Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2020

01-06-2020 | Multiple Sclerosis | Original Paper

Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis

Authors: Ghada Al-Kafaji, Halla F. Bakheit, Maram A. Alharbi, Ahmad A. Farahat, Mohamed Jailani, Bashayer H. Ebrahin, Moiz Bakhiet

Published in: NeuroMolecular Medicine | Issue 2/2020

Login to get access

Abstract

The impaired mitochondrial function has been implicated in the pathogenicity of multiple sclerosis (MS), a chronic inflammatory, demyelinating, and neurodegenerative disease of the CNS. Circulating mtDNA copy number in body fluids has been proposed as an indicator for several neurodegenerative diseases, and the altered cerebrospinal fluid mtDNA has been shown as a promising marker for MS. The aim of this study was to determine changes and biomarker potential of circulating mtDNA in peripheral blood in MS. The mtDNA copy number was quantified by real-time PCR in blood samples from 60 patients with relapsing–remitting MS (RRMS) and 64 healthy controls. The RRMS patients had significantly lower circulating mtDNA copy number compared to controls. Subgroup analysis with stratification of RRMS patients based on disease duration under or over 10 years revealed that the mtDNA copy number was significantly lower in the group with longer disease duration. A negative correlation was observed between mtDNA copy number and disease duration. The ROC curve analysis indicated a significant ability of mtDNA copy number to separate RRMS patients from controls with an AUC of 0.859. This is the first study to measure peripheral blood mtDNA copy number in MS patients. Current data suggest that the reduction in peripheral blood mtDNA copy number may be an early event in MS and correlate with the disease progression. The findings of this study indicate that circulating blood-based mtDNA copy number may be a potential non-invasive candidate biomarker for mitochondria-mediated neurodegeneration and MS. This can put forward the clinical applicability over other invasive markers.
Literature
go back to reference Al-Kafaji, G., & Golbahar, J. (2013). High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. BioMed Research International,2013, 754946.PubMedPubMedCentralCrossRef Al-Kafaji, G., & Golbahar, J. (2013). High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. BioMed Research International,2013, 754946.PubMedPubMedCentralCrossRef
go back to reference Al-Kafaji, G., Sabry, M. A., & Bakhiet, M. (2016a). Increased expression of mitochondrial DNA-encoded genes in human renal mesangial cells in response to high glucose-induced reactive oxygen species. Molecular Medicine Reports,13(2), 1774–1780.PubMedCrossRef Al-Kafaji, G., Sabry, M. A., & Bakhiet, M. (2016a). Increased expression of mitochondrial DNA-encoded genes in human renal mesangial cells in response to high glucose-induced reactive oxygen species. Molecular Medicine Reports,13(2), 1774–1780.PubMedCrossRef
go back to reference Al-Kafaji, G., Sabry, M. A., & Skrypnyk, C. (2016b). Time-course effect of high glucose-induced reactive oxygen species on mitochondrial biogenesis and function in human renal mesangial cells. Cell Biology International,40(1), 36–48.PubMedCrossRef Al-Kafaji, G., Sabry, M. A., & Skrypnyk, C. (2016b). Time-course effect of high glucose-induced reactive oxygen species on mitochondrial biogenesis and function in human renal mesangial cells. Cell Biology International,40(1), 36–48.PubMedCrossRef
go back to reference Al-Kafaji, G., AlJadaan, A., Kamal, A., & Bakhiet, M. (2018). Peripheral blood mitochondrial DNA copy number is a potential new biomarker for diabetic nephropathy in type 2 diabetes patients. Experimental and Therapeutic Medicine,16(2), 1483–1492.PubMedPubMedCentral Al-Kafaji, G., AlJadaan, A., Kamal, A., & Bakhiet, M. (2018). Peripheral blood mitochondrial DNA copy number is a potential new biomarker for diabetic nephropathy in type 2 diabetes patients. Experimental and Therapeutic Medicine,16(2), 1483–1492.PubMedPubMedCentral
go back to reference Andalib, S., Talebi, M., Sakhinia, E., Farhiudi, M., Sadeghi-Bazargani, H., Motavallian, A., et al. (2013). Multiple sclerosis and mitochondrial gene variations: A review. Journal of the Neurological Sciences,330(1–2), 10–15.PubMedCrossRef Andalib, S., Talebi, M., Sakhinia, E., Farhiudi, M., Sadeghi-Bazargani, H., Motavallian, A., et al. (2013). Multiple sclerosis and mitochondrial gene variations: A review. Journal of the Neurological Sciences,330(1–2), 10–15.PubMedCrossRef
go back to reference Blokhin, A., Vyshkina, T., Komoly, S., & Kalman, B. (2008). Variations in mitochondrial DNA copy numbers in MS brains. Journal of Molecular Neuroscience,35(3), 283–287.PubMedCrossRef Blokhin, A., Vyshkina, T., Komoly, S., & Kalman, B. (2008). Variations in mitochondrial DNA copy numbers in MS brains. Journal of Molecular Neuroscience,35(3), 283–287.PubMedCrossRef
go back to reference Bohr, V. A. (2002). Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radical Biology and Medicine,32(9), 804–812.PubMedCrossRef Bohr, V. A. (2002). Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radical Biology and Medicine,32(9), 804–812.PubMedCrossRef
go back to reference Campbell, G. R., Ziabreva, I., Reeve, A. K., Krishnan, K. J., Reynolds, R., Howell, O., et al. (2011). Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Annals of Neurology,69(3), 481–492.PubMedCrossRef Campbell, G. R., Ziabreva, I., Reeve, A. K., Krishnan, K. J., Reynolds, R., Howell, O., et al. (2011). Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Annals of Neurology,69(3), 481–492.PubMedCrossRef
go back to reference Cerqueira, J. J., Compston, D. A. S., Geraldes, R., Rosa, M. M., Schmierer, K., Thompson, A., et al. (2018). Time matters in multiple sclerosis: Can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? Journal of Neurology, Neurosurgery, and Psychiatry,89, 844–850.PubMedPubMedCentralCrossRef Cerqueira, J. J., Compston, D. A. S., Geraldes, R., Rosa, M. M., Schmierer, K., Thompson, A., et al. (2018). Time matters in multiple sclerosis: Can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? Journal of Neurology, Neurosurgery, and Psychiatry,89, 844–850.PubMedPubMedCentralCrossRef
go back to reference Chen, S., Li, Z., He, Y., Zhang, F., Li, H., Liao, Y., et al. (2015). Elevated mitochondrial DNA copy number in peripheral blood cells is associated with childhood autism. BMC Psychiatry,15, 50.PubMedPubMedCentralCrossRef Chen, S., Li, Z., He, Y., Zhang, F., Li, H., Liao, Y., et al. (2015). Elevated mitochondrial DNA copy number in peripheral blood cells is associated with childhood autism. BMC Psychiatry,15, 50.PubMedPubMedCentralCrossRef
go back to reference Clay-Montier, L. L., Deng, J. J., Bai, Y., et al. (2009). Number matters: Control of mammalian mitochondrial DNA copy number. Journal of Genetics and Genomics,36, 125–131.PubMedPubMedCentralCrossRef Clay-Montier, L. L., Deng, J. J., Bai, Y., et al. (2009). Number matters: Control of mammalian mitochondrial DNA copy number. Journal of Genetics and Genomics,36, 125–131.PubMedPubMedCentralCrossRef
go back to reference De Stefano, N., Stromillo, M. L., Giorgio, A., Bartolozzi, M. L., Battaglini, M., Baldini, M., et al. (2016). Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry,87, 93–99.PubMedCrossRef De Stefano, N., Stromillo, M. L., Giorgio, A., Bartolozzi, M. L., Battaglini, M., Baldini, M., et al. (2016). Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry,87, 93–99.PubMedCrossRef
go back to reference Delbarba, A., Abate, G., Prandelli, C., Marziano, M., Buizza, L., Varas, N. A., et al. (2016). Mitochondrial Alterations in peripheral mononuclear blood cells from Alzheimer’s disease and mild cognitive impairment patients. Oxidative Medicine and Cellular Longevity,2016, 5923938.PubMedPubMedCentralCrossRef Delbarba, A., Abate, G., Prandelli, C., Marziano, M., Buizza, L., Varas, N. A., et al. (2016). Mitochondrial Alterations in peripheral mononuclear blood cells from Alzheimer’s disease and mild cognitive impairment patients. Oxidative Medicine and Cellular Longevity,2016, 5923938.PubMedPubMedCentralCrossRef
go back to reference Dutta, R., McDonough, J., Yin, X., Peterson, J., Chang, A., Torres, T., et al. (2006). Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology,59, 478–489.PubMedCrossRef Dutta, R., McDonough, J., Yin, X., Peterson, J., Chang, A., Torres, T., et al. (2006). Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology,59, 478–489.PubMedCrossRef
go back to reference Errea, O., Moreno, B., Conzalez-Franquesa, A., Garcia-Roves, P. M., & Villoslada, P. (2015). The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation,12, 152.PubMedPubMedCentralCrossRef Errea, O., Moreno, B., Conzalez-Franquesa, A., Garcia-Roves, P. M., & Villoslada, P. (2015). The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation,12, 152.PubMedPubMedCentralCrossRef
go back to reference Franco-Iborra, S., Vila, M., & Perier, C. (2018). Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson's disease and Huntington's disease. Frontiers in Neuroscience,12, 342.PubMedPubMedCentralCrossRef Franco-Iborra, S., Vila, M., & Perier, C. (2018). Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson's disease and Huntington's disease. Frontiers in Neuroscience,12, 342.PubMedPubMedCentralCrossRef
go back to reference Garcia, I., Jones, E., Ramos, M., Innis-Whitehouse, W., & Gilkerson, R. (2017). The little big genome: The organization of mitochondrial DNA. Frontiers in Bioscience,22, 710–721.CrossRef Garcia, I., Jones, E., Ramos, M., Innis-Whitehouse, W., & Gilkerson, R. (2017). The little big genome: The organization of mitochondrial DNA. Frontiers in Bioscience,22, 710–721.CrossRef
go back to reference Grunewald, A., Rygiel, K. A., Hepplewhite, P. D., Morris, C. M., Picard, M., Hom, D., et al. (2016). Mitochondrial DNA depletion in respiratory chain–deficient Parkinson disease neurons. Annals of Neurology,79(3), 366–378.PubMedPubMedCentralCrossRef Grunewald, A., Rygiel, K. A., Hepplewhite, P. D., Morris, C. M., Picard, M., Hom, D., et al. (2016). Mitochondrial DNA depletion in respiratory chain–deficient Parkinson disease neurons. Annals of Neurology,79(3), 366–378.PubMedPubMedCentralCrossRef
go back to reference Hampel, H., O’Bryant, S. E., Molinuevo, J. L., Zetterberg, H., Masters, C. L., Lista, S., et al. (2018). Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nature Reviews Neurology,14(11), 639–652.PubMedPubMedCentralCrossRef Hampel, H., O’Bryant, S. E., Molinuevo, J. L., Zetterberg, H., Masters, C. L., Lista, S., et al. (2018). Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nature Reviews Neurology,14(11), 639–652.PubMedPubMedCentralCrossRef
go back to reference Harris, V. K., Tuddenham, J. F., & Sadiq, S. A. (2017). Biomarkers of multiple sclerosis: Current findings. Degenerative Neurological and Neuromuscular Disease,7, 19–29.PubMedPubMedCentralCrossRef Harris, V. K., Tuddenham, J. F., & Sadiq, S. A. (2017). Biomarkers of multiple sclerosis: Current findings. Degenerative Neurological and Neuromuscular Disease,7, 19–29.PubMedPubMedCentralCrossRef
go back to reference Hernandez-Pedro, N. Y., Espinosa-Ramirez, G., de la Cruz, V. P., Pineda, B., & Sotelo, J. (2013). Initial immunopathogenesis of multiple sclerosis: Innate immune response. Clinical & Developmental Immunology,2013, 413465.CrossRef Hernandez-Pedro, N. Y., Espinosa-Ramirez, G., de la Cruz, V. P., Pineda, B., & Sotelo, J. (2013). Initial immunopathogenesis of multiple sclerosis: Innate immune response. Clinical & Developmental Immunology,2013, 413465.CrossRef
go back to reference Hu, L., Yao, X., & Shen, Y. (2016). Altered mitochondrial DNA copy number contributes to human cancer risk: Evidence from an updated meta-analysis. Scientific Reports,6, 35859.PubMedPubMedCentralCrossRef Hu, L., Yao, X., & Shen, Y. (2016). Altered mitochondrial DNA copy number contributes to human cancer risk: Evidence from an updated meta-analysis. Scientific Reports,6, 35859.PubMedPubMedCentralCrossRef
go back to reference Hulgan, T., Kallianpur, A. R., Guo, Y., Barnholtz, J. S., Gittleman, H., Brown, T. T., et al. (2019). Peripheral blood mitochondrial DNA copy number obtained from genome-wide genotype data is associated with neurocognitive impairment in persons with chronic HIV infection. Journal of Acquired Immune Deficiency Syndromes,80(4), e95–e102.PubMedCrossRef Hulgan, T., Kallianpur, A. R., Guo, Y., Barnholtz, J. S., Gittleman, H., Brown, T. T., et al. (2019). Peripheral blood mitochondrial DNA copy number obtained from genome-wide genotype data is associated with neurocognitive impairment in persons with chronic HIV infection. Journal of Acquired Immune Deficiency Syndromes,80(4), e95–e102.PubMedCrossRef
go back to reference Hurtado-Roca, Y., Ledesma, M., Gonzalez-Lazaro, M., Moreno-Loshuertos, R., Fernandez-Silva, P., Enriquez, J. A., et al. (2016). Adjusting mtDNA quantification in whole blood for peripheral blood platelet and leukocyte counts. PLoS ONE,11(10), e0163770.PubMedPubMedCentralCrossRef Hurtado-Roca, Y., Ledesma, M., Gonzalez-Lazaro, M., Moreno-Loshuertos, R., Fernandez-Silva, P., Enriquez, J. A., et al. (2016). Adjusting mtDNA quantification in whole blood for peripheral blood platelet and leukocyte counts. PLoS ONE,11(10), e0163770.PubMedPubMedCentralCrossRef
go back to reference Ide, T., Tsutsu, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research,88, 529–535.PubMedCrossRef Ide, T., Tsutsu, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research,88, 529–535.PubMedCrossRef
go back to reference Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. Journal of Pharmacology and Experimental Therapeutics,342(3), 619–630.PubMedCrossRef Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. Journal of Pharmacology and Experimental Therapeutics,342(3), 619–630.PubMedCrossRef
go back to reference Kilbaugh, T. J., Lvova, M., Karlsson, M., Zhang, Z., Leipzig, J., Wallace, D. C., et al. (2015). Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. PLoS ONE,10(6), e0130927.PubMedPubMedCentralCrossRef Kilbaugh, T. J., Lvova, M., Karlsson, M., Zhang, Z., Leipzig, J., Wallace, D. C., et al. (2015). Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. PLoS ONE,10(6), e0130927.PubMedPubMedCentralCrossRef
go back to reference Lee, H. C., & Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. The International Journal of Biochemistry & Cell Biology,37, 822–834.CrossRef Lee, H. C., & Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. The International Journal of Biochemistry & Cell Biology,37, 822–834.CrossRef
go back to reference Lee, H., Song, J. H., Shine, C. S., Park, D. J., Park, K. S., Lee, K. U., et al. (1998). Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Research and Clinical Practice,42, 161–167.PubMedCrossRef Lee, H., Song, J. H., Shine, C. S., Park, D. J., Park, K. S., Lee, K. U., et al. (1998). Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Research and Clinical Practice,42, 161–167.PubMedCrossRef
go back to reference Leurs, C. E., Podlesniy, P., Trullas, R., Balk, L., Steenwijk, M. D., Malekzadeh, A., et al. (2018). Cerebrospinal fluid mtDNA concentration is elevated in multiple sclerosis disease and responds to treatment. Multiple Sclerosis Journal,24(4), 472–480.PubMedCrossRef Leurs, C. E., Podlesniy, P., Trullas, R., Balk, L., Steenwijk, M. D., Malekzadeh, A., et al. (2018). Cerebrospinal fluid mtDNA concentration is elevated in multiple sclerosis disease and responds to treatment. Multiple Sclerosis Journal,24(4), 472–480.PubMedCrossRef
go back to reference Lowes, H., Pyle, A., Duddy, M., & Hudson, G. (2008). Cell-free mitochondrial DNA in progressive multiple sclerosis. Journal of Molecular Neuroscience,35(3), 283–287.CrossRef Lowes, H., Pyle, A., Duddy, M., & Hudson, G. (2008). Cell-free mitochondrial DNA in progressive multiple sclerosis. Journal of Molecular Neuroscience,35(3), 283–287.CrossRef
go back to reference Mahad, D., Lassmann, H., & Turnbull, D. (2008). Review: Mitochondria and disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology,34, 577–589.PubMedPubMedCentralCrossRef Mahad, D., Lassmann, H., & Turnbull, D. (2008). Review: Mitochondria and disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology,34, 577–589.PubMedPubMedCentralCrossRef
go back to reference Manuelidis, L. (2011). Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. The Journal of NeuroVirology,17, 131–145.PubMedCrossRef Manuelidis, L. (2011). Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. The Journal of NeuroVirology,17, 131–145.PubMedCrossRef
go back to reference Mao, P., & Reddy, P. H. (2010). Is multiple sclerosis a mitochondrial disease? Biochimica et Biophysica Acta,1802, 66–79.PubMedCrossRef Mao, P., & Reddy, P. H. (2010). Is multiple sclerosis a mitochondrial disease? Biochimica et Biophysica Acta,1802, 66–79.PubMedCrossRef
go back to reference Morais, V. A., & De Strooper, B. (2010). Mitochondria dysfunction and neurodegenerative disorders: Cause or consequence. Journal of Alzheimer's Disease,20, S255–S263.PubMedCrossRef Morais, V. A., & De Strooper, B. (2010). Mitochondria dysfunction and neurodegenerative disorders: Cause or consequence. Journal of Alzheimer's Disease,20, S255–S263.PubMedCrossRef
go back to reference Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G. (2000). Multiple sclerosis. The New England Journal of Medicine,343, 938–952.PubMedCrossRef Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G. (2000). Multiple sclerosis. The New England Journal of Medicine,343, 938–952.PubMedCrossRef
go back to reference O'Gorman, C., Lucas, R., & Taylor, B. (2012). Environmental risk factors for multiple sclerosis: A review with a focus on molecular mechanisms. International Journal of Molecular Sciences,13(9), 11718–11752.PubMedPubMedCentralCrossRef O'Gorman, C., Lucas, R., & Taylor, B. (2012). Environmental risk factors for multiple sclerosis: A review with a focus on molecular mechanisms. International Journal of Molecular Sciences,13(9), 11718–11752.PubMedPubMedCentralCrossRef
go back to reference Petersen, M. H., Budtz-Jorgensen, E., Sorensen, S. A., Nielsen, J. E., Hjermind, L. E., Vinther-Jensen, T., et al. (2014). Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease. Mitochondrion,17, 14–21.PubMedCrossRef Petersen, M. H., Budtz-Jorgensen, E., Sorensen, S. A., Nielsen, J. E., Hjermind, L. E., Vinther-Jensen, T., et al. (2014). Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease. Mitochondrion,17, 14–21.PubMedCrossRef
go back to reference Podlesniy, P., Figueiro-Silva, J., Llado, A., Sanchez-Valle, R., Alcolea, D., et al. (2013). Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Annals of Neurology,74(5), 655–668.PubMedCrossRef Podlesniy, P., Figueiro-Silva, J., Llado, A., Sanchez-Valle, R., Alcolea, D., et al. (2013). Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Annals of Neurology,74(5), 655–668.PubMedCrossRef
go back to reference Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology,69(2), 292–302.PubMedPubMedCentralCrossRef Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology,69(2), 292–302.PubMedPubMedCentralCrossRef
go back to reference Pyle, A., Brennan, R., Kurzawa-Akanbi, M., Yarnall, A., Thouin, A., Mollenhauer, B., et al. (2015). Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early stage Parkinson's disease. Annals of Neurology,78(6), 1000–1004.PubMedPubMedCentralCrossRef Pyle, A., Brennan, R., Kurzawa-Akanbi, M., Yarnall, A., Thouin, A., Mollenhauer, B., et al. (2015). Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early stage Parkinson's disease. Annals of Neurology,78(6), 1000–1004.PubMedPubMedCentralCrossRef
go back to reference Pyle, A., Anugrha, H., Kurzawa-Akanbi, M., Yarnall, A., Burn, D., & Hudson, G. (2016). Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease. Neurobiology Aging,38, 216.e7–216.e10.CrossRef Pyle, A., Anugrha, H., Kurzawa-Akanbi, M., Yarnall, A., Burn, D., & Hudson, G. (2016). Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease. Neurobiology Aging,38, 216.e7–216.e10.CrossRef
go back to reference Rice, A. C., Keeney, P. M., Algarzae, N. K., Ladd, A. C., Thomas, R. R., & Bennett, J. P., Jr. (2014). Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer's disease hippocampi. Journal of Alzheimer's Disease,40, 319–330.PubMedCrossRef Rice, A. C., Keeney, P. M., Algarzae, N. K., Ladd, A. C., Thomas, R. R., & Bennett, J. P., Jr. (2014). Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer's disease hippocampi. Journal of Alzheimer's Disease,40, 319–330.PubMedCrossRef
go back to reference Rodriguez-Santiago, B., Casademont, J., & Nunes, V. (2001). Is mitochondrial DNA depletion involved in Alzheimer's disease? European Journal of Human Genetics,9, 279–285.PubMedCrossRef Rodriguez-Santiago, B., Casademont, J., & Nunes, V. (2001). Is mitochondrial DNA depletion involved in Alzheimer's disease? European Journal of Human Genetics,9, 279–285.PubMedCrossRef
go back to reference Satoh, M., & Kuroiwa, T. (1991). Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Experimental Cell Research,196, 137–140.PubMedCrossRef Satoh, M., & Kuroiwa, T. (1991). Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Experimental Cell Research,196, 137–140.PubMedCrossRef
go back to reference Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer,11, 426–437.PubMedCrossRef Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer,11, 426–437.PubMedCrossRef
go back to reference Shen, J., Gopalakrishnan, V., Lee, J. E., Fang, S., & Zhao, H. (2015). Mitochondrial DNA copy number in peripheral blood and melanoma risk. PLoS ONE,10(6), e0131649.PubMedPubMedCentralCrossRef Shen, J., Gopalakrishnan, V., Lee, J. E., Fang, S., & Zhao, H. (2015). Mitochondrial DNA copy number in peripheral blood and melanoma risk. PLoS ONE,10(6), e0131649.PubMedPubMedCentralCrossRef
go back to reference Silzer, T., Barber, R., Sun, J., Pathak, G., Johnson, L., O’Bryant, S., et al. (2019). Circulating mitochondrial DNA: New indices of type 2 diabetes-related cognitive impairment in Mexican Americans. PLoS ONE,14(3), e0213527.PubMedPubMedCentralCrossRef Silzer, T., Barber, R., Sun, J., Pathak, G., Johnson, L., O’Bryant, S., et al. (2019). Circulating mitochondrial DNA: New indices of type 2 diabetes-related cognitive impairment in Mexican Americans. PLoS ONE,14(3), e0213527.PubMedPubMedCentralCrossRef
go back to reference Song, J., Oh, J. Y., Sung, Y.-A., Pak, Y. K., Park, K. S., & Lee, H. K. (2001). Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care,24(5), 865–869.PubMedCrossRef Song, J., Oh, J. Y., Sung, Y.-A., Pak, Y. K., Park, K. S., & Lee, H. K. (2001). Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care,24(5), 865–869.PubMedCrossRef
go back to reference Trojano, M., Paolicelli, D., Bellacosa, A., & Cataldo, S. (2003). The transition from relapsing–remitting MS to irreversible disability: Clinical evaluation. Neurological Sciences,24(Suppl. 5), S268–S270.PubMedCrossRef Trojano, M., Paolicelli, D., Bellacosa, A., & Cataldo, S. (2003). The transition from relapsing–remitting MS to irreversible disability: Clinical evaluation. Neurological Sciences,24(Suppl. 5), S268–S270.PubMedCrossRef
go back to reference Tsujii, N., Otsuka, I., Okazaki, S., Yanagi, M., Numata, S., Yamaki, N., et al. (2019). Mitochondrial DNA copy number raises the potential of left frontopolar hemodynamic response as a diagnostic marker for distinguishing bipolar disorder from major depressive disorder. Frontiers in Psychiatry,8(10), 312.CrossRef Tsujii, N., Otsuka, I., Okazaki, S., Yanagi, M., Numata, S., Yamaki, N., et al. (2019). Mitochondrial DNA copy number raises the potential of left frontopolar hemodynamic response as a diagnostic marker for distinguishing bipolar disorder from major depressive disorder. Frontiers in Psychiatry,8(10), 312.CrossRef
go back to reference Weinshenker, B. G., Bass, B., Rice, G. P., Noseworthy, J., Carriere, W., Baskerville, J., et al. (1989). The natural history of multiple sclerosis: A geographically based study I. Clinical course and disability. Brain,112(Pt 1), 133–146.PubMedCrossRef Weinshenker, B. G., Bass, B., Rice, G. P., Noseworthy, J., Carriere, W., Baskerville, J., et al. (1989). The natural history of multiple sclerosis: A geographically based study I. Clinical course and disability. Brain,112(Pt 1), 133–146.PubMedCrossRef
go back to reference Xia, P., An, H. X., Dang, C. X., Radpour, R., Kohler, C., Fokas, E., et al. (2009). Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer. BMC Cancer,9, 454.PubMedPubMedCentralCrossRef Xia, P., An, H. X., Dang, C. X., Radpour, R., Kohler, C., Fokas, E., et al. (2009). Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer. BMC Cancer,9, 454.PubMedPubMedCentralCrossRef
go back to reference Xia, C.-Y., Liu, Y., Yang, H. R., Yang, H. Y., Liu, J. X., & Qi, Y. (2017). Reference intervals of mitochondrial DNA copy number in peripheral blood for Chinese minors and adults. Chinese Medical Journal,130(20), 2435–2440.PubMedPubMedCentralCrossRef Xia, C.-Y., Liu, Y., Yang, H. R., Yang, H. Y., Liu, J. X., & Qi, Y. (2017). Reference intervals of mitochondrial DNA copy number in peripheral blood for Chinese minors and adults. Chinese Medical Journal,130(20), 2435–2440.PubMedPubMedCentralCrossRef
go back to reference Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., et al. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature,464, 104–107.PubMedPubMedCentralCrossRef Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., et al. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature,464, 104–107.PubMedPubMedCentralCrossRef
go back to reference Zhao, H., Chang, D., Ye, Y., Shen, J., Chow, W., Wu, X., et al. (2018). Associations of blood mitochondrial DNA copy number with social-demographics and cancer risk: Results from the Mano-AMano Mexican American Cohort. Oncotarget,9(39), 2549–25502.CrossRef Zhao, H., Chang, D., Ye, Y., Shen, J., Chow, W., Wu, X., et al. (2018). Associations of blood mitochondrial DNA copy number with social-demographics and cancer risk: Results from the Mano-AMano Mexican American Cohort. Oncotarget,9(39), 2549–25502.CrossRef
go back to reference Zuvich, R. L., McCauley, J. L., Pericak-Vance, M. A., & Haines, J. L. (2009). Genetics and pathogenesis of multiple sclerosis. Seminars in Immunology,21(6), 328–333.PubMedPubMedCentralCrossRef Zuvich, R. L., McCauley, J. L., Pericak-Vance, M. A., & Haines, J. L. (2009). Genetics and pathogenesis of multiple sclerosis. Seminars in Immunology,21(6), 328–333.PubMedPubMedCentralCrossRef
Metadata
Title
Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis
Authors
Ghada Al-Kafaji
Halla F. Bakheit
Maram A. Alharbi
Ahmad A. Farahat
Mohamed Jailani
Bashayer H. Ebrahin
Moiz Bakhiet
Publication date
01-06-2020
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2020
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-019-08588-w

Other articles of this Issue 2/2020

NeuroMolecular Medicine 2/2020 Go to the issue