Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2020

01-06-2020 | Autism Spectrum Disorder | Original Paper

Disregulation of Autophagy in the Transgenerational Cc2d1a Mouse Model of Autism

Authors: Halime Dana, Keziban Korkmaz Bayramov, Nesrin Delibaşı, Reyhan Tahtasakal, Ruslan Bayramov, Zuhal Hamurcu, Elif Funda Sener

Published in: NeuroMolecular Medicine | Issue 2/2020

Login to get access

Abstract

Autism spectrum disorder (ASD) is a heterogeneously childhood neurodevelopmental disorder, believed to be under development of various genetic and environmental factors. Autophagy and related pathways have also been implicated in the etiology of ASD. We aimed to investigate autophagic markers by generating the transgenerational inheritance of ASD-like behaviors in the Cc2d1a animal model of ASD. Cc2d1a (+/−) mouse model of ASD was built in two different groups by following three generations. After behavior test, bilateral hippocampus was sliced. Western Blot assay and quantitative real-time polymerase chain reaction (QRT-PCR) were used for measurement of LC3 and Beclin-1 as key regulators of autophagy. All of the animal and laboratory studies were conducted in the Erciyes University Genome and Stem Cell Center (GENKOK). Significant LC3 and Beclin-1 mRNA expression levels were observed in mouse hippocampus between groups and generations. Western blot confirmed the changes of the proteins in the hippocampus. LC3 expressions were increased for females and decreased for males compared to the control group. Beclin-1 expression levels were found to be significantly decreased in males and females compared to controls. This study could help explain a new pathway of autophagy in ASD mouse models. Future animal studies need to investigate sex differences in mouse modeling autism-relevant genes like CC2D1A. We anticipate our results to be a starting point for more comprehensive autophagy studies in this mouse model of ASD.
Appendix
Available only for authorised users
Literature
go back to reference Al-Tawashi, A., Jung, S. Y., Liu, D., Su, B., & Qin, J. (2012). Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity. Journal of Biological Chemistry,287(18), 14644–14658.CrossRef Al-Tawashi, A., Jung, S. Y., Liu, D., Su, B., & Qin, J. (2012). Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity. Journal of Biological Chemistry,287(18), 14644–14658.CrossRef
go back to reference Basel-Vanagaite, L., Attia, R., Yahav, M., Ferland, R. J., Anteki, L., Walsh, C. A., et al. (2006). The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. Journal of Medical Genetics,43(3), 203–210.CrossRef Basel-Vanagaite, L., Attia, R., Yahav, M., Ferland, R. J., Anteki, L., Walsh, C. A., et al. (2006). The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. Journal of Medical Genetics,43(3), 203–210.CrossRef
go back to reference Bowling, H., & Klann, E. (2014). Shaping dendritic spines in autism spectrum disorder: mTORC1 dependent macroautophagy. Neuron,83(5), 994–996.CrossRef Bowling, H., & Klann, E. (2014). Shaping dendritic spines in autism spectrum disorder: mTORC1 dependent macroautophagy. Neuron,83(5), 994–996.CrossRef
go back to reference Bowling, H., Zhang, G., Bhattacharya, A., Pérez-Cuesta, L. M., Deinhardt, K., Hoeffer, C. A., et al. (2014). Antipsychotics activate mTORC1-dependent translation to enhance neuronal morphological complexity. Science Signaling,7(308), ra4.CrossRef Bowling, H., Zhang, G., Bhattacharya, A., Pérez-Cuesta, L. M., Deinhardt, K., Hoeffer, C. A., et al. (2014). Antipsychotics activate mTORC1-dependent translation to enhance neuronal morphological complexity. Science Signaling,7(308), ra4.CrossRef
go back to reference Costa, L., Amaral, C., Teixeira, N., et al. (2015). Cannabinoid-induced autophagy:protective or death role? Prostaglandins Other Lipid Mediators,2, 54–63. Costa, L., Amaral, C., Teixeira, N., et al. (2015). Cannabinoid-induced autophagy:protective or death role? Prostaglandins Other Lipid Mediators,2, 54–63.
go back to reference Drusenheimer, N., Migdal, B., Jäckel, S., Tveriakhina, L., Scheider, K., Schulz, K., et al. (2015). The mammalian orthologs of drosophila Lgd, CC2D1A and CC2D1B, function in the endocytic pathway, but their individual loss of function does not affect notch signalling. PLoS Genetics,11(12), e1005749.CrossRef Drusenheimer, N., Migdal, B., Jäckel, S., Tveriakhina, L., Scheider, K., Schulz, K., et al. (2015). The mammalian orthologs of drosophila Lgd, CC2D1A and CC2D1B, function in the endocytic pathway, but their individual loss of function does not affect notch signalling. PLoS Genetics,11(12), e1005749.CrossRef
go back to reference Hamurcu, Z., Ashour, A., Kahraman, N., & Ozpolat, B. (2016). FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget,7(13), 16619–16635.CrossRef Hamurcu, Z., Ashour, A., Kahraman, N., & Ozpolat, B. (2016). FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells. Oncotarget,7(13), 16619–16635.CrossRef
go back to reference Hamurcu, Z., Delibaşı, N., Geçene, S., Şener, E. F., Dönmez-Altuntaş, H., Özkul, Y., et al. (2018). Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. Journal of Cancer Research and Clinical Oncology,144(3), 415–430.CrossRef Hamurcu, Z., Delibaşı, N., Geçene, S., Şener, E. F., Dönmez-Altuntaş, H., Özkul, Y., et al. (2018). Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/Src signaling in triple negative breast cancer cells. Journal of Cancer Research and Clinical Oncology,144(3), 415–430.CrossRef
go back to reference Hutsler, J. J., & Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Research,1309, 83–94.CrossRef Hutsler, J. J., & Zhang, H. (2010). Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Research,1309, 83–94.CrossRef
go back to reference Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death and Differentiation,18(4), 571–580.CrossRef Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death and Differentiation,18(4), 571–580.CrossRef
go back to reference Kim, H. J., Cho, M. H., Shim, W. H., Kim, J. K., Jeon, E. Y., Kim, D. H., et al. (2017). Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Molecular Psychiatry,22(11), 1576–1584.CrossRef Kim, H. J., Cho, M. H., Shim, W. H., Kim, J. K., Jeon, E. Y., Kim, D. H., et al. (2017). Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Molecular Psychiatry,22(11), 1576–1584.CrossRef
go back to reference Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron,50, 377–388.CrossRef Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron,50, 377–388.CrossRef
go back to reference Lai, M. C., Lerch, J. P., Floris, D. L., Ruigrok, A. N., Pohl, A., Lombardo, M. V., et al. (2017). Imaging sex/gender and autism in the brain: Etiological implications. Journal of Neuroscience Research,95(1–2), 380–397.CrossRef Lai, M. C., Lerch, J. P., Floris, D. L., Ruigrok, A. N., Pohl, A., Lombardo, M. V., et al. (2017). Imaging sex/gender and autism in the brain: Etiological implications. Journal of Neuroscience Research,95(1–2), 380–397.CrossRef
go back to reference Lee, K. M., Hwang, S. K., & Lee, J. A. (2013). Neuronal autophagy and neurodevelopmental disorders. Experimental Neurobiology,22(3), 133–142.CrossRef Lee, K. M., Hwang, S. K., & Lee, J. A. (2013). Neuronal autophagy and neurodevelopmental disorders. Experimental Neurobiology,22(3), 133–142.CrossRef
go back to reference Majumdar, D., Nebhan, C. A., Hu, L., Anderson, B., & Webb, D. J. (2011). An APPL1/Akt signaling complex regulates dendritic spine and synapse formation in hippocampal neurons. Molecular and Cellular Neuroscience,46, 633–644.CrossRef Majumdar, D., Nebhan, C. A., Hu, L., Anderson, B., & Webb, D. J. (2011). An APPL1/Akt signaling complex regulates dendritic spine and synapse formation in hippocampal neurons. Molecular and Cellular Neuroscience,46, 633–644.CrossRef
go back to reference Nicolini, C., & Fahnestock, M. (2018). The valproic acid-induced rodent model of autism. Experimental Neurology,299(Pt A), 217–227.CrossRef Nicolini, C., & Fahnestock, M. (2018). The valproic acid-induced rodent model of autism. Experimental Neurology,299(Pt A), 217–227.CrossRef
go back to reference Oaks, A. W., Zamarbide, M., Tambunan, D. E., Santini, E., Di Costanzo, S., Pond, H. L., et al. (2017). Cc2d1a loss of function disrupts functional and morphological development in forebrain neurons leading to cognitive and social deficits. Cerebral Cortex,27(2), 1670–1685.CrossRef Oaks, A. W., Zamarbide, M., Tambunan, D. E., Santini, E., Di Costanzo, S., Pond, H. L., et al. (2017). Cc2d1a loss of function disrupts functional and morphological development in forebrain neurons leading to cognitive and social deficits. Cerebral Cortex,27(2), 1670–1685.CrossRef
go back to reference Poultney, C. S., Goldberg, A. P., Drapeau, E., et al. (2013). Identification of small exonic CNV from whole-exome sequence data and application to autism spectrumdisorder. American Journal of Human Genetics,93(4), 607–619.CrossRef Poultney, C. S., Goldberg, A. P., Drapeau, E., et al. (2013). Identification of small exonic CNV from whole-exome sequence data and application to autism spectrumdisorder. American Journal of Human Genetics,93(4), 607–619.CrossRef
go back to reference Qin, L., Dai, X., & Yin, Y. (2016). Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Molecular and Cellular Neuroscience,75, 27–35.CrossRef Qin, L., Dai, X., & Yin, Y. (2016). Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Molecular and Cellular Neuroscience,75, 27–35.CrossRef
go back to reference Rubinsztein, D. C., Codogno, P., & Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery,11, 709–730.CrossRef Rubinsztein, D. C., Codogno, P., & Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery,11, 709–730.CrossRef
go back to reference Salminen, A., Kaarniranta, K., Kauppinen, A., Ojala, J., Haapasalo, A., Soininen, H., et al. (2013). Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Progress in Neurobiology,106–107, 33–54.CrossRef Salminen, A., Kaarniranta, K., Kauppinen, A., Ojala, J., Haapasalo, A., Soininen, H., et al. (2013). Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Progress in Neurobiology,106–107, 33–54.CrossRef
go back to reference Sener, E. F., Canatan, H., & Ozkul, Y. (2016a). Recent advances in autism spectrum disorders: Applications of whole exome sequencing technology. Psychiatry Investigation,13(3), 255–264.CrossRef Sener, E. F., Canatan, H., & Ozkul, Y. (2016a). Recent advances in autism spectrum disorders: Applications of whole exome sequencing technology. Psychiatry Investigation,13(3), 255–264.CrossRef
go back to reference Sener, E. F., Cıkılı Uytun, M., Korkmaz Bayramov, K., Zararsiz, G., Oztop, D. B., Canatan, H., et al. (2016b). The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metabolic Brain Disease,31(3), 613–619.CrossRef Sener, E. F., Cıkılı Uytun, M., Korkmaz Bayramov, K., Zararsiz, G., Oztop, D. B., Canatan, H., et al. (2016b). The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metabolic Brain Disease,31(3), 613–619.CrossRef
go back to reference Tang, G., Gudsnuk, K., Kuo, S. H., Cotrina, M. L., Rosoklija, G., Sosunov, A., et al. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron,83, 1–13.CrossRef Tang, G., Gudsnuk, K., Kuo, S. H., Cotrina, M. L., Rosoklija, G., Sosunov, A., et al. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron,83, 1–13.CrossRef
go back to reference Wang, Z. Z., Zhang, Y., Liu, Y. Q., Zhao, N., Zhang, Y. Z., Yuan, L., et al. (2013). RNA Interference mediated phosphodiesterase 4D splice variants knockdown in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. British Journal of Pharmacology,168, 1001–1014.CrossRef Wang, Z. Z., Zhang, Y., Liu, Y. Q., Zhao, N., Zhang, Y. Z., Yuan, L., et al. (2013). RNA Interference mediated phosphodiesterase 4D splice variants knockdown in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. British Journal of Pharmacology,168, 1001–1014.CrossRef
go back to reference Wong, E., & Cuervo, A. M. (2010). Autophagy gone awry in neurodegenerative diseases. Nature Neuroscience,13(7), 805–811.CrossRef Wong, E., & Cuervo, A. M. (2010). Autophagy gone awry in neurodegenerative diseases. Nature Neuroscience,13(7), 805–811.CrossRef
go back to reference Yoon, S. Y., Choi, J. E., Kweon, H. S., Choe, H., Kim, S. W., Hwang, O., et al. (2008). Okadaic acid increases autophagosomes in rat neurons: Implications for Alzheimer’s disease. Journal of Neuroscience Research,86(14), 3230–3239.CrossRef Yoon, S. Y., Choi, J. E., Kweon, H. S., Choe, H., Kim, S. W., Hwang, O., et al. (2008). Okadaic acid increases autophagosomes in rat neurons: Implications for Alzheimer’s disease. Journal of Neuroscience Research,86(14), 3230–3239.CrossRef
go back to reference Zhang, J., Zhang, J. X., & Zhang, Q. L. (2016). PI3 K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder. Brain Research Bulletin,125, 152–158.CrossRef Zhang, J., Zhang, J. X., & Zhang, Q. L. (2016). PI3 K/AKT/mTOR-mediated autophagy in the development of autism spectrum disorder. Brain Research Bulletin,125, 152–158.CrossRef
go back to reference Zhao, M., Raingo, J., Chen, Z. J., & Kavalali, E. T. (2011). Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. Journal of Neurophysiology,105(4), 1506–1515.CrossRef Zhao, M., Raingo, J., Chen, Z. J., & Kavalali, E. T. (2011). Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. Journal of Neurophysiology,105(4), 1506–1515.CrossRef
go back to reference Zoghbi, H. Y., & Bear, M. F. (2012). Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harbor Perspectives in Biology,4(3), a009886.CrossRef Zoghbi, H. Y., & Bear, M. F. (2012). Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harbor Perspectives in Biology,4(3), a009886.CrossRef
Metadata
Title
Disregulation of Autophagy in the Transgenerational Cc2d1a Mouse Model of Autism
Authors
Halime Dana
Keziban Korkmaz Bayramov
Nesrin Delibaşı
Reyhan Tahtasakal
Ruslan Bayramov
Zuhal Hamurcu
Elif Funda Sener
Publication date
01-06-2020
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2020
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-019-08579-x

Other articles of this Issue 2/2020

NeuroMolecular Medicine 2/2020 Go to the issue