Skip to main content
Top
Published in: Comparative Hepatology 1/2004

Open Access 01-01-2004 | Proceedings

Molecular mechanism of stellate cell activation and therapeutic strategy for liver fibrosis

Author: Norifumi Kawada

Published in: Comparative Hepatology | Special Issue 1/2004

Login to get access

Excerpt

Hepatic stellate cells, which reside in the space of Disse in close contact with both sinusoidal endothelial cells and hepatocytes, play multiple roles in the pathophysiology of the liver [1]. Quiescent stellate cells represent a principal retinol-storing phenotype and metabolize a small amount of basement membrane-forming substrata such as laminine and type IV collagen. When liver injury occurs, they undergo transformation into myofibroblasts eliciting active proliferation in response to platelet-derived growth factor-BB (PDGF-BB) and insulin-like growth factor-1 (IGF-1), increased extracellular matrix (ECM) production, increased contractility that is accompanied by the expression of smooth muscle –-actin and the production of endothelin-1 (ET-1), secretion of transforming growth factor-beta (TGF-beta) and monocyte chemotactic protein-1 (MCP-1), retinoid loss, and exhibiting active apoptosis. Stellate cell activation is initiated by oxidative stress of lipid hydroperoxide and reactive aldehyde generated and released by damaged hepatocytes, by paracrine stimulation of PDGF-BB, IGF-1 and TGF-beta derived from activated Kupffer cells, endothelial cells, platelets and infiltrating leukocytes, and by early ECM changes including the production of a splice variant of cellular fibronectin (EIIIA isoform) [25]. Transcriptional activation by a zinc finger gene KLF6, which is induced at the very early stage of liver injury, AP-1 and CCAAT/enhancer binding protein (C/EBP) enhances gene expression regulating ECM accumulation [6]. Activated stellate cells are highly responsive to PDGF-BB and IGF-1 through the induction of receptors for individual growth factors, resulting in the activation of intracellular signal cascade including phosphorylation of tyrosine residues in each growth factor receptor molecule, mitogen activated protein kinase (MAPK), phosphatidil inositol 3-kinase (PI3-K), leading to DNA synthesis and proliferation [7, 8]. TGF-beta is a key regulatory molecule for ECM metabolism and functions as an autocrine and a paracrine mediator. The impact of TGF-beta1 on liver fibrosis has been well documented in a TGF-beta1 knockout mouse model [9], in the remarkable attenuation of the development of liver fibrosis by using soluble type II TGF-beta receptor [10], and in adenoviral delivery of dominant-negative TGF-beta receptor [11]. Role of Smad cascade in TGF-beta signaling has been well characterized. Increased contractility after activation, in particular induced by ET-1, causes constriction of sinusoids, leading to a persistent disturbance of intrahepatic microcirculation and portal hypertension [12, 13]. Thus, analysis of the molecular mechanism underlying stellate cell activation is assumed to be essential for the development of effective therapy against liver fibrosis. …
Literature
1.
go back to reference Friedman SL: The cellular basis of hepatic fibrosis. N Engl J Med. 1993, 328: 1828-1835. 10.1056/NEJM199306243282508.CrossRefPubMed Friedman SL: The cellular basis of hepatic fibrosis. N Engl J Med. 1993, 328: 1828-1835. 10.1056/NEJM199306243282508.CrossRefPubMed
2.
go back to reference Gressner AM, Bachem MG: Molecular mechanism of liver fibrosis-a homage to the role of activated fat-storing cells. Digestion. 1995, 56: 335-346.CrossRefPubMed Gressner AM, Bachem MG: Molecular mechanism of liver fibrosis-a homage to the role of activated fat-storing cells. Digestion. 1995, 56: 335-346.CrossRefPubMed
3.
go back to reference Olaso E, Friedman SL: Molecular regulation of hepatic fibrogenesis. J Hepatol. 1998, 29: 836-847. 10.1016/S0168-8278(98)80269-9.CrossRefPubMed Olaso E, Friedman SL: Molecular regulation of hepatic fibrogenesis. J Hepatol. 1998, 29: 836-847. 10.1016/S0168-8278(98)80269-9.CrossRefPubMed
4.
go back to reference Kawada N: The hepatic perisinusoidal stellate cell. Histol Histopathol. 1997, 12: 1069-1080.PubMed Kawada N: The hepatic perisinusoidal stellate cell. Histol Histopathol. 1997, 12: 1069-1080.PubMed
5.
go back to reference Okuyama H, Shimahara Y, Kawada N: The hepatic stellate cells in the post-genomic ear. Histol Histopathol. 2002, 17: 487-495.PubMed Okuyama H, Shimahara Y, Kawada N: The hepatic stellate cells in the post-genomic ear. Histol Histopathol. 2002, 17: 487-495.PubMed
6.
go back to reference Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL: Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem. 1998, 273: 33750-33758. 10.1074/jbc.273.50.33750.CrossRefPubMed Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL: Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem. 1998, 273: 33750-33758. 10.1074/jbc.273.50.33750.CrossRefPubMed
7.
go back to reference Marra F, Gentilini A, Pinzani M, Choudhury GG, Parola M, Herbst H, Dianzani MU, Laffi G, Abboud HE, Gentilini P: Phosphatidylinositol 3-kinase is required for platelet-derived growth factor's actions on hepatic stellate cells. Gastroenterology. 1997, 112: 1297-1306. 10.1016/S0016-5085(97)70144-6.CrossRefPubMed Marra F, Gentilini A, Pinzani M, Choudhury GG, Parola M, Herbst H, Dianzani MU, Laffi G, Abboud HE, Gentilini P: Phosphatidylinositol 3-kinase is required for platelet-derived growth factor's actions on hepatic stellate cells. Gastroenterology. 1997, 112: 1297-1306. 10.1016/S0016-5085(97)70144-6.CrossRefPubMed
8.
go back to reference Kawada N, Ikeda K, Seki S, Kuroki T: Expression of cyclins D1, D2 and E correlates with proliferation of rat stellate cells in culture. J Hepatol. 1999, 30: 1057-1064. 10.1016/S0168-8278(99)80260-8.CrossRefPubMed Kawada N, Ikeda K, Seki S, Kuroki T: Expression of cyclins D1, D2 and E correlates with proliferation of rat stellate cells in culture. J Hepatol. 1999, 30: 1057-1064. 10.1016/S0168-8278(99)80260-8.CrossRefPubMed
9.
go back to reference Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA: The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol. 1999, 30: 77-87. 10.1016/S0168-8278(99)80010-5.CrossRefPubMed Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA: The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol. 1999, 30: 77-87. 10.1016/S0168-8278(99)80010-5.CrossRefPubMed
10.
go back to reference George J, Roulot D, Koteliansky VE, Bissell DM: In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: A potential new therapy for hepatic fibrosis. Proc Natl Acad Sci. 1999, 96: 12719-12724. 10.1073/pnas.96.22.12719.PubMedCentralCrossRefPubMed George J, Roulot D, Koteliansky VE, Bissell DM: In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: A potential new therapy for hepatic fibrosis. Proc Natl Acad Sci. 1999, 96: 12719-12724. 10.1073/pnas.96.22.12719.PubMedCentralCrossRefPubMed
11.
go back to reference Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H: Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci. 1999, 96: 2345-2349. 10.1073/pnas.96.5.2345.PubMedCentralCrossRefPubMed Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H: Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci. 1999, 96: 2345-2349. 10.1073/pnas.96.5.2345.PubMedCentralCrossRefPubMed
12.
go back to reference Kawada N, Tran-Thi TA, Klein H, Decker K: The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem. 1993, 213: 815-823. 10.1111/j.1432-1033.1993.tb17824.x.CrossRefPubMed Kawada N, Tran-Thi TA, Klein H, Decker K: The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem. 1993, 213: 815-823. 10.1111/j.1432-1033.1993.tb17824.x.CrossRefPubMed
13.
go back to reference Rockey DC, Weisiger RA: Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996, 24: 233-240. 10.1002/hep.510240137.CrossRefPubMed Rockey DC, Weisiger RA: Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996, 24: 233-240. 10.1002/hep.510240137.CrossRefPubMed
14.
go back to reference Kahn P: From genome to proteome: looking at a cell's proteins. Science. 1995, 270: 369-370. 10.1126/science.270.5235.369.CrossRefPubMed Kahn P: From genome to proteome: looking at a cell's proteins. Science. 1995, 270: 369-370. 10.1126/science.270.5235.369.CrossRefPubMed
15.
go back to reference Anderson NL, Anderson NG: Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998, 19: 1853-1861. 10.1002/elps.1150191103.CrossRefPubMed Anderson NL, Anderson NG: Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998, 19: 1853-1861. 10.1002/elps.1150191103.CrossRefPubMed
16.
17.
go back to reference Roepstorff P: Mass spectrometry on protein studies from genome to function. Curr Opin Biotechnol. 1997, 8: 6-13. 10.1016/S0958-1669(97)80151-6.CrossRefPubMed Roepstorff P: Mass spectrometry on protein studies from genome to function. Curr Opin Biotechnol. 1997, 8: 6-13. 10.1016/S0958-1669(97)80151-6.CrossRefPubMed
18.
go back to reference Yates JR: Mass spectrometry and the age of the proteome. J Mass Spectrom. 1998, 33: 1-19. 10.1002/(SICI)1096-9888(199801)33:1<1::AID-JMS624>3.3.CO;2-0.CrossRefPubMed Yates JR: Mass spectrometry and the age of the proteome. J Mass Spectrom. 1998, 33: 1-19. 10.1002/(SICI)1096-9888(199801)33:1<1::AID-JMS624>3.3.CO;2-0.CrossRefPubMed
19.
go back to reference Kristensen DB, Kawada N, Imamura K, Miyamoto Y, Tateno C, Seki S, Kuroki T, Yoshizato K: Proteome analysis of rat hepatic stellate cells. Hepatology. 2000, 32: 268-277. 10.1053/jhep.2000.9322.CrossRefPubMed Kristensen DB, Kawada N, Imamura K, Miyamoto Y, Tateno C, Seki S, Kuroki T, Yoshizato K: Proteome analysis of rat hepatic stellate cells. Hepatology. 2000, 32: 268-277. 10.1053/jhep.2000.9322.CrossRefPubMed
20.
go back to reference Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, Yoshizato K: Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J Biol Chem. 2001, 276: 25318-25323. 10.1074/jbc.M102630200.CrossRefPubMed Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, Yoshizato K: Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J Biol Chem. 2001, 276: 25318-25323. 10.1074/jbc.M102630200.CrossRefPubMed
21.
go back to reference Asahina K, Kawada N, Kristensen DB, Nakatani K, Seki S, Shiokawa M, Tateno C, Obara M, Yoshizato K: Characterization of Human stellate cell activation-associated protein (STAP) and its expression in human liver. Biochim Biophys Acta. 2002, 1577: 471-475. 10.1016/S0167-4781(02)00477-3.CrossRefPubMed Asahina K, Kawada N, Kristensen DB, Nakatani K, Seki S, Shiokawa M, Tateno C, Obara M, Yoshizato K: Characterization of Human stellate cell activation-associated protein (STAP) and its expression in human liver. Biochim Biophys Acta. 2002, 1577: 471-475. 10.1016/S0167-4781(02)00477-3.CrossRefPubMed
22.
go back to reference Shiratori Y, Imazeki F, Moriyama M, Yano M, Arakawa Y, Yokosuka O, Kuroki T, Nishiguchi S, Sata M, Yamada G, Fujiyama S, Yoshida H, Omata M: Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy. Ann Intern Med. 2000, 132: 517-524.CrossRefPubMed Shiratori Y, Imazeki F, Moriyama M, Yano M, Arakawa Y, Yokosuka O, Kuroki T, Nishiguchi S, Sata M, Yamada G, Fujiyama S, Yoshida H, Omata M: Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy. Ann Intern Med. 2000, 132: 517-524.CrossRefPubMed
23.
go back to reference Higashi K, Kouba DJ, Song YJ, Uitto J, Mauviel A: A proximal element within the human alpha 2(I) collagen (COL1A2) promoter, distinct from the tumor necrosis factor-alpha response element, mediates transcriptional repression by interferon-gamma. Matrix Biol. 1998, 16: 447-456. 10.1016/S0945-053X(98)90016-6.CrossRefPubMed Higashi K, Kouba DJ, Song YJ, Uitto J, Mauviel A: A proximal element within the human alpha 2(I) collagen (COL1A2) promoter, distinct from the tumor necrosis factor-alpha response element, mediates transcriptional repression by interferon-gamma. Matrix Biol. 1998, 16: 447-456. 10.1016/S0945-053X(98)90016-6.CrossRefPubMed
24.
go back to reference Ulloa L, Doody J, Massague J: Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature. 1999, 397: 710-713. 10.1038/17826.CrossRefPubMed Ulloa L, Doody J, Massague J: Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature. 1999, 397: 710-713. 10.1038/17826.CrossRefPubMed
25.
go back to reference Okuyama H, Shimahara Y, Kawada N, Seki S, Kristensen DB, Yoshizato K, Uyama N, Yamaoka Y: Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta. J Biol Chem. 2001, 276: 28274-28280. 10.1074/jbc.M102995200.CrossRefPubMed Okuyama H, Shimahara Y, Kawada N, Seki S, Kristensen DB, Yoshizato K, Uyama N, Yamaoka Y: Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta. J Biol Chem. 2001, 276: 28274-28280. 10.1074/jbc.M102995200.CrossRefPubMed
26.
go back to reference Ueki T, Kaneda Y, Tsutsui H, Nakanishi K, Sawa Y, Morishita R, Matsumoto K, Nakamura T, Takahashi H, Okamoto E, Fujimoto J: Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med. 1999, 5: 226-230. 10.1038/5593.CrossRefPubMed Ueki T, Kaneda Y, Tsutsui H, Nakanishi K, Sawa Y, Morishita R, Matsumoto K, Nakamura T, Takahashi H, Okamoto E, Fujimoto J: Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med. 1999, 5: 226-230. 10.1038/5593.CrossRefPubMed
27.
go back to reference Miyahara T, Schrum L, Rippe R, Xiong S, Yee HF, Motomura K, Anania FA, Willson TM, Tsukamoto H: proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem. 2000, 275: 35715-35722. 10.1074/jbc.M006577200.CrossRefPubMed Miyahara T, Schrum L, Rippe R, Xiong S, Yee HF, Motomura K, Anania FA, Willson TM, Tsukamoto H: proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem. 2000, 275: 35715-35722. 10.1074/jbc.M006577200.CrossRefPubMed
28.
go back to reference Marra F, Efsen E, Romanelli RG, Caligiuri A, Pastacaldi S, Batignani G, Bonacchi A, Caporale R, Laffi G, Pinzani M, Gentilini P: Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000, 119: 466-478. 10.1053/gast.2000.9365.CrossRefPubMed Marra F, Efsen E, Romanelli RG, Caligiuri A, Pastacaldi S, Batignani G, Bonacchi A, Caporale R, Laffi G, Pinzani M, Gentilini P: Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000, 119: 466-478. 10.1053/gast.2000.9365.CrossRefPubMed
29.
go back to reference Li L, Tao J, Davaille J, Feral C, Mallat A, Rieusset J, Vidal H, Lotersztajn S: 15-deoxy-Delta 12,14-prostaglandin J2 induces apoptosis of human hepatic myofibroblasts. A pathway involving oxidative stress independently of peroxisome-proliferator-activated receptors. J Biol Chem. 2001, 276: 38152-38158.PubMed Li L, Tao J, Davaille J, Feral C, Mallat A, Rieusset J, Vidal H, Lotersztajn S: 15-deoxy-Delta 12,14-prostaglandin J2 induces apoptosis of human hepatic myofibroblasts. A pathway involving oxidative stress independently of peroxisome-proliferator-activated receptors. J Biol Chem. 2001, 276: 38152-38158.PubMed
30.
go back to reference Galli A, Crabb DW, Ceni E, Salzano R, Mello T, G Svegliati-Baroni, Ridolfi F, Trozzi L, Surrenti C, Casini A: Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002, 122: 1924-1940. 10.1053/gast.2002.33666.CrossRefPubMed Galli A, Crabb DW, Ceni E, Salzano R, Mello T, G Svegliati-Baroni, Ridolfi F, Trozzi L, Surrenti C, Casini A: Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002, 122: 1924-1940. 10.1053/gast.2002.33666.CrossRefPubMed
Metadata
Title
Molecular mechanism of stellate cell activation and therapeutic strategy for liver fibrosis
Author
Norifumi Kawada
Publication date
01-01-2004
Publisher
BioMed Central
Published in
Comparative Hepatology / Issue Special Issue 1/2004
Electronic ISSN: 1476-5926
DOI
https://doi.org/10.1186/1476-5926-2-S1-S3

Other articles of this Special Issue 1/2004

Comparative Hepatology 1/2004 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine