis is mediated by improving myocardial repolarization. Life Sci. 2007;80(7):601–8.CrossRef Tang Q, Huang J, Qian H, Chen L, Wang T, Wang H, Shen D, Wu H, Xiong R. Antiarrhythmic effect of atorvastatin on autoimmune myocarditis is mediated by improving myocardial repolarization. Life Sci. 2007;80(7):601–8.CrossRef
10.
go back to reference Stalker TJ, Lefer AM, Scalia R. A new HMG-CoA reductase inhibitor, rosuvastatin, exerts anti-inflammatory effects on the microvascular endothelium: the role of mevalonic acid. Br J Pharmacol. 2001;133(3):406–12.CrossRef Stalker TJ, Lefer AM, Scalia R. A new HMG-CoA reductase inhibitor, rosuvastatin, exerts anti-inflammatory effects on the microvascular endothelium: the role of mevalonic acid. Br J Pharmacol. 2001;133(3):406–12.CrossRef
11.
go back to reference Liu X, Li B, Wang W, Zhang C, Zhang M, Zhang Y, Xia Y, Dong Z, Guo Y, An F. Effects of HMG-CoA reductase inhibitor on experimental autoimmune myocarditis. Cardiovasc Drugs Ther. 2012;26(2):121–30.CrossRef Liu X, Li B, Wang W, Zhang C, Zhang M, Zhang Y, Xia Y, Dong Z, Guo Y, An F. Effects of HMG-CoA reductase inhibitor on experimental autoimmune myocarditis. Cardiovasc Drugs Ther. 2012;26(2):121–30.CrossRef
12.
go back to reference Liu F, Song R, Feng Y, Guo J, Chen Y, Zhang Y, Chen T, Wang Y, Huang Y, Li CY, et al. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α. Circulation. 2015;131(9):795–804.CrossRef Liu F, Song R, Feng Y, Guo J, Chen Y, Zhang Y, Chen T, Wang Y, Huang Y, Li CY, et al. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α. Circulation. 2015;131(9):795–804.CrossRef
13.
go back to reference Han X, Chen D, Liufu N, Ji F, Zeng Q, Yao W, Cao M. MG53 Protects against sepsis-induced myocardial dysfunction by upregulating peroxisome proliferator-activated receptor-α. Oxid Med Cell Longev. 2020;2020:7413693.PubMedPubMedCentral Han X, Chen D, Liufu N, Ji F, Zeng Q, Yao W, Cao M. MG53 Protects against sepsis-induced myocardial dysfunction by upregulating peroxisome proliferator-activated receptor-α. Oxid Med Cell Longev. 2020;2020:7413693.PubMedPubMedCentral
14.
go back to reference Bian Z, Wang Q, Zhou X, Tan T, Park KH, Kramer HF, McDougal A, Laping NJ, Kumar S, Adesanya TMA, et al. Sustained elevation of MG53 in the bloodstream increases tissue regenerative capacity without compromising metabolic function. Nat Commun. 2019;10(1):4659.CrossRef Bian Z, Wang Q, Zhou X, Tan T, Park KH, Kramer HF, McDougal A, Laping NJ, Kumar S, Adesanya TMA, et al. Sustained elevation of MG53 in the bloodstream increases tissue regenerative capacity without compromising metabolic function. Nat Commun. 2019;10(1):4659.CrossRef
15.
go back to reference Masumiya H, Asaumi Y, Nishi M, Minamisawa S, Adachi-Akahane S, Yoshida M, Kangawa K, Ito K, Kagaya Y, Yanagisawa T, et al. Mitsugumin 53-mediated maintenance of K+ currents in cardiac myocytes. Channels (Austin). 2009;3(1):6–11.CrossRef Masumiya H, Asaumi Y, Nishi M, Minamisawa S, Adachi-Akahane S, Yoshida M, Kangawa K, Ito K, Kagaya Y, Yanagisawa T, et al. Mitsugumin 53-mediated maintenance of K+ currents in cardiac myocytes. Channels (Austin). 2009;3(1):6–11.CrossRef
16.
go back to reference Liu W, Wang G, Zhang C, Ding W, Cheng W, Luo Y, Wei C, Liu J. MG53, a novel regulator of KChIP2 and I(to, f), plays a critical role in electrophysiological remodeling in cardiac hypertrophy. Circulation. 2019;139(18):2142–56.CrossRef Liu W, Wang G, Zhang C, Ding W, Cheng W, Luo Y, Wei C, Liu J. MG53, a novel regulator of KChIP2 and I(to, f), plays a critical role in electrophysiological remodeling in cardiac hypertrophy. Circulation. 2019;139(18):2142–56.CrossRef
17.
go back to reference Park JS, Lee H, Choi BW, Ro S, Lee D, Na JE, Hong JH, Lee JS, Kim BW, Ko YG. An MG53-IRS1-interaction disruptor ameliorates insulin resistance. Exp Mol Med. 2018;50(6):1–12.CrossRef Park JS, Lee H, Choi BW, Ro S, Lee D, Na JE, Hong JH, Lee JS, Kim BW, Ko YG. An MG53-IRS1-interaction disruptor ameliorates insulin resistance. Exp Mol Med. 2018;50(6):1–12.CrossRef
18.
go back to reference Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko JK, Lin P, Thornton A, Zhao X, et al. MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol. 2009;11(1):56–64.CrossRef Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko JK, Lin P, Thornton A, Zhao X, et al. MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol. 2009;11(1):56–64.CrossRef
19.
go back to reference Wu HK, Zhang Y, Cao CM, Hu X, Fang M, Yao Y, Jin L, Chen G, Jiang P, Zhang S, et al. Glucose-sensitive myokine/cardiokine MG53 regulates systemic insulin response and metabolic homeostasis. Circulation. 2019;139(7):901–14.CrossRef Wu HK, Zhang Y, Cao CM, Hu X, Fang M, Yao Y, Jin L, Chen G, Jiang P, Zhang S, et al. Glucose-sensitive myokine/cardiokine MG53 regulates systemic insulin response and metabolic homeostasis. Circulation. 2019;139(7):901–14.CrossRef
20.
go back to reference Jia Z, Wang J, Shi Q, Liu S, Wang W, Tian Y, Lu Q, Chen P, Ma K, Zhou C. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis. 2016;21(2):174–83.CrossRef Jia Z, Wang J, Shi Q, Liu S, Wang W, Tian Y, Lu Q, Chen P, Ma K, Zhou C. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis. 2016;21(2):174–83.CrossRef
21.
go back to reference Wang X, Xie W, Zhang Y, Lin P, Han L, Han P, Wang Y, Chen Z, Ji G, Zheng M, et al. Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair. Circ Res. 2010;107(1):76–83.CrossRef Wang X, Xie W, Zhang Y, Lin P, Han L, Han P, Wang Y, Chen Z, Ji G, Zheng M, et al. Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair. Circ Res. 2010;107(1):76–83.CrossRef
22.
go back to reference Watkins SJ, Borthwick GM, Arthur HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim. 2011;47(2):125–31.CrossRef Watkins SJ, Borthwick GM, Arthur HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim. 2011;47(2):125–31.CrossRef
23.
go back to reference Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res. 1976;98(2):367–81.CrossRef Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res. 1976;98(2):367–81.CrossRef
24.
go back to reference Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 1991;69(6):1476–86.CrossRef Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 1991;69(6):1476–86.CrossRef
25.
go back to reference Huang CY, Chueh PJ, Tseng CT, Liu KY, Tsai HY, Kuo WW, Chou MY, Yang JJ. ZAK re-programs atrial natriuretic factor expression and induces hypertrophic growth in H9c2 cardiomyoblast cells. Biochem Biophys Res Commun. 2004;324(3):973–80.CrossRef Huang CY, Chueh PJ, Tseng CT, Liu KY, Tsai HY, Kuo WW, Chou MY, Yang JJ. ZAK re-programs atrial natriuretic factor expression and induces hypertrophic growth in H9c2 cardiomyoblast cells. Biochem Biophys Res Commun. 2004;324(3):973–80.CrossRef
26.
go back to reference Zhou Y, Jiang Y, Kang YJ. Copper inhibition of hydrogen peroxide-induced hypertrophy in embryonic rat cardiac H9c2 cells. Exp Biol Med (Maywood). 2007;232(3):385–9. Zhou Y, Jiang Y, Kang YJ. Copper inhibition of hydrogen peroxide-induced hypertrophy in embryonic rat cardiac H9c2 cells. Exp Biol Med (Maywood). 2007;232(3):385–9.
27.
go back to reference Koekemoer AL, Chong NW, Goodall AH, Samani NJ. Myocyte stress 1 plays an important role in cellular hypertrophy and protection against apoptosis. FEBS Lett. 2009;583(17):2964–7.CrossRef Koekemoer AL, Chong NW, Goodall AH, Samani NJ. Myocyte stress 1 plays an important role in cellular hypertrophy and protection against apoptosis. FEBS Lett. 2009;583(17):2964–7.CrossRef
28.
go back to reference Vindis C, D’Angelo R, Mucher E, Nègre-Salvayre A, Parini A, Mialet-Perez J. Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochem Biophys Res Commun. 2010;391(1):979–83.CrossRef Vindis C, D’Angelo R, Mucher E, Nègre-Salvayre A, Parini A, Mialet-Perez J. Essential role of TRPC1 channels in cardiomyoblasts hypertrophy mediated by 5-HT2A serotonin receptors. Biochem Biophys Res Commun. 2010;391(1):979–83.CrossRef
29.
go back to reference Yu T, Dong D, Guan J, Sun J, Guo M, Wang Q. Alprostadil attenuates LPS-induced cardiomyocyte injury by inhibiting the Wnt5a/JNK/NF-κB pathway. Herz 2019. Yu T, Dong D, Guan J, Sun J, Guo M, Wang Q. Alprostadil attenuates LPS-induced cardiomyocyte injury by inhibiting the Wnt5a/JNK/NF-κB pathway. Herz 2019.
30.
go back to reference Branco AF, Pereira SP, Gonzalez S, Gusev O, Rizvanov AA, Oliveira PJ. Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS ONE. 2015;10(6):e0129303.CrossRef Branco AF, Pereira SP, Gonzalez S, Gusev O, Rizvanov AA, Oliveira PJ. Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS ONE. 2015;10(6):e0129303.CrossRef
31.
go back to reference Han G, Wang HY, Han ZW, Xu CL, Chen GP, Jiang CM. Relationship between CaSRs and LPS-injured cardiomyocytes. Int J Clin Exp Pathol. 2018;11(4):1965–71.PubMedPubMedCentral Han G, Wang HY, Han ZW, Xu CL, Chen GP, Jiang CM. Relationship between CaSRs and LPS-injured cardiomyocytes. Int J Clin Exp Pathol. 2018;11(4):1965–71.PubMedPubMedCentral
32.
go back to reference Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia ZY. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res. 2019;2019:8151836.PubMedPubMedCentral Qiu Z, He Y, Ming H, Lei S, Leng Y, Xia ZY. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res. 2019;2019:8151836.PubMedPubMedCentral
33.
go back to reference McFarland AJ, Davey AK, Anoopkumar-Dukie S. Statins reduce lipopolysaccharide-induced cytokine and inflammatory mediator release in an in vitro model of microglial-like cells. Mediators Inflamm. 2017;2017:2582745.CrossRef McFarland AJ, Davey AK, Anoopkumar-Dukie S. Statins reduce lipopolysaccharide-induced cytokine and inflammatory mediator release in an in vitro model of microglial-like cells. Mediators Inflamm. 2017;2017:2582745.CrossRef
34.
go back to reference Wang K, Li B, Xie Y, Xia N, Li M, Gao G. Statin rosuvastatin inhibits apoptosis of human coronary artery endothelial cells through upregulation of the JAK2/STAT3 signaling pathway. Mol Med Rep. 2020;22(3):2052–62.CrossRef Wang K, Li B, Xie Y, Xia N, Li M, Gao G. Statin rosuvastatin inhibits apoptosis of human coronary artery endothelial cells through upregulation of the JAK2/STAT3 signaling pathway. Mol Med Rep. 2020;22(3):2052–62.CrossRef
35.
go back to reference Geng J, Xu H, Yu X, Xu G, Cao H, Lin G, Sui D. Rosuvastatin protects against oxidized low-density lipoprotein-induced endothelial cell injury of atherosclerosis in vitro. Mol Med Rep. 2019;19(1):432–40.PubMed Geng J, Xu H, Yu X, Xu G, Cao H, Lin G, Sui D. Rosuvastatin protects against oxidized low-density lipoprotein-induced endothelial cell injury of atherosclerosis in vitro. Mol Med Rep. 2019;19(1):432–40.PubMed
36.
go back to reference Wang BX, Li KP, Yu T, Feng HY. Rosuvastatin promotes osteogenic differentiation of mesenchymal stem cells in the rat model of osteoporosis by the Wnt/β-catenin signal. Eur Rev Med Pharmacol Sci. 2019;23(22):10161–8.PubMed Wang BX, Li KP, Yu T, Feng HY. Rosuvastatin promotes osteogenic differentiation of mesenchymal stem cells in the rat model of osteoporosis by the Wnt/β-catenin signal. Eur Rev Med Pharmacol Sci. 2019;23(22):10161–8.PubMed
37.
go back to reference Fu G, Wang B, He B, Feng M, Yu Y, LPS induces cardiomyocyte necroptosis through the Ripk3/Pgam5 signaling pathway. J Recept Signal Transduct Res 2020:1–6. Fu G, Wang B, He B, Feng M, Yu Y, LPS induces cardiomyocyte necroptosis through the Ripk3/Pgam5 signaling pathway. J Recept Signal Transduct Res 2020:1–6.
38.
go back to reference Wang G, Hu Z, Fu Q, Song X, Cui Q, Jia R, Zou Y, He C, Li L, Yin Z. Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-kappaBp65/MAPKs signaling cascade. Sci Rep. 2017;7:45006.CrossRef Wang G, Hu Z, Fu Q, Song X, Cui Q, Jia R, Zou Y, He C, Li L, Yin Z. Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-kappaBp65/MAPKs signaling cascade. Sci Rep. 2017;7:45006.CrossRef
39.
go back to reference Lemckert FA, Bournazos A, Eckert DM, Kenzler M, Hawkes JM, Butler TL, Ceely B, North KN, Winlaw DS, Egan JR, et al. Lack of MG53 in human heart precludes utility as a biomarker of myocardial injury or endogenous cardioprotective factor. Cardiovasc Res. 2016;110(2):178–87.CrossRef Lemckert FA, Bournazos A, Eckert DM, Kenzler M, Hawkes JM, Butler TL, Ceely B, North KN, Winlaw DS, Egan JR, et al. Lack of MG53 in human heart precludes utility as a biomarker of myocardial injury or endogenous cardioprotective factor. Cardiovasc Res. 2016;110(2):178–87.CrossRef
40.
go back to reference Guan F, Zhou X, Li P, Wang Y, Liu M, Li F, Cui Y, Huang T, Yao M, Zhang Y, et al. MG53 attenuates lipopolysaccharide-induced neurotoxicity and neuroinflammation via inhibiting TLR4/NF-κB pathway in vitro and in vivo. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109684.CrossRef Guan F, Zhou X, Li P, Wang Y, Liu M, Li F, Cui Y, Huang T, Yao M, Zhang Y, et al. MG53 attenuates lipopolysaccharide-induced neurotoxicity and neuroinflammation via inhibiting TLR4/NF-κB pathway in vitro and in vivo. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109684.CrossRef
Metadata
Title
Rosuvastatin exerts cardioprotective effect in lipopolysaccharide-mediated injury of cardiomyocytes in an MG53-dependent manner
Authors
Jiawei Zhuang
Gangyi Cheng
Jian Huang
Hongwei Guo
Yiquan Lai
Jiamao Wang
Zhonggui Shan
Shaoyi Zheng
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2022
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-022-02458-3

Other articles of this Issue 1/2022

BMC Cardiovascular Disorders 1/2022 Go to the issue