Skip to main content
Top
Published in: Diabetologia 9/2016

01-09-2016 | Mini-review

Sources of beta cells inside the pancreas

Authors: Sofie De Groef, Willem Staels, Naomi Van Gassen, Marie Lemper, Yixing Yuchi, Mozhdeh Sojoodi, Leen Bussche, Yves Heremans, Gunter Leuckx, Nico De Leu, Mark Van de Casteele, Luc Baeyens, Harry Heimberg

Published in: Diabetologia | Issue 9/2016

Login to get access

Abstract

The generation of beta(-like) cells to compensate for their absolute or relative shortage in type 1 and type 2 diabetes is an obvious therapeutic strategy. Patients first received grafts of donor islet cells over 25 years ago, but this procedure has not become routine in clinical practice because of a donor cell shortage and (auto)immune problems. Transplantation of differentiated embryonic and induced pluripotent stem cells may overcome some but not all the current limitations. Reprogramming exocrine cells towards functional beta(-like) cells would offer an alternative abundant and autologous source of beta(-like) cells. This review focuses on work by our research group towards achieving such a source of cells. It summarises a presentation given at the ‘Can we make a better beta cell?’ symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.​1007/​s00125-016-3892-9, and by Heiko Lickert and colleagues, DOI: 10.​1007/​s00125-016-3949-9) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.​1007/​s00125-016-3870-2).
Literature
1.
go back to reference Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65CrossRefPubMed Gurdon JB, Elsdale TR, Fischberg M (1958) Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:64–65CrossRefPubMed
2.
go back to reference Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000CrossRefPubMed Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000CrossRefPubMed
3.
go back to reference Slack JM (2007) Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 8:369–378CrossRefPubMed Slack JM (2007) Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 8:369–378CrossRefPubMed
5.
go back to reference Staels W, Heremans Y, Heimberg H (2015) Reprogramming of human exocrine pancreas cells to beta cells. Best Pract Res Clin Endocrinol Metab 29:849–857CrossRefPubMed Staels W, Heremans Y, Heimberg H (2015) Reprogramming of human exocrine pancreas cells to beta cells. Best Pract Res Clin Endocrinol Metab 29:849–857CrossRefPubMed
6.
go back to reference Heremans Y, Van De Casteele M, in’t Veld P et al (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 159:303–312CrossRefPubMedPubMedCentral Heremans Y, Van De Casteele M, in’t Veld P et al (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 159:303–312CrossRefPubMedPubMedCentral
7.
go back to reference Apelqvist A, Li H, Sommer L et al (1999) Notch signalling controls pancreatic cell differentiation. Nature 400:877–881CrossRefPubMed Apelqvist A, Li H, Sommer L et al (1999) Notch signalling controls pancreatic cell differentiation. Nature 400:877–881CrossRefPubMed
8.
go back to reference Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97:1607–1611CrossRefPubMedPubMedCentral Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97:1607–1611CrossRefPubMedPubMedCentral
9.
10.
go back to reference Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632CrossRefPubMed Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632CrossRefPubMed
11.
go back to reference Li W, Cavelti-Weder C, Zhang Y et al (2014) Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol 32:1223–1230CrossRefPubMed Li W, Cavelti-Weder C, Zhang Y et al (2014) Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol 32:1223–1230CrossRefPubMed
12.
go back to reference Xu X, D’Hoker J, Stange G et al (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207CrossRefPubMed Xu X, D’Hoker J, Stange G et al (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197–207CrossRefPubMed
13.
go back to reference Van de Casteele M, Leuckx G, Baeyens L et al (2013) Neurogenin 3+ cells contribute to beta-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Dis 4, e523CrossRefPubMedPubMedCentral Van de Casteele M, Leuckx G, Baeyens L et al (2013) Neurogenin 3+ cells contribute to beta-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Dis 4, e523CrossRefPubMedPubMedCentral
14.
go back to reference Baeyens L, Lemper M, Leuckx G et al (2014) Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat Biotechnol 32:76–83CrossRefPubMed Baeyens L, Lemper M, Leuckx G et al (2014) Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat Biotechnol 32:76–83CrossRefPubMed
15.
go back to reference De Groef S, Leuckx G, Van Gassen N, et al (2015) Surgical injury to the mouse pancreas through ligation of the pancreatic duct as a model for endocrine and exocrine reprogramming and proliferation. J Vis Exp e52765 De Groef S, Leuckx G, Van Gassen N, et al (2015) Surgical injury to the mouse pancreas through ligation of the pancreatic duct as a model for endocrine and exocrine reprogramming and proliferation. J Vis Exp e52765
16.
go back to reference Cai Y, Yuchi Y, De Groef S et al (2014) IL-6-dependent proliferation of alpha cells in mice with partial pancreatic-duct ligation. Diabetologia 57:1420–1427CrossRefPubMed Cai Y, Yuchi Y, De Groef S et al (2014) IL-6-dependent proliferation of alpha cells in mice with partial pancreatic-duct ligation. Diabetologia 57:1420–1427CrossRefPubMed
17.
go back to reference Erler P, Monaghan JR (2015) The link between injury-induced stress and regenerative phenomena: a cellular and genetic synopsis. Biochim Biophys Acta 1849:454–461CrossRefPubMed Erler P, Monaghan JR (2015) The link between injury-induced stress and regenerative phenomena: a cellular and genetic synopsis. Biochim Biophys Acta 1849:454–461CrossRefPubMed
18.
go back to reference Van de Casteele M, Leuckx G, Cai Y et al (2014) Partial duct ligation: beta-cell proliferation and beyond. Diabetes 63:2567–2577CrossRefPubMed Van de Casteele M, Leuckx G, Cai Y et al (2014) Partial duct ligation: beta-cell proliferation and beyond. Diabetes 63:2567–2577CrossRefPubMed
19.
go back to reference Xiao X, Gaffar I, Guo P et al (2014) M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci U S A 111:E1211–E1220CrossRefPubMedPubMedCentral Xiao X, Gaffar I, Guo P et al (2014) M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci U S A 111:E1211–E1220CrossRefPubMedPubMedCentral
20.
go back to reference Van Gassen N, Van Overmeire E, Leuckx G et al (2015) Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas. Eur J Immunol 45:1482–1493CrossRefPubMed Van Gassen N, Van Overmeire E, Leuckx G et al (2015) Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas. Eur J Immunol 45:1482–1493CrossRefPubMed
21.
go back to reference Van Gassen N, Staels W, Van Overmeire E et al (2015) Concise review: macrophages: versatile gatekeepers during pancreatic β-cell development, injury, and regeneration. Stem Cells Transl Med 4:555–563CrossRefPubMedPubMedCentral Van Gassen N, Staels W, Van Overmeire E et al (2015) Concise review: macrophages: versatile gatekeepers during pancreatic β-cell development, injury, and regeneration. Stem Cells Transl Med 4:555–563CrossRefPubMedPubMedCentral
22.
go back to reference Yuchi Y, Cai Y, Legein B et al (2015) Estrogen receptor α regulates β-cell formation during pancreas development and following injury. Diabetes 64:3218–3228CrossRefPubMed Yuchi Y, Cai Y, Legein B et al (2015) Estrogen receptor α regulates β-cell formation during pancreas development and following injury. Diabetes 64:3218–3228CrossRefPubMed
23.
go back to reference Rieck S, Kaestner KH (2010) Expansion of beta-cell mass in response to pregnancy. Trends Endocrinol Metab TEM 21:151–158CrossRefPubMed Rieck S, Kaestner KH (2010) Expansion of beta-cell mass in response to pregnancy. Trends Endocrinol Metab TEM 21:151–158CrossRefPubMed
25.
go back to reference Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48:49–57CrossRefPubMed Baeyens L, De Breuck S, Lardon J, Mfopou JK, Rooman I, Bouwens L (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48:49–57CrossRefPubMed
26.
go back to reference Lemper M, Leuckx G, Heremans Y et al (2015) Reprogramming of human pancreatic exocrine cells to beta-like cells. Cell Death Differ 22:1117–1130CrossRefPubMed Lemper M, Leuckx G, Heremans Y et al (2015) Reprogramming of human pancreatic exocrine cells to beta-like cells. Cell Death Differ 22:1117–1130CrossRefPubMed
27.
go back to reference Eizirik DL, Pipeleers DG, Ling Z, Welsh N, Hellerstrom C, Andersson A (1994) Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. Proc Natl Acad Sci U S A 91:9253–9256CrossRefPubMedPubMedCentral Eizirik DL, Pipeleers DG, Ling Z, Welsh N, Hellerstrom C, Andersson A (1994) Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. Proc Natl Acad Sci U S A 91:9253–9256CrossRefPubMedPubMedCentral
28.
go back to reference Huch M, Bonfanti P, Boj SF et al (2013) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32:2708–2721CrossRefPubMedPubMedCentral Huch M, Bonfanti P, Boj SF et al (2013) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32:2708–2721CrossRefPubMedPubMedCentral
Metadata
Title
Sources of beta cells inside the pancreas
Authors
Sofie De Groef
Willem Staels
Naomi Van Gassen
Marie Lemper
Yixing Yuchi
Mozhdeh Sojoodi
Leen Bussche
Yves Heremans
Gunter Leuckx
Nico De Leu
Mark Van de Casteele
Luc Baeyens
Harry Heimberg
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 9/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3879-6

Other articles of this Issue 9/2016

Diabetologia 9/2016 Go to the issue

Up front

Up front