Skip to main content
Top
Published in: Neurological Sciences 4/2024

01-11-2023 | Myasthenia Gravis | Original Article

Myasthenia gravis and five autoimmune diseases: a bidirectional Mendelian randomization study

Authors: Kailin Li, Yuzhen Ouyang, Huan Yang

Published in: Neurological Sciences | Issue 4/2024

Login to get access

Abstract

Background

The association between myasthenia gravis (MG) and other autoimmune diseases is well established. In this study, we aimed to investigate the causal effects between MG and five other autoimmune diseases, including autoimmune thyroid disease (AITD), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and type 1 diabetes (T1DM).

Methods

We conducted a bidirectional Mendelian randomization (MR) study by using seven published genome-wide association studies (GWAS), including MG (1873 patients versus 36,370 controls), AITD (autoimmune hypothyroidism) (22,997 patients versus 175,475 controls), AITD (autoimmune hyperthyroidism) (962 patients versus 172,976 controls), MS (47,429 patients versus 68,374 controls), RA (14,361 patients versus 43,923 controls), SLE (4222 patients versus 8431 controls), and T1DM (9266 patients versus 15,574 controls). We used the inverse-variance-weighted (IVW) method, weighted-median (WM) estimator, MR-Egger regression, and MR PRESSO in our analyses. We also carried out detailed sensitivity analyses for each direction using the aforementioned methods.

Results

When MG was treated as the exposure, MR evidence suggested a causal relationship between MG and T1DM, SLE, AITD (both hypothyroidism and hyperthyroidism), and MS (excluding RA). Using the IVW method, we found that MG was associated with increased risk of T1DM (OR = 1.94; 95% CI, 1.16–3.26; p = 0.012), SLE (OR = 1.47; 95% CI, 1.02–2.13; p = 0.04), AITD (hypothyroidism) (OR = 1.31; 95% CI, 1.02–1.68; p = 0.039), AITD (hyperthyroidism) (OR = 1.55; 95% CI, 1.15–2.09; p = 0.004), and MS (OR = 1.46; 95% CI, 1.01–2.09; p = 0.041). When MG was treated as the outcome, MR evidence suggested that RA, T1DM, and SLE were causal factors in MG. Using the IVW method, we found that the risk of MG increased with exposure to RA (OR = 1.21; 95% CI, 1.08–1.37; p = 0.002), T1DM (OR = 1.09; 95% CI, 1.02–1.16; p = 0.006), and SLE (OR = 1.12; 95% CI, 1.02–1.23; p = 0.018).

Conclusions

This study demonstrated a causal relationship between MG and several other autoimmune diseases. Our results supported a bidirectional causal association between MG and SLE/T1DM. Our findings also provided reliable evidence that MG is associated with increased risk of AITD. Meanwhile, we also showed that RA is a possible causal driver of MG risk.
Literature
2.
go back to reference Gilhus NE, Verschuuren JJ (2015) Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 14(10):1023–1036PubMedCrossRef Gilhus NE, Verschuuren JJ (2015) Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 14(10):1023–1036PubMedCrossRef
3.
go back to reference Christensen PB et al (1995) Associated autoimmune diseases in myasthenia gravis. Acta Neurol Scand 91(3):192–195 Christensen PB et al (1995) Associated autoimmune diseases in myasthenia gravis. Acta Neurol Scand 91(3):192–195
4.
go back to reference Fang F et al (2015) The autoimmune spectrum of myasthenia gravis: a Swedish population-based study. J Intern Med 277(5):594–604PubMedCrossRef Fang F et al (2015) The autoimmune spectrum of myasthenia gravis: a Swedish population-based study. J Intern Med 277(5):594–604PubMedCrossRef
5.
7.
go back to reference Green JD et al (2020) Epidemiological evidence for a hereditary contribution to myasthenia gravis: a retrospective cohort study of patients from North America. BMJ Open 10(9):e037909PubMedPubMedCentralCrossRef Green JD et al (2020) Epidemiological evidence for a hereditary contribution to myasthenia gravis: a retrospective cohort study of patients from North America. BMJ Open 10(9):e037909PubMedPubMedCentralCrossRef
9.
go back to reference Song RH et al (2019) Thyroid disorders in patients with myasthenia gravis: a systematic review and meta-analysis. Autoimmun Rev 18(10):102368PubMedCrossRef Song RH et al (2019) Thyroid disorders in patients with myasthenia gravis: a systematic review and meta-analysis. Autoimmun Rev 18(10):102368PubMedCrossRef
10.
go back to reference Mao ZF et al (2011) Frequency of autoimmune diseases in myasthenia gravis: a systematic review. Int J Neurosci 121(3):121–129PubMedCrossRef Mao ZF et al (2011) Frequency of autoimmune diseases in myasthenia gravis: a systematic review. Int J Neurosci 121(3):121–129PubMedCrossRef
11.
go back to reference Chou CC et al (2020) Prevalence and risk of thyroid diseases in myasthenia gravis. Acta Neurol Scand 142(3):239–247ADSPubMedCrossRef Chou CC et al (2020) Prevalence and risk of thyroid diseases in myasthenia gravis. Acta Neurol Scand 142(3):239–247ADSPubMedCrossRef
12.
go back to reference Yeh JH et al (2015) Higher risk of myasthenia gravis in patients with thyroid and allergic diseases: a national population-based study. Medicine (Baltimore) 94(21):e835PubMedCrossRef Yeh JH et al (2015) Higher risk of myasthenia gravis in patients with thyroid and allergic diseases: a national population-based study. Medicine (Baltimore) 94(21):e835PubMedCrossRef
13.
go back to reference Chia R, Saez-Atienzar S, Murphy N, Chiò A, Blauwendraat C, International Myasthenia Gravis Genomics Consortium, Roda RH, Tienari PJ, Kaminski HJ, Ricciardi R, Guida M, De Rosa A, Petrucci L, Evoli A, Provenzano C, Drachman DB, Traynor BJ (2022) Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: a genome-wide association study. Proc Natl Acad Sci U S A 119(5):e2108672119. https://doi.org/10.1073/pnas.2108672119 Chia R, Saez-Atienzar S, Murphy N, Chiò A, Blauwendraat C, International Myasthenia Gravis Genomics Consortium, Roda RH, Tienari PJ, Kaminski HJ, Ricciardi R, Guida M, De Rosa A, Petrucci L, Evoli A, Provenzano C, Drachman DB, Traynor BJ (2022) Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: a genome-wide association study. Proc Natl Acad Sci U S A 119(5):e2108672119. https://​doi.​org/​10.​1073/​pnas.​2108672119
14.
go back to reference Bowden J et al (2016) Consistent estimation in Mendelian Randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314PubMedPubMedCentralCrossRef Bowden J et al (2016) Consistent estimation in Mendelian Randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314PubMedPubMedCentralCrossRef
15.
go back to reference Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–25PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–25PubMedPubMedCentralCrossRef
16.
go back to reference Verbanck M et al (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698PubMedPubMedCentralCrossRef Verbanck M et al (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698PubMedPubMedCentralCrossRef
17.
go back to reference Kanazawa M et al (2007) Clinical features of patients with myasthenia gravis associated with autoimmune diseases. Eur J Neurol 14(12):1403–1404PubMedCrossRef Kanazawa M et al (2007) Clinical features of patients with myasthenia gravis associated with autoimmune diseases. Eur J Neurol 14(12):1403–1404PubMedCrossRef
19.
go back to reference Meng C et al (2016) Clinical features of myasthenia gravis with thyroid disease with 106 patients. Zhonghua Yi Xue Za Zhi 96(11):854–858PubMed Meng C et al (2016) Clinical features of myasthenia gravis with thyroid disease with 106 patients. Zhonghua Yi Xue Za Zhi 96(11):854–858PubMed
20.
go back to reference De Assis JL et al (1984) Thyroid diseases and myasthenia gravis. Arq Neuropsiquiatr 42(3):226–231PubMedCrossRef De Assis JL et al (1984) Thyroid diseases and myasthenia gravis. Arq Neuropsiquiatr 42(3):226–231PubMedCrossRef
21.
go back to reference Lopomo A, Berrih-Aknin S (2017) Autoimmune thyroiditis and myasthenia gravis. Front Endocrinol (Lausanne) 8:169PubMedCrossRef Lopomo A, Berrih-Aknin S (2017) Autoimmune thyroiditis and myasthenia gravis. Front Endocrinol (Lausanne) 8:169PubMedCrossRef
22.
go back to reference Berrih-Aknin S et al (2013) Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev 12(9):885–893PubMedCrossRef Berrih-Aknin S et al (2013) Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev 12(9):885–893PubMedCrossRef
25.
go back to reference Marx A et al (2010) The autoimmune regulator AIRE in thymoma biology: autoimmunity and beyond. J Thorac Oncol 5(10 Suppl 4):S266–S272PubMedCrossRef Marx A et al (2010) The autoimmune regulator AIRE in thymoma biology: autoimmunity and beyond. J Thorac Oncol 5(10 Suppl 4):S266–S272PubMedCrossRef
26.
go back to reference Misharin AV et al (2009) Studies in mice deficient for the autoimmune regulator (Aire) and transgenic for the thyrotropin receptor reveal a role for Aire in tolerance for thyroid autoantigens. Endocrinology 150(6):2948–2956PubMedPubMedCentralCrossRef Misharin AV et al (2009) Studies in mice deficient for the autoimmune regulator (Aire) and transgenic for the thyrotropin receptor reveal a role for Aire in tolerance for thyroid autoantigens. Endocrinology 150(6):2948–2956PubMedPubMedCentralCrossRef
28.
go back to reference Dehbashi S, Hamouda D, Shanina E (2019) Co-occurrence of multiple sclerosis and myasthenia gravis: a case report and review of immunological theories. Mult Scler Relat Disord 34:135–136PubMedCrossRef Dehbashi S, Hamouda D, Shanina E (2019) Co-occurrence of multiple sclerosis and myasthenia gravis: a case report and review of immunological theories. Mult Scler Relat Disord 34:135–136PubMedCrossRef
29.
30.
go back to reference Lu J et al (2013) Modulation of B cell regulatory molecules CD22 and CD72 in myasthenia gravis and multiple sclerosis. Inflammation 36(3):521–528PubMedCrossRef Lu J et al (2013) Modulation of B cell regulatory molecules CD22 and CD72 in myasthenia gravis and multiple sclerosis. Inflammation 36(3):521–528PubMedCrossRef
32.
33.
go back to reference Di L et al (2022) A randomized open-labeled trial of methotrexate as a steroid-sparing agent for patients with generalized myasthenia gravis. Front Immunol 13:839075PubMedPubMedCentralCrossRef Di L et al (2022) A randomized open-labeled trial of methotrexate as a steroid-sparing agent for patients with generalized myasthenia gravis. Front Immunol 13:839075PubMedPubMedCentralCrossRef
35.
go back to reference Smolen JS et al (2020) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis 79(6):685–699PubMedCrossRef Smolen JS et al (2020) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis 79(6):685–699PubMedCrossRef
36.
go back to reference El Jammal T et al (2021) State of the art: approved and emerging JAK inhibitors for rheumatoid arthritis. Expert Opin Pharmacother 22(2):205–218PubMedCrossRef El Jammal T et al (2021) State of the art: approved and emerging JAK inhibitors for rheumatoid arthritis. Expert Opin Pharmacother 22(2):205–218PubMedCrossRef
37.
go back to reference Uzawa A et al (2021) Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol 203(3):366–374PubMedCrossRef Uzawa A et al (2021) Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol 203(3):366–374PubMedCrossRef
38.
go back to reference Miskovic R et al (2015) Systemic lupus erythematosus and secondary antiphospholipid syndrome after thymectomy for myasthenia gravis - a case report. Open Access Maced J Med Sci 3(3):439–442PubMedPubMedCentralCrossRef Miskovic R et al (2015) Systemic lupus erythematosus and secondary antiphospholipid syndrome after thymectomy for myasthenia gravis - a case report. Open Access Maced J Med Sci 3(3):439–442PubMedPubMedCentralCrossRef
39.
go back to reference Jallouli M et al (2012) The association of systemic lupus erythematosus and myasthenia gravis: a series of 17 cases, with a special focus on hydroxychloroquine use and a review of the literature. J Neurol 259(7):1290–1297PubMedCrossRef Jallouli M et al (2012) The association of systemic lupus erythematosus and myasthenia gravis: a series of 17 cases, with a special focus on hydroxychloroquine use and a review of the literature. J Neurol 259(7):1290–1297PubMedCrossRef
40.
go back to reference Hrycek A (2009) Systemic lupus erythematosus and myasthenia gravis. Pol Arch Med Wewn 119(9):582–585PubMed Hrycek A (2009) Systemic lupus erythematosus and myasthenia gravis. Pol Arch Med Wewn 119(9):582–585PubMed
41.
go back to reference Lee HT et al (2010) Serum BLC/CXCL13 concentrations and renal expression of CXCL13/CXCR5 in patients with systemic lupus erythematosus and lupus nephritis. J Rheumatol 37(1):45–52PubMedCrossRef Lee HT et al (2010) Serum BLC/CXCL13 concentrations and renal expression of CXCL13/CXCR5 in patients with systemic lupus erythematosus and lupus nephritis. J Rheumatol 37(1):45–52PubMedCrossRef
44.
go back to reference Bekircan-Kurt CE et al (2014) The course of myasthenia gravis with systemic lupus erythematosus. Eur Neurol 72(5–6):326–329PubMedCrossRef Bekircan-Kurt CE et al (2014) The course of myasthenia gravis with systemic lupus erythematosus. Eur Neurol 72(5–6):326–329PubMedCrossRef
45.
go back to reference Kakleas K et al (2015) Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM). Autoimmun Rev 14(9):781–797PubMedCrossRef Kakleas K et al (2015) Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM). Autoimmun Rev 14(9):781–797PubMedCrossRef
46.
go back to reference Viken MK et al (2007) Polymorphisms in the cathepsin L2 (CTSL2) gene show association with type 1 diabetes and early-onset myasthenia gravis. Hum Immunol 68(9):748–755PubMedCrossRef Viken MK et al (2007) Polymorphisms in the cathepsin L2 (CTSL2) gene show association with type 1 diabetes and early-onset myasthenia gravis. Hum Immunol 68(9):748–755PubMedCrossRef
47.
go back to reference Berrih-Aknin S (2014) Myasthenia gravis: paradox versus paradigm in autoimmunity. J Autoimmun 52:1–28PubMedCrossRef Berrih-Aknin S (2014) Myasthenia gravis: paradox versus paradigm in autoimmunity. J Autoimmun 52:1–28PubMedCrossRef
48.
go back to reference Toth C et al (2006) Acetylcholine receptor antibodies in myasthenia gravis are associated with greater risk of diabetes and thyroid disease. Acta Neurol Scand 114(2):124–132PubMedCrossRef Toth C et al (2006) Acetylcholine receptor antibodies in myasthenia gravis are associated with greater risk of diabetes and thyroid disease. Acta Neurol Scand 114(2):124–132PubMedCrossRef
Metadata
Title
Myasthenia gravis and five autoimmune diseases: a bidirectional Mendelian randomization study
Authors
Kailin Li
Yuzhen Ouyang
Huan Yang
Publication date
01-11-2023
Publisher
Springer International Publishing
Published in
Neurological Sciences / Issue 4/2024
Print ISSN: 1590-1874
Electronic ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-023-07163-3

Other articles of this Issue 4/2024

Neurological Sciences 4/2024 Go to the issue