Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Motility Disorder | Review

The mechanisms of nerve injury caused by viral infection in the occurrence of gastrointestinal motility disorder-related diseases

Authors: Yaqian Li, Qiuyu Chen, Liwei Wang, Xin Chen, Bangmao Wang, Weilong Zhong

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Gastrointestinal motility refers to the peristalsis and contractility of gastrointestinal muscles, including the force and frequency of gastrointestinal muscle contraction. Gastrointestinal motility maintains the normal digestive function of the human body and is a critical component of the physiological function of the digestive tract. At present, gastrointestinal motility disorder-related diseases are gradually affecting human production and life. In recent years, it has been consistently reported that the enteric nervous system has a coordinating and controlling role in gastrointestinal motility. Motility disorders are closely related to functional or anatomical changes in the gastrointestinal nervous system. At the same time, some viral infections, such as herpes simplex virus and varicella-zoster virus infections, can cause damage to the gastrointestinal nervous system. Therefore, this paper describes the mechanisms of viral infection in the gastrointestinal nervous system and the associated clinical manifestations. Studies have indicated that the means by which viruses can cause the infection of the enteric nervous system are various, including retrograde transport, hematogenous transmission and centrifugal transmission from the central nervous system. When viruses infect the enteric nervous system, they can cause clinical symptoms, such as abdominal pain, abdominal distension, early satiation, belching, diarrhea, and constipation, by recruiting macrophages, lymphocytes and neutrophils and regulating intestinal microbes. The findings of several case‒control studies suggest that viruses are the cause of some gastrointestinal motility disorders. It is concluded that one of the causes of gastrointestinal motility disorders is viral infection of the enteric nervous system. In such disorders, the relationships between viruses and nerves remain to be studied more deeply. Further studies are necessary to evaluate whether prophylactic antiviral therapy is feasible in gastrointestinal motility disorders.
Literature
1.
go back to reference Ouyang A, Locke GR 3. rd. Overview of neurogastroenterology-gastrointestinal motility and functional GI disorders: classification, prevalence, and epidemiology. Gastroenterol Clin North Am. 2007;36:485 – 98, vii. Ouyang A, Locke GR 3. rd. Overview of neurogastroenterology-gastrointestinal motility and functional GI disorders: classification, prevalence, and epidemiology. Gastroenterol Clin North Am. 2007;36:485 – 98, vii.
2.
go back to reference Mittal R, Vaezi MF. Esophageal motility Disorders and gastroesophageal reflux disease. N Engl J Med. 2020;383:1961–72.PubMedCrossRef Mittal R, Vaezi MF. Esophageal motility Disorders and gastroesophageal reflux disease. N Engl J Med. 2020;383:1961–72.PubMedCrossRef
3.
go back to reference Thapar N, Saliakellis E, Benninga MA, Borrelli O, Curry J, Faure C, et al. Paediatric intestinal pseudo-obstruction: evidence and Consensus-based Recommendations from an ESPGHAN-Led Expert Group. J Pediatr Gastroenterol Nutr. 2018;66:991–1019.PubMedCrossRef Thapar N, Saliakellis E, Benninga MA, Borrelli O, Curry J, Faure C, et al. Paediatric intestinal pseudo-obstruction: evidence and Consensus-based Recommendations from an ESPGHAN-Led Expert Group. J Pediatr Gastroenterol Nutr. 2018;66:991–1019.PubMedCrossRef
4.
go back to reference De Giorgio R, Ricciardiello L, Naponelli V, Selgrad M, Piazzi G, Felicani C et al. Chronic intestinal pseudo-obstruction related to viral infections. Transplant Proc. 2010;42:9–14. De Giorgio R, Ricciardiello L, Naponelli V, Selgrad M, Piazzi G, Felicani C et al. Chronic intestinal pseudo-obstruction related to viral infections. Transplant Proc. 2010;42:9–14.
5.
go back to reference Camilleri M. Gastrointestinal motility disorders in neurologic disease. J Clin Invest. 2021;131. Camilleri M. Gastrointestinal motility disorders in neurologic disease. J Clin Invest. 2021;131.
6.
go back to reference Black CJ, Drossman DA, Talley NJ, Ruddy J, Ford AC. Functional gastrointestinal disorders: advances in understanding and management. Lancet. 2020;396:1664–74.PubMedCrossRef Black CJ, Drossman DA, Talley NJ, Ruddy J, Ford AC. Functional gastrointestinal disorders: advances in understanding and management. Lancet. 2020;396:1664–74.PubMedCrossRef
8.
go back to reference Ford AC, Mahadeva S, Carbone MF, Lacy BE, Talley NJ. Functional dyspepsia. Lancet. 2020;396:1689–702.PubMedCrossRef Ford AC, Mahadeva S, Carbone MF, Lacy BE, Talley NJ. Functional dyspepsia. Lancet. 2020;396:1689–702.PubMedCrossRef
9.
go back to reference Vaezi MF, Pandolfino JE, Yadlapati RH, Greer KB, Kavitt RT. ACG clinical guidelines: diagnosis and management of Achalasia. Am J Gastroenterol. 2020;115:1393–411.PubMedPubMedCentralCrossRef Vaezi MF, Pandolfino JE, Yadlapati RH, Greer KB, Kavitt RT. ACG clinical guidelines: diagnosis and management of Achalasia. Am J Gastroenterol. 2020;115:1393–411.PubMedPubMedCentralCrossRef
10.
go back to reference Nehra AK, Sheedy SP, Johnson CD, Flicek KT, Venkatesh SK, Heiken JP, et al. Imaging Rev Gastrointest Motil Disorders Radiographics. 2022;42:2014–36. Nehra AK, Sheedy SP, Johnson CD, Flicek KT, Venkatesh SK, Heiken JP, et al. Imaging Rev Gastrointest Motil Disorders Radiographics. 2022;42:2014–36.
11.
go back to reference Brun P, Qesari M, Marconi PC, Kotsafti A, Porzionato A, Macchi V, et al. Herpes simplex virus type 1 infects enteric neurons and triggers gut dysfunction via macrophage recruitment. Front Cell Infect Microbiol. 2018;8:74.PubMedPubMedCentralCrossRef Brun P, Qesari M, Marconi PC, Kotsafti A, Porzionato A, Macchi V, et al. Herpes simplex virus type 1 infects enteric neurons and triggers gut dysfunction via macrophage recruitment. Front Cell Infect Microbiol. 2018;8:74.PubMedPubMedCentralCrossRef
12.
go back to reference Naik RD, Vaezi MF, Gershon AA, Higginbotham T, Chen JJ, Flores E, et al. Association of Achalasia with active varicella zoster virus infection of the Esophagus. Gastroenterology. 2021;161:719–21e2.PubMedCrossRef Naik RD, Vaezi MF, Gershon AA, Higginbotham T, Chen JJ, Flores E, et al. Association of Achalasia with active varicella zoster virus infection of the Esophagus. Gastroenterology. 2021;161:719–21e2.PubMedCrossRef
13.
go back to reference Ye L, Bae M, Cassilly CD, Jabba SV, Thorpe DW, Martin AM et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe. 2021;29:179 – 96.e9. Ye L, Bae M, Cassilly CD, Jabba SV, Thorpe DW, Martin AM et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe. 2021;29:179 – 96.e9.
14.
go back to reference Geng ZH, Zhu Y, Li QL, Zhao C, Zhou PH. Enteric nervous system: the Bridge between the Gut Microbiota and Neurological Disorders. Front Aging Neurosci. 2022;14:810483.PubMedPubMedCentralCrossRef Geng ZH, Zhu Y, Li QL, Zhao C, Zhou PH. Enteric nervous system: the Bridge between the Gut Microbiota and Neurological Disorders. Front Aging Neurosci. 2022;14:810483.PubMedPubMedCentralCrossRef
15.
16.
go back to reference Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013;305:G1–24.PubMedPubMedCentralCrossRef Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol. 2013;305:G1–24.PubMedPubMedCentralCrossRef
17.
go back to reference Giuffre M, Moretti R, Campisciano G, da Silveira ABM, Monda VM, Comar M et al. You talking to me? Says the enteric nervous system (ENS) to the microbe. How intestinal microbes interact with the ENS. J Clin Med. 2020;9. Giuffre M, Moretti R, Campisciano G, da Silveira ABM, Monda VM, Comar M et al. You talking to me? Says the enteric nervous system (ENS) to the microbe. How intestinal microbes interact with the ENS. J Clin Med. 2020;9.
18.
go back to reference Pawolski V, Schmidt MHH. Neuron-Glia Interaction in the developing and adult enteric nervous system. Cells. 2020;10. Pawolski V, Schmidt MHH. Neuron-Glia Interaction in the developing and adult enteric nervous system. Cells. 2020;10.
19.
20.
go back to reference Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes simplex virus type 1 engages toll like receptor 2 to Recruit Macrophages during infection of enteric neurons. Front Microbiol. 2018;9:2148.PubMedPubMedCentralCrossRef Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes simplex virus type 1 engages toll like receptor 2 to Recruit Macrophages during infection of enteric neurons. Front Microbiol. 2018;9:2148.PubMedPubMedCentralCrossRef
22.
go back to reference Marasco G, Lenti MV, Cremon C, Barbaro MR, Stanghellini V, Di Sabatino A, et al. Implications of SARS-CoV-2 infection for neurogastroenterology. Neurogastroenterol Motil. 2021;33:e14104.PubMedPubMedCentralCrossRef Marasco G, Lenti MV, Cremon C, Barbaro MR, Stanghellini V, Di Sabatino A, et al. Implications of SARS-CoV-2 infection for neurogastroenterology. Neurogastroenterol Motil. 2021;33:e14104.PubMedPubMedCentralCrossRef
23.
go back to reference Goldstein RS, Kinchington PR. Varicella zoster virus neuronal latency and Reactivation Modeled in Vitro. Curr Top Microbiol Immunol. 2023;438:103–34.PubMed Goldstein RS, Kinchington PR. Varicella zoster virus neuronal latency and Reactivation Modeled in Vitro. Curr Top Microbiol Immunol. 2023;438:103–34.PubMed
24.
go back to reference Kennedy PG, Rovnak J, Badani H, Cohrs RJ. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation. J Gen Virol. 2015;96:1581–602.PubMedPubMedCentralCrossRef Kennedy PG, Rovnak J, Badani H, Cohrs RJ. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation. J Gen Virol. 2015;96:1581–602.PubMedPubMedCentralCrossRef
25.
go back to reference Gershon AA, Chen J, Gershon MD. A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons. J Infect Dis. 2008;197(Suppl 2):61–5.CrossRef Gershon AA, Chen J, Gershon MD. A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons. J Infect Dis. 2008;197(Suppl 2):61–5.CrossRef
26.
go back to reference Chen JJ, Gershon AA, Li Z, Cowles RA, Gershon MD. Varicella zoster virus (VZV) infects and establishes latency in enteric neurons. J Neurovirol. 2011;17:578–89.PubMedPubMedCentralCrossRef Chen JJ, Gershon AA, Li Z, Cowles RA, Gershon MD. Varicella zoster virus (VZV) infects and establishes latency in enteric neurons. J Neurovirol. 2011;17:578–89.PubMedPubMedCentralCrossRef
27.
go back to reference Gan L, Wang M, Chen JJ, Gershon MD, Gershon AA. Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system. J Neurovirol. 2014;20:442–56.PubMedPubMedCentralCrossRef Gan L, Wang M, Chen JJ, Gershon MD, Gershon AA. Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system. J Neurovirol. 2014;20:442–56.PubMedPubMedCentralCrossRef
28.
go back to reference Chen JJ, Gershon AA, Li ZS, Lungu O, Gershon MD. Latent and lytic infection of isolated guinea pig enteric ganglia by varicella zoster virus. J Med Virol. 2003;70(Suppl 1):71–8.CrossRef Chen JJ, Gershon AA, Li ZS, Lungu O, Gershon MD. Latent and lytic infection of isolated guinea pig enteric ganglia by varicella zoster virus. J Med Virol. 2003;70(Suppl 1):71–8.CrossRef
29.
go back to reference Brun P, Conti J, Zatta V, Russo V, Scarpa M, Kotsafti A, et al. Persistent herpes simplex virus type 1 infection of enteric neurons triggers CD8(+) T cell response and gastrointestinal neuromuscular dysfunction. Front Cell Infect Microbiol. 2021;11:615350.PubMedPubMedCentralCrossRef Brun P, Conti J, Zatta V, Russo V, Scarpa M, Kotsafti A, et al. Persistent herpes simplex virus type 1 infection of enteric neurons triggers CD8(+) T cell response and gastrointestinal neuromuscular dysfunction. Front Cell Infect Microbiol. 2021;11:615350.PubMedPubMedCentralCrossRef
30.
32.
go back to reference Gershon AA, Chen J, Davis L, Krinsky C, Cowles R, Reichard R, et al. Latency of varicella zoster virus in dorsal root, cranial, and enteric ganglia in vaccinated children. Trans Am Clin Climatol Assoc. 2012;123:17–33. discussion – 5.PubMedPubMedCentral Gershon AA, Chen J, Davis L, Krinsky C, Cowles R, Reichard R, et al. Latency of varicella zoster virus in dorsal root, cranial, and enteric ganglia in vaccinated children. Trans Am Clin Climatol Assoc. 2012;123:17–33. discussion – 5.PubMedPubMedCentral
33.
go back to reference Gershon MD, Gershon AA. VZV infection of keratinocytes: production of cell-free infectious virions in vivo. Curr Top Microbiol Immunol. 2010;342:173–88.PubMedPubMedCentral Gershon MD, Gershon AA. VZV infection of keratinocytes: production of cell-free infectious virions in vivo. Curr Top Microbiol Immunol. 2010;342:173–88.PubMedPubMedCentral
34.
go back to reference Gesser RM, Koo SC. Oral inoculation with herpes simplex virus type 1 infects enteric neuron and mucosal nerve fibers within the gastrointestinal tract in mice. J Virol. 1996;70:4097–102.PubMedPubMedCentralCrossRef Gesser RM, Koo SC. Oral inoculation with herpes simplex virus type 1 infects enteric neuron and mucosal nerve fibers within the gastrointestinal tract in mice. J Virol. 1996;70:4097–102.PubMedPubMedCentralCrossRef
35.
go back to reference Guedia J, Brun P, Bhave S, Fitting S, Kang M, Dewey WL, et al. HIV-1 Tat exacerbates lipopolysaccharide-induced cytokine release via TLR4 signaling in the enteric nervous system. Sci Rep. 2016;6:31203.PubMedPubMedCentralCrossRef Guedia J, Brun P, Bhave S, Fitting S, Kang M, Dewey WL, et al. HIV-1 Tat exacerbates lipopolysaccharide-induced cytokine release via TLR4 signaling in the enteric nervous system. Sci Rep. 2016;6:31203.PubMedPubMedCentralCrossRef
36.
go back to reference Gesser RM, Valyi-Nagy T, Altschuler SM, Fraser NW. Oral-oesophageal inoculation of mice with herpes simplex virus type 1 causes latent infection of the vagal sensory ganglia (nodose ganglia). J Gen Virol. 1994;75(Pt 9):2379–86.PubMedCrossRef Gesser RM, Valyi-Nagy T, Altschuler SM, Fraser NW. Oral-oesophageal inoculation of mice with herpes simplex virus type 1 causes latent infection of the vagal sensory ganglia (nodose ganglia). J Gen Virol. 1994;75(Pt 9):2379–86.PubMedCrossRef
37.
go back to reference Julio-Pieper M, López-Aguilera A, Eyzaguirre-Velásquez J, Olavarría-Ramírez L, Ibacache-Quiroga C, Bravo JA et al. Gut susceptibility to viral Invasion: contributing roles of Diet, Microbiota and Enteric Nervous System to Mucosal Barrier Preservation. Int J Mol Sci. 2021;22. Julio-Pieper M, López-Aguilera A, Eyzaguirre-Velásquez J, Olavarría-Ramírez L, Ibacache-Quiroga C, Bravo JA et al. Gut susceptibility to viral Invasion: contributing roles of Diet, Microbiota and Enteric Nervous System to Mucosal Barrier Preservation. Int J Mol Sci. 2021;22.
38.
go back to reference Narita M, Kimura K, Tanimura N, Arai S, Uchimura A. Immunohistochemical demonstration of spread of Aujeszky’s disease virus to the porcine central nervous system after intestinal inoculation. J Comp Pathol. 1998;118:329–36.PubMedPubMedCentralCrossRef Narita M, Kimura K, Tanimura N, Arai S, Uchimura A. Immunohistochemical demonstration of spread of Aujeszky’s disease virus to the porcine central nervous system after intestinal inoculation. J Comp Pathol. 1998;118:329–36.PubMedPubMedCentralCrossRef
39.
go back to reference Pfannkuche H, Konrath A, Buchholz I, Richt JA, Seeger J, Müller H, et al. Infection of the enteric nervous system by Borna disease virus (BDV) upregulates expression of calbindin D-28k. Vet Microbiol. 2008;127:275–85.PubMedCrossRef Pfannkuche H, Konrath A, Buchholz I, Richt JA, Seeger J, Müller H, et al. Infection of the enteric nervous system by Borna disease virus (BDV) upregulates expression of calbindin D-28k. Vet Microbiol. 2008;127:275–85.PubMedCrossRef
40.
go back to reference Khoury-Hanold W, Yordy B, Kong P, Kong Y, Ge W, Szigeti-Buck K, et al. Viral spread to enteric neurons links genital HSV-1 infection to toxic megacolon and lethality. Cell Host Microbe. 2016;19:788–99.PubMedPubMedCentralCrossRef Khoury-Hanold W, Yordy B, Kong P, Kong Y, Ge W, Szigeti-Buck K, et al. Viral spread to enteric neurons links genital HSV-1 infection to toxic megacolon and lethality. Cell Host Microbe. 2016;19:788–99.PubMedPubMedCentralCrossRef
41.
go back to reference Gershon M, Gershon A. Varicella-Zoster Virus and the enteric nervous system. J Infect Dis. 2018;218:113–s9.CrossRef Gershon M, Gershon A. Varicella-Zoster Virus and the enteric nervous system. J Infect Dis. 2018;218:113–s9.CrossRef
42.
go back to reference Ku CC, Padilla JA, Grose C, Butcher EC, Arvin AM. Tropism of varicella-zoster virus for human tonsillar CD4(+) T lymphocytes that express activation, memory, and skin homing markers. J Virol. 2002;76:11425–33.PubMedPubMedCentralCrossRef Ku CC, Padilla JA, Grose C, Butcher EC, Arvin AM. Tropism of varicella-zoster virus for human tonsillar CD4(+) T lymphocytes that express activation, memory, and skin homing markers. J Virol. 2002;76:11425–33.PubMedPubMedCentralCrossRef
43.
go back to reference Sen N, Mukherjee G, Sen A, Bendall SC, Sung P, Nolan GP, et al. Single-cell mass cytometry analysis of human tonsil T cell remodeling by varicella zoster virus. Cell Rep. 2014;8:633–45.PubMedPubMedCentralCrossRef Sen N, Mukherjee G, Sen A, Bendall SC, Sung P, Nolan GP, et al. Single-cell mass cytometry analysis of human tonsil T cell remodeling by varicella zoster virus. Cell Rep. 2014;8:633–45.PubMedPubMedCentralCrossRef
44.
go back to reference Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271 – 80.e8. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271 – 80.e8.
45.
go back to reference Fenrich M, Mrdenovic S, Balog M, Tomic S, Zjalic M, Roncevic A, et al. SARS-CoV-2 dissemination through peripheral nerves explains multiple Organ Injury. Front Cell Neurosci. 2020;14:229.PubMedPubMedCentralCrossRef Fenrich M, Mrdenovic S, Balog M, Tomic S, Zjalic M, Roncevic A, et al. SARS-CoV-2 dissemination through peripheral nerves explains multiple Organ Injury. Front Cell Neurosci. 2020;14:229.PubMedPubMedCentralCrossRef
46.
go back to reference Kariyawasam JC, Jayarajah U, Riza R, Abeysuriya V, Seneviratne SL. Gastrointestinal manifestations in COVID-19. Trans R Soc Trop Med Hyg. 2021;115:1362–88.PubMedCrossRef Kariyawasam JC, Jayarajah U, Riza R, Abeysuriya V, Seneviratne SL. Gastrointestinal manifestations in COVID-19. Trans R Soc Trop Med Hyg. 2021;115:1362–88.PubMedCrossRef
47.
go back to reference Shinu P, Morsy MA, Deb PK, Nair AB, Goyal M, Shah J, et al. SARS CoV-2 Organotropism Associated Pathogenic Relationship of Gut-Brain Axis and Illness. Front Mol Biosci. 2020;7:606779.PubMedPubMedCentralCrossRef Shinu P, Morsy MA, Deb PK, Nair AB, Goyal M, Shah J, et al. SARS CoV-2 Organotropism Associated Pathogenic Relationship of Gut-Brain Axis and Illness. Front Mol Biosci. 2020;7:606779.PubMedPubMedCentralCrossRef
48.
go back to reference Esposito G, Pesce M, Seguella L, Sanseverino W, Lu J, Sarnelli G. Can the enteric nervous system be an alternative entrance door in SARS-CoV2 neuroinvasion? Brain Behav Immun. 2020;87:93–4.PubMedPubMedCentralCrossRef Esposito G, Pesce M, Seguella L, Sanseverino W, Lu J, Sarnelli G. Can the enteric nervous system be an alternative entrance door in SARS-CoV2 neuroinvasion? Brain Behav Immun. 2020;87:93–4.PubMedPubMedCentralCrossRef
49.
go back to reference Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020;17:338–51.PubMedPubMedCentralCrossRef Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 2020;17:338–51.PubMedPubMedCentralCrossRef
50.
go back to reference Ra SH, Kwon JS, Kim JY, Cha HH, Lee HJ, Jung J, et al. Frequency of putative enteric zoster diagnosed using saliva samples in patients with abdominal pain: a prospective study. Infect Dis (Lond). 2021;53:713–8.PubMedCrossRef Ra SH, Kwon JS, Kim JY, Cha HH, Lee HJ, Jung J, et al. Frequency of putative enteric zoster diagnosed using saliva samples in patients with abdominal pain: a prospective study. Infect Dis (Lond). 2021;53:713–8.PubMedCrossRef
51.
go back to reference Cipriani G, Gibbons SJ, Kashyap PC, Farrugia G. Intrinsic gastrointestinal macrophages: their phenotype and role in gastrointestinal motility. Cell Mol Gastroenterol Hepatol. 2016;2:120–30.e1.PubMedPubMedCentralCrossRef Cipriani G, Gibbons SJ, Kashyap PC, Farrugia G. Intrinsic gastrointestinal macrophages: their phenotype and role in gastrointestinal motility. Cell Mol Gastroenterol Hepatol. 2016;2:120–30.e1.PubMedPubMedCentralCrossRef
52.
go back to reference Brun P, Giron MC, Zoppellaro C, Bin A, Porzionato A, De Caro R, et al. Herpes simplex virus type 1 infection of the rat enteric nervous system evokes small-bowel neuromuscular abnormalities. Gastroenterology. 2010;138:1790–801.PubMedCrossRef Brun P, Giron MC, Zoppellaro C, Bin A, Porzionato A, De Caro R, et al. Herpes simplex virus type 1 infection of the rat enteric nervous system evokes small-bowel neuromuscular abnormalities. Gastroenterology. 2010;138:1790–801.PubMedCrossRef
53.
go back to reference Barbara G, Cremon C, Pallotti F, De Giorgio R, Stanghellini V, Corinaldesi R. Postinfectious irritable bowel syndrome. J Pediatr Gastroenterol Nutr. 2009;48(Suppl 2):95–7.CrossRef Barbara G, Cremon C, Pallotti F, De Giorgio R, Stanghellini V, Corinaldesi R. Postinfectious irritable bowel syndrome. J Pediatr Gastroenterol Nutr. 2009;48(Suppl 2):95–7.CrossRef
56.
go back to reference Facco M, Brun P, Baesso I, Costantini M, Rizzetto C, Berto A, et al. T cells in the myenteric plexus of achalasia patients show a skewed TCR repertoire and react to HSV-1 antigens. Am J Gastroenterol. 2008;103:1598–609.PubMedCrossRef Facco M, Brun P, Baesso I, Costantini M, Rizzetto C, Berto A, et al. T cells in the myenteric plexus of achalasia patients show a skewed TCR repertoire and react to HSV-1 antigens. Am J Gastroenterol. 2008;103:1598–609.PubMedCrossRef
58.
go back to reference Gaber CE, Cotton CC, Eluri S, Lund JL, Farrell TM, Dellon ES. Autoimmune and viral risk factors are associated with achalasia: a case-control study. Neurogastroenterol Motil. 2022;34:e14312.PubMedCrossRef Gaber CE, Cotton CC, Eluri S, Lund JL, Farrell TM, Dellon ES. Autoimmune and viral risk factors are associated with achalasia: a case-control study. Neurogastroenterol Motil. 2022;34:e14312.PubMedCrossRef
60.
go back to reference Boeckxstaens GE. Achalasia: virus-induced euthanasia of neurons? Am J Gastroenterol. 2008;103:1610–2.PubMedCrossRef Boeckxstaens GE. Achalasia: virus-induced euthanasia of neurons? Am J Gastroenterol. 2008;103:1610–2.PubMedCrossRef
61.
go back to reference Kahrilas PJ, Boeckxstaens G. The spectrum of achalasia: lessons from studies of pathophysiology and high-resolution manometry. Gastroenterology. 2013;145:954–65.PubMedCrossRef Kahrilas PJ, Boeckxstaens G. The spectrum of achalasia: lessons from studies of pathophysiology and high-resolution manometry. Gastroenterology. 2013;145:954–65.PubMedCrossRef
62.
go back to reference Jia X, Chen S, Zhuang Q, Tan N, Zhang M, Cui Y, et al. Achalasia: the current clinical dilemma and possible pathogenesis. J Neurogastroenterol Motil. 2023;29:145–55.PubMedPubMedCentralCrossRef Jia X, Chen S, Zhuang Q, Tan N, Zhang M, Cui Y, et al. Achalasia: the current clinical dilemma and possible pathogenesis. J Neurogastroenterol Motil. 2023;29:145–55.PubMedPubMedCentralCrossRef
63.
go back to reference Amin I, Younas S, Afzal S, Shahid M, Idrees M. Herpes simplex virus type 1 and host antiviral Immune responses: an update. Viral Immunol. 2019;32:424–9.PubMedCrossRef Amin I, Younas S, Afzal S, Shahid M, Idrees M. Herpes simplex virus type 1 and host antiviral Immune responses: an update. Viral Immunol. 2019;32:424–9.PubMedCrossRef
64.
go back to reference Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol. 2023;20:323–37.PubMedCrossRef Zhang F, Lau RI, Liu Q, Su Q, Chan FKL, Ng SC. Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nat Rev Gastroenterol Hepatol. 2023;20:323–37.PubMedCrossRef
65.
go back to reference Nagata N, Takeuchi T, Masuoka H, Aoki R, Ishikane M, Iwamoto N, et al. Human gut microbiota and its metabolites Impact Immune responses in COVID-19 and its complications. Gastroenterology. 2023;164:272–88.PubMedCrossRef Nagata N, Takeuchi T, Masuoka H, Aoki R, Ishikane M, Iwamoto N, et al. Human gut microbiota and its metabolites Impact Immune responses in COVID-19 and its complications. Gastroenterology. 2023;164:272–88.PubMedCrossRef
66.
go back to reference Zuo T, Wu X, Wen W, Lan P. Gut microbiome alterations in COVID-19. Genomics Proteom Bioinf. 2021;19:679–88.CrossRef Zuo T, Wu X, Wen W, Lan P. Gut microbiome alterations in COVID-19. Genomics Proteom Bioinf. 2021;19:679–88.CrossRef
67.
go back to reference Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020;285:198018.PubMedCrossRef Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020;285:198018.PubMedCrossRef
68.
go back to reference Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70:698–706.PubMedCrossRef Yeoh YK, Zuo T, Lui GC, Zhang F, Liu Q, Li AY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70:698–706.PubMedCrossRef
69.
go back to reference Ben Haij N, Leghmari K, Planès R, Thieblemont N, Bahraoui E. HIV-1 Tat protein binds to TLR4-MD2 and signals to induce TNF-α and IL-10. Retrovirology. 2013;10:123.PubMedPubMedCentralCrossRef Ben Haij N, Leghmari K, Planès R, Thieblemont N, Bahraoui E. HIV-1 Tat protein binds to TLR4-MD2 and signals to induce TNF-α and IL-10. Retrovirology. 2013;10:123.PubMedPubMedCentralCrossRef
70.
go back to reference Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology. 2012;143:1006-16.e4. Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology. 2012;143:1006-16.e4.
71.
go back to reference Planès R, Ben Haij N, Leghmari K, Serrero M, BenMohamed L, Bahraoui E. HIV-1 Tat protein activates both the MyD88 and TRIF pathways to induce tumor necrosis factor alpha and Interleukin-10 in human monocytes. J Virol. 2016;90:5886–98.PubMedPubMedCentralCrossRef Planès R, Ben Haij N, Leghmari K, Serrero M, BenMohamed L, Bahraoui E. HIV-1 Tat protein activates both the MyD88 and TRIF pathways to induce tumor necrosis factor alpha and Interleukin-10 in human monocytes. J Virol. 2016;90:5886–98.PubMedPubMedCentralCrossRef
73.
go back to reference White JP, Xiong S, Malvin NP, Khoury-Hanold W, Heuckeroth RO, Stappenbeck TS et al. Intestinal dysmotility syndromes following systemic infection by Flaviviruses. Cell. 2018;175:1198 – 212.e12. White JP, Xiong S, Malvin NP, Khoury-Hanold W, Heuckeroth RO, Stappenbeck TS et al. Intestinal dysmotility syndromes following systemic infection by Flaviviruses. Cell. 2018;175:1198 – 212.e12.
Metadata
Title
The mechanisms of nerve injury caused by viral infection in the occurrence of gastrointestinal motility disorder-related diseases
Authors
Yaqian Li
Qiuyu Chen
Liwei Wang
Xin Chen
Bangmao Wang
Weilong Zhong
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02185-x

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.