Skip to main content
Top
Published in: Diabetologia 9/2016

01-09-2016 | Mini-Review

MST1: a promising therapeutic target to restore functional beta cell mass in diabetes

Authors: Amin Ardestani, Kathrin Maedler

Published in: Diabetologia | Issue 9/2016

Login to get access

Abstract

The loss of insulin-producing beta cells by apoptosis is a hallmark of all forms of diabetes mellitus. Strategies to prevent beta cell apoptosis and dysfunction are urgently needed to restore the insulin-producing cells and to prevent severe diabetes progression. We recently identified the serine/threonine kinase known as mammalian sterile 20-like kinase 1 (MST1) as a critical regulator of apoptotic beta cell death and dysfunction. MST1 activates several apoptotic signalling pathways, which further stimulate its own cleavage, leading to a vicious cycle of cell death. This led us to hypothesise that MST1 signalling is central to the initiation of beta cell death in diabetes. We found that MST1 is strongly activated in a diabetic beta cell and induces not only its death but also directly impairs insulin secretion through promoting proteasomal degradation of key beta cell transcription factor, pancreatic and duodenal homeobox 1 (PDX1), which is critical for insulin production.
Pre-clinical studies in various animal models of diabetes have reported that MST1 deficiency remarkably restores normoglycaemia and beta cell function and prevents the development of diabetes. Importantly, MST1 deficiency can revert fully diabetic beta cells to a non-diabetic state. MST1 may serve as a target for the development of novel therapies for diabetes that trigger the cause of the disease, namely, the destruction of the beta cells. The major current focus of our investigation is to identify and test the efficacy of potent inhibitors of this death signalling pathway to protect beta cells against the effects of autoimmune attack in type 1 diabetes and to preserve beta cell mass and function in type 2 diabetes. This review summarises a presentation given at the ‘Can we make a better beta cell?’ symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Heiko Lickert and colleagues, DOI: 10.​1007/​s00125-016-3949-9, and by Harry Heimberg and colleagues, DOI: 10.​1007/​s00125-016-3879-6) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.​1007/​s00125-016-3870-2).
Literature
1.
go back to reference Ritzel RA, Butler AE, Rizza RA, Veldhuis JD, Butler PC (2006) Relationship between beta cell mass and fasting blood glucose concentration in humans. Diabetes Care 29:717–718CrossRefPubMed Ritzel RA, Butler AE, Rizza RA, Veldhuis JD, Butler PC (2006) Relationship between beta cell mass and fasting blood glucose concentration in humans. Diabetes Care 29:717–718CrossRefPubMed
2.
go back to reference Herold KC, Usmani-Brown S, Ghazi T et al (2015) Beta cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest 125:1163–1173CrossRefPubMedPubMedCentral Herold KC, Usmani-Brown S, Ghazi T et al (2015) Beta cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest 125:1163–1173CrossRefPubMedPubMedCentral
3.
go back to reference Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta cell deficit and increased beta cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta cell deficit and increased beta cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed
4.
go back to reference Mathis D, Vence L, Benoist C (2001) Beta cell death during progression to diabetes. Nature 414:792–798CrossRefPubMed Mathis D, Vence L, Benoist C (2001) Beta cell death during progression to diabetes. Nature 414:792–798CrossRefPubMed
6.
go back to reference Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122:421–434CrossRefPubMed Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122:421–434CrossRefPubMed
8.
go back to reference Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13:246–257CrossRefPubMed Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13:246–257CrossRefPubMed
9.
go back to reference Tremblay AM, Missiaglia E, Galli GG et al (2014) The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation. Cancer Cell 26:273–287CrossRefPubMed Tremblay AM, Missiaglia E, Galli GG et al (2014) The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation. Cancer Cell 26:273–287CrossRefPubMed
10.
go back to reference Lin Z, von Gise A, Zhou P et al (2014) Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res 115:354–363CrossRefPubMedPubMedCentral Lin Z, von Gise A, Zhou P et al (2014) Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res 115:354–363CrossRefPubMedPubMedCentral
11.
go back to reference Barry ER, Camargo FD (2013) The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol 25:247–253CrossRefPubMed Barry ER, Camargo FD (2013) The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol 25:247–253CrossRefPubMed
13.
go back to reference Tumaneng K, Schlegelmilch K, Russell RC et al (2012) YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14:1322–1329CrossRefPubMedPubMedCentral Tumaneng K, Schlegelmilch K, Russell RC et al (2012) YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14:1322–1329CrossRefPubMedPubMedCentral
14.
go back to reference Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR (2012) Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 23:770–784CrossRefPubMedPubMedCentral Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR (2012) Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 23:770–784CrossRefPubMedPubMedCentral
15.
16.
go back to reference Graves JD, Draves KE, Gotoh Y, Krebs EG, Clark EA (2001) Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis. J Biol Chem 276:14909–14915CrossRefPubMed Graves JD, Draves KE, Gotoh Y, Krebs EG, Clark EA (2001) Both phosphorylation and caspase-mediated cleavage contribute to regulation of the Ste20-like protein kinase Mst1 during CD95/Fas-induced apoptosis. J Biol Chem 276:14909–14915CrossRefPubMed
17.
go back to reference Lee KK, Ohyama T, Yajima N, Tsubuki S, Yonehara S (2001) MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J Biol Chem 276:19276–19285CrossRefPubMed Lee KK, Ohyama T, Yajima N, Tsubuki S, Yonehara S (2001) MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J Biol Chem 276:19276–19285CrossRefPubMed
18.
go back to reference Ura S, Masuyama N, Graves JD, Gotoh Y (2001) Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc Natl Acad Sci U S A 98:10148–10153CrossRefPubMedPubMedCentral Ura S, Masuyama N, Graves JD, Gotoh Y (2001) Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc Natl Acad Sci U S A 98:10148–10153CrossRefPubMedPubMedCentral
20.
go back to reference Cinar B, Fang PK, Lutchman M et al (2007) The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J 26:4523–4534CrossRefPubMedPubMedCentral Cinar B, Fang PK, Lutchman M et al (2007) The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J 26:4523–4534CrossRefPubMedPubMedCentral
21.
go back to reference Yuan T, Awal S, Kerr-Conte J, Ardestani A (2015) The hippo kinase LATS2 impairs pancreatic beta cell survival and function. Diabetologia 58: S46-S47 (Abstract) Yuan T, Awal S, Kerr-Conte J, Ardestani A (2015) The hippo kinase LATS2 impairs pancreatic beta cell survival and function. Diabetologia 58: S46-S47 (Abstract)
22.
go back to reference Bonny C, Oberson A, Negri S, Sauser C, Schorderet DF (2001) Cell-permeable peptide inhibitors of JNK: novel blockers of beta cell death. Diabetes 50:77–82CrossRefPubMed Bonny C, Oberson A, Negri S, Sauser C, Schorderet DF (2001) Cell-permeable peptide inhibitors of JNK: novel blockers of beta cell death. Diabetes 50:77–82CrossRefPubMed
23.
go back to reference Kaneto H, Nakatani Y, Miyatsuka T et al (2004) Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med 10:1128–1132CrossRefPubMed Kaneto H, Nakatani Y, Miyatsuka T et al (2004) Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med 10:1128–1132CrossRefPubMed
24.
go back to reference Aikin R, Maysinger D, Rosenberg L (2004) Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology 145:4522–4531CrossRefPubMed Aikin R, Maysinger D, Rosenberg L (2004) Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology 145:4522–4531CrossRefPubMed
25.
go back to reference Tuttle RL, Gill NS, Pugh W et al (2001) Regulation of pancreatic beta cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat Med 7:1133–1137CrossRefPubMed Tuttle RL, Gill NS, Pugh W et al (2001) Regulation of pancreatic beta cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat Med 7:1133–1137CrossRefPubMed
26.
go back to reference Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004CrossRefPubMed Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004CrossRefPubMed
27.
go back to reference Jang SW, Yang SJ, Srinivasan S, Ye K (2007) Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J Biol Chem 282:30836–30844CrossRefPubMed Jang SW, Yang SJ, Srinivasan S, Ye K (2007) Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J Biol Chem 282:30836–30844CrossRefPubMed
28.
go back to reference Yuan Z, Kim D, Shu S et al (2010) Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem 285:3815–3824CrossRefPubMed Yuan Z, Kim D, Shu S et al (2010) Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem 285:3815–3824CrossRefPubMed
29.
go back to reference McKinnon CM, Docherty K (2001) Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia 44:1203–1214CrossRefPubMed McKinnon CM, Docherty K (2001) Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia 44:1203–1214CrossRefPubMed
30.
go back to reference Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110CrossRefPubMed Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110CrossRefPubMed
31.
go back to reference Brissova M, Shiota M, Nicholson WE et al (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem 277:11225–11232CrossRefPubMed Brissova M, Shiota M, Nicholson WE et al (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem 277:11225–11232CrossRefPubMed
33.
go back to reference Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17:138–139CrossRefPubMed Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17:138–139CrossRefPubMed
34.
go back to reference Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD, Stoffers DA (2010) Pcif1 modulates Pdx1 protein stability and pancreatic beta cell function and survival in mice. J Clin Invest 120:3713–3721CrossRefPubMedPubMedCentral Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD, Stoffers DA (2010) Pcif1 modulates Pdx1 protein stability and pancreatic beta cell function and survival in mice. J Clin Invest 120:3713–3721CrossRefPubMedPubMedCentral
35.
go back to reference Babu DA, Deering TG, Mirmira RG (2007) A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol Genet Metab 92:43–55CrossRefPubMedPubMedCentral Babu DA, Deering TG, Mirmira RG (2007) A feat of metabolic proportions: Pdx1 orchestrates islet development and function in the maintenance of glucose homeostasis. Mol Genet Metab 92:43–55CrossRefPubMedPubMedCentral
36.
go back to reference Fujimoto K, Ford EL, Tran H et al (2010) Loss of Nix in Pdx1-deficient mice prevents apoptotic and necrotic beta cell death and diabetes. J Clin Invest 120:4031–4039CrossRefPubMedPubMedCentral Fujimoto K, Ford EL, Tran H et al (2010) Loss of Nix in Pdx1-deficient mice prevents apoptotic and necrotic beta cell death and diabetes. J Clin Invest 120:4031–4039CrossRefPubMedPubMedCentral
38.
go back to reference Leibowitz G, Ferber S, Apelqvist A et al (2001) IPF1/PDX1 deficiency and beta cell dysfunction in Psammomys obesus, an animal with type 2 diabetes. Diabetes 50:1799–1806CrossRefPubMed Leibowitz G, Ferber S, Apelqvist A et al (2001) IPF1/PDX1 deficiency and beta cell dysfunction in Psammomys obesus, an animal with type 2 diabetes. Diabetes 50:1799–1806CrossRefPubMed
39.
go back to reference Fujimoto K, Hanson PT, Tran H et al (2009) Autophagy regulates pancreatic beta cell death in response to Pdx1 deficiency and nutrient deprivation. J Biol Chem 284:27664–27673CrossRefPubMedPubMedCentral Fujimoto K, Hanson PT, Tran H et al (2009) Autophagy regulates pancreatic beta cell death in response to Pdx1 deficiency and nutrient deprivation. J Biol Chem 284:27664–27673CrossRefPubMedPubMedCentral
40.
go back to reference Elrick LJ, Docherty K (2001) Phosphorylation-dependent nucleocytoplasmic shuttling of pancreatic duodenal homeobox-1. Diabetes 50:2244–2252CrossRefPubMed Elrick LJ, Docherty K (2001) Phosphorylation-dependent nucleocytoplasmic shuttling of pancreatic duodenal homeobox-1. Diabetes 50:2244–2252CrossRefPubMed
41.
go back to reference Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF, Docherty K (1999) Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem 274:1011–1016CrossRefPubMed Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF, Docherty K (1999) Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem 274:1011–1016CrossRefPubMed
42.
go back to reference Boucher MJ, Selander L, Carlsson L, Edlund H (2006) Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem 281:6395–6403CrossRefPubMed Boucher MJ, Selander L, Carlsson L, Edlund H (2006) Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem 281:6395–6403CrossRefPubMed
43.
go back to reference Lebrun P, Montminy MR, van Obberghen E (2005) Regulation of the pancreatic duodenal homeobox-1 protein by DNA-dependent protein kinase. J Biol Chem 280:38203–38210CrossRefPubMed Lebrun P, Montminy MR, van Obberghen E (2005) Regulation of the pancreatic duodenal homeobox-1 protein by DNA-dependent protein kinase. J Biol Chem 280:38203–38210CrossRefPubMed
44.
go back to reference Kishi A, Nakamura T, Nishio Y, Maegawa H, Kashiwagi A (2003) Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation. Am J Physiol Endocrinol Metab 284:E830–E840CrossRefPubMed Kishi A, Nakamura T, Nishio Y, Maegawa H, Kashiwagi A (2003) Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation. Am J Physiol Endocrinol Metab 284:E830–E840CrossRefPubMed
45.
go back to reference Gao Y, Miyazaki J, Hart GW (2003) The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys 415:155–163CrossRefPubMed Gao Y, Miyazaki J, Hart GW (2003) The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys 415:155–163CrossRefPubMed
46.
go back to reference An R, da Silva XG, Semplici F et al (2010) Pancreatic and duodenal homeobox 1 (PDX1) phosphorylation at serine-269 is HIPK2-dependent and affects PDX1 subnuclear localization. Biochem Biophys Res Commun 399:155–161CrossRefPubMedPubMedCentral An R, da Silva XG, Semplici F et al (2010) Pancreatic and duodenal homeobox 1 (PDX1) phosphorylation at serine-269 is HIPK2-dependent and affects PDX1 subnuclear localization. Biochem Biophys Res Commun 399:155–161CrossRefPubMedPubMedCentral
47.
go back to reference Kawamori D, Kaneto H, Nakatani Y et al (2006) The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 281:1091–1098CrossRefPubMed Kawamori D, Kaneto H, Nakatani Y et al (2006) The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 281:1091–1098CrossRefPubMed
48.
go back to reference Rafiq I, Kennedy HJ, Rutter GA (1998) Glucose-dependent translocation of insulin promoter factor-1 (IPF-1) between the nuclear periphery and the nucleoplasm of single MIN6 beta-cells. J Biol Chem 273:23241–23247CrossRefPubMed Rafiq I, Kennedy HJ, Rutter GA (1998) Glucose-dependent translocation of insulin promoter factor-1 (IPF-1) between the nuclear periphery and the nucleoplasm of single MIN6 beta-cells. J Biol Chem 273:23241–23247CrossRefPubMed
Metadata
Title
MST1: a promising therapeutic target to restore functional beta cell mass in diabetes
Authors
Amin Ardestani
Kathrin Maedler
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 9/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3892-9

Other articles of this Issue 9/2016

Diabetologia 9/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.