Skip to main content
Top
Published in: Malaria Journal 1/2015

Open Access 01-12-2015 | Research

Modelling sterile insect technique to control the population of Anopheles gambiae

Authors: James E Gentile, Samuel SC Rund, Gregory R Madey

Published in: Malaria Journal | Issue 1/2015

Login to get access

Abstract

Background

There is a renewed effort to develop novel malaria control strategies as even well-implemented existing malaria control tools may fail to block transmission in some regions. Currently, transgenic implementations of the sterile insect technique (SIT) such as the release of insects with a dominant lethal, homing endonuclease genes, or flightless mosquitoes are in development. These implementations involve the release of transgenic male mosquitoes whose matings with wild females produce either no viable offspring or no female offspring. As these technologies are all in their infancy, little is known about the relative efficiencies of the various implementations.

Methods

This paper describes agent-based modelling of emerging and theoretical implementations of transgenic SIT in Anopheles gambiae for the control of malaria. It reports on female suppression as it is affected by the SIT implementation, the number of released males, and competitiveness of released males.

Conclusions

The simulation experiments suggest that a late-acting bisex lethal gene is the most efficient of the four implementations we simulated. They demonstrate 1) the relative impact of release size on a campaign’s effectiveness 2) late-acting genes are preferred because of their ability to exploit density dependent larval mortality 3) late-acting bisex lethal genes achieve elimination before their female-killing counterparts.
Literature
1.
go back to reference World Health Organization. World Health Report 2004: Changing history. 2004. http://www.who.int/whr/2004/en/. Accessed 02 February 2014. World Health Organization. World Health Report 2004: Changing history. 2004. http://​www.​who.​int/​whr/​2004/​en/​. Accessed 02 February 2014.
2.
go back to reference Bryce J, Boschi-Pinto C, Shibuya K, Black R.WHO estimates of the causes of death in children. Lancet. 2005; 365:1146–52. Bryce J, Boschi-Pinto C, Shibuya K, Black R.WHO estimates of the causes of death in children. Lancet. 2005; 365:1146–52.
3.
go back to reference World Health Organization. World Malaria Report 2012. 2012. http://www.who.int/malaria/publications/world_malaria_report_2012/en/. Accessed 02 February 2014. World Health Organization. World Malaria Report 2012. 2012. http://​www.​who.​int/​malaria/​publications/​world_​malaria_​report_​2012/​en/​. Accessed 02 February 2014.
4.
go back to reference Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011:8:e1000406. Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011:8:e1000406.
5.
go back to reference Malcolm CA, El Sayed B, Babiker A, Girod R, Fontenille D, Knols BGJ, et al. Field site selection: getting it right first time around. Malar J. 2009; 8(Suppl 2):S9.CrossRefPubMedCentralPubMed Malcolm CA, El Sayed B, Babiker A, Girod R, Fontenille D, Knols BGJ, et al. Field site selection: getting it right first time around. Malar J. 2009; 8(Suppl 2):S9.CrossRefPubMedCentralPubMed
6.
go back to reference Alphey N, Coleman PG, Donnelly CA, Alphey L. Managing insecticide resistance by mass release of engineered insects. J Econ Entomol. 2007; 100:1642–9.CrossRefPubMed Alphey N, Coleman PG, Donnelly CA, Alphey L. Managing insecticide resistance by mass release of engineered insects. J Econ Entomol. 2007; 100:1642–9.CrossRefPubMed
7.
go back to reference Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010; 10:295–311.CrossRefPubMedCentralPubMed Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010; 10:295–311.CrossRefPubMedCentralPubMed
8.
go back to reference Knipling EF. Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol. 1955; 48:459–62.CrossRef Knipling EF. Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol. 1955; 48:459–62.CrossRef
9.
go back to reference Tripet F, Touré YT, Dolo G, Lanzaro GC. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg. 2003; 68:1–5.PubMed Tripet F, Touré YT, Dolo G, Lanzaro GC. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg. 2003; 68:1–5.PubMed
10.
go back to reference Charlwood JD, Jones MDR. Mating behaviour in the mosquito, Anopheles gambiae s.l. I. close range and contact behavior. Physiol Entomol. 1979; 2:111–20.CrossRef Charlwood JD, Jones MDR. Mating behaviour in the mosquito, Anopheles gambiae s.l. I. close range and contact behavior. Physiol Entomol. 1979; 2:111–20.CrossRef
11.
go back to reference Vreysen MJ, Saleh KM, Ali MY, Abdulla AM, Zhu ZR, Juma KG, et al. Glossina austeni, (Diptera : Glossinidae) eradicated on the Island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol. 2000; 93:123–135.CrossRefPubMed Vreysen MJ, Saleh KM, Ali MY, Abdulla AM, Zhu ZR, Juma KG, et al. Glossina austeni, (Diptera : Glossinidae) eradicated on the Island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol. 2000; 93:123–135.CrossRefPubMed
12.
go back to reference Dantas L, Pereira R, Silva N, Rodrigues A, Costa R. The SIT control programme against Medfly on Madeira Island. In: Proceedings of the 6th International Symposium on fruit flies of economic importance. South Africa: Stellenbosch: 2002. Dantas L, Pereira R, Silva N, Rodrigues A, Costa R. The SIT control programme against Medfly on Madeira Island. In: Proceedings of the 6th International Symposium on fruit flies of economic importance. South Africa: Stellenbosch: 2002.
13.
go back to reference Koyama J, Kakinohana H, Miyatake T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: Importance of behavior, ecology, genetics, and evolution. Annu Rev Entomol. 2004; 49:331–49.CrossRefPubMed Koyama J, Kakinohana H, Miyatake T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: Importance of behavior, ecology, genetics, and evolution. Annu Rev Entomol. 2004; 49:331–49.CrossRefPubMed
14.
go back to reference Krafsur ES, Whitten CJ, Novy JE. Screwworm eradication in North and Central America. Parasitol Today. 1987; 3:131–7.CrossRefPubMed Krafsur ES, Whitten CJ, Novy JE. Screwworm eradication in North and Central America. Parasitol Today. 1987; 3:131–7.CrossRefPubMed
15.
go back to reference Benedict MQ, Robinson AS. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003; 19:349–55.CrossRefPubMed Benedict MQ, Robinson AS. The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003; 19:349–55.CrossRefPubMed
16.
go back to reference Franz G, Robinson AS. Molecular technologies to improve the effectiveness of the sterile insect technique. Genetica. 2011; 139:1–5.CrossRefPubMed Franz G, Robinson AS. Molecular technologies to improve the effectiveness of the sterile insect technique. Genetica. 2011; 139:1–5.CrossRefPubMed
17.
go back to reference Nolan T, Papathanos P, Windbichler N, Magnusson K, Benton J, Catteruccia F, et al. Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica. 2011; 139:33–9.CrossRefPubMed Nolan T, Papathanos P, Windbichler N, Magnusson K, Benton J, Catteruccia F, et al. Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica. 2011; 139:33–9.CrossRefPubMed
18.
go back to reference Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, et al. Malaria control with genetically manipulated insect vectors. Science. 2002; 298:119–21.CrossRefPubMed Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, et al. Malaria control with genetically manipulated insect vectors. Science. 2002; 298:119–21.CrossRefPubMed
19.
go back to reference Alphey L, Nimmo D, O’Connell S, Alphey N. Insect population suppression using engineered insects. Adv Exp Med Biol. 2008; 627:93–103.CrossRefPubMed Alphey L, Nimmo D, O’Connell S, Alphey N. Insect population suppression using engineered insects. Adv Exp Med Biol. 2008; 627:93–103.CrossRefPubMed
20.
go back to reference Thomas D, Donnelly C, Wood R, Alphey L. Insect population control using a dominant, repressible, lethal genetic system. Science. 2000; 287:2474–6.CrossRefPubMed Thomas D, Donnelly C, Wood R, Alphey L. Insect population control using a dominant, repressible, lethal genetic system. Science. 2000; 287:2474–6.CrossRefPubMed
21.
go back to reference Heinrich JC, Scott MJ. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA. 2000; 97:8229–32.CrossRefPubMedCentralPubMed Heinrich JC, Scott MJ. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA. 2000; 97:8229–32.CrossRefPubMedCentralPubMed
22.
go back to reference Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 2007; 5:11.CrossRefPubMedCentralPubMed Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, et al. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 2007; 5:11.CrossRefPubMedCentralPubMed
23.
go back to reference Bargielowski I, Nimmo D, Alphey L, Koella JC. Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS One. 2011; e20699:6. Bargielowski I, Nimmo D, Alphey L, Koella JC. Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS One. 2011; e20699:6.
24.
go back to reference Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, et al. Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci U S A. 2010; 107:4550–4.CrossRefPubMedCentralPubMed Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, et al. Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci U S A. 2010; 107:4550–4.CrossRefPubMedCentralPubMed
25.
go back to reference Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, et al. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci U S A. 2011; 108:4772–5.CrossRefPubMedCentralPubMed Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, et al. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci U S A. 2011; 108:4772–5.CrossRefPubMedCentralPubMed
26.
go back to reference Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA, et al. Field performance of engineered male mosquitoes. Nat Biotechnol. 2011; 29:1034–7.CrossRefPubMed Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA, et al. Field performance of engineered male mosquitoes. Nat Biotechnol. 2011; 29:1034–7.CrossRefPubMed
27.
go back to reference Harris A, McKemey A, Nimmo D, Curtis Z, Black I, Morgan S, et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol. 2012; 30:828–30.CrossRefPubMed Harris A, McKemey A, Nimmo D, Curtis Z, Black I, Morgan S, et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol. 2012; 30:828–30.CrossRefPubMed
28.
go back to reference Lacroix R, McKemey AR, Raduan N, Kwee Wee L, Hong Ming W, Guat Ney T, et al. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS One. 2012; e42771:7. Lacroix R, McKemey AR, Raduan N, Kwee Wee L, Hong Ming W, Guat Ney T, et al. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS One. 2012; e42771:7.
29.
go back to reference Howell PI, Knols BG. Male mating biology. Malar J. 2009; 8(Suppl 2):1–10.CrossRef Howell PI, Knols BG. Male mating biology. Malar J. 2009; 8(Suppl 2):1–10.CrossRef
30.
go back to reference Mayer DG, Atzeni MG, Stuart MA, Anaman KA, Butler DG. Mating competitiveness of irradiated flies for screwworm fly eradication campaigns. Prev Vet Med. 1998; 36:1–9.CrossRefPubMed Mayer DG, Atzeni MG, Stuart MA, Anaman KA, Butler DG. Mating competitiveness of irradiated flies for screwworm fly eradication campaigns. Prev Vet Med. 1998; 36:1–9.CrossRefPubMed
31.
go back to reference Andreasen MH, Curtis CF. Optimal life stage for radiation sterilization of Anopheles males and their fitness for release. Med Vet Entomol. 2005; 19:238–44.CrossRefPubMed Andreasen MH, Curtis CF. Optimal life stage for radiation sterilization of Anopheles males and their fitness for release. Med Vet Entomol. 2005; 19:238–44.CrossRefPubMed
32.
go back to reference Catteruccia F, Benton JP, Crisanti A. An Anopheles transgenic sexing strain for vector control. Nat Biotechnol. 2005; 23:1414—7.CrossRefPubMed Catteruccia F, Benton JP, Crisanti A. An Anopheles transgenic sexing strain for vector control. Nat Biotechnol. 2005; 23:1414—7.CrossRefPubMed
33.
go back to reference Howell P, Benedict MQ. Mating competitiveness of Anopheles arabiensis males as a function of transgenic state and genetic similarity to females. J Insect Behav. 2009; 22:477–91.CrossRef Howell P, Benedict MQ. Mating competitiveness of Anopheles arabiensis males as a function of transgenic state and genetic similarity to females. J Insect Behav. 2009; 22:477–91.CrossRef
34.
go back to reference Lee HL, Vasan S, Ahmad NW, Idris I, Hanum N, Selvi S, et al. Mating compatibility and competitiveness of transgenic and wild type Aedes aegypti; (L.) under contained semi-field conditions. Transgenic Res. 2013; 22:47–57.CrossRefPubMed Lee HL, Vasan S, Ahmad NW, Idris I, Hanum N, Selvi S, et al. Mating compatibility and competitiveness of transgenic and wild type Aedes aegypti; (L.) under contained semi-field conditions. Transgenic Res. 2013; 22:47–57.CrossRefPubMed
35.
go back to reference Klein TA, Windbichler N, Deredec A, Burt A. Benedict MQ. Infertility resulting from transgenic I-PpoI male Anopheles gambiae, in large cage trials. Pathog Glob Health. 2012; 106:20–31.CrossRefPubMedCentralPubMed Klein TA, Windbichler N, Deredec A, Burt A. Benedict MQ. Infertility resulting from transgenic I-PpoI male Anopheles gambiae, in large cage trials. Pathog Glob Health. 2012; 106:20–31.CrossRefPubMedCentralPubMed
36.
go back to reference Windbichler N, Papathanos PA, Crisanti A. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet. 2008; 4:e1000291.CrossRefPubMedCentralPubMed Windbichler N, Papathanos PA, Crisanti A. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet. 2008; 4:e1000291.CrossRefPubMedCentralPubMed
37.
go back to reference Thailayil J, Magnusson K, Godfray CJH, Crisanti A, Catteruccia F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2011; 108:13677–81.CrossRefPubMedCentralPubMed Thailayil J, Magnusson K, Godfray CJH, Crisanti A, Catteruccia F. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2011; 108:13677–81.CrossRefPubMedCentralPubMed
38.
go back to reference Foster GG, Vogt WG, Woodburn TL, Smith PH. Computer simulation of genetic control. Comparison of sterile males and field-killing female solutions. Theor Appl Genet. 1988; 76:870–9. Foster GG, Vogt WG, Woodburn TL, Smith PH. Computer simulation of genetic control. Comparison of sterile males and field-killing female solutions. Theor Appl Genet. 1988; 76:870–9.
39.
go back to reference Schliekelman P, Gould F. Pest control by the introduction of a conditional lethal trait on multiple loci: Potential, limitations, and optimal strategies. J Econ Entomol. 2000; 93:1543–65.CrossRefPubMed Schliekelman P, Gould F. Pest control by the introduction of a conditional lethal trait on multiple loci: Potential, limitations, and optimal strategies. J Econ Entomol. 2000; 93:1543–65.CrossRefPubMed
40.
go back to reference Schliekelman P, Gould F. Pest control by the release of insects carrying a female-killing allele on multiple loci. J Econ Entomol. 2000; 93:1566–79.CrossRefPubMed Schliekelman P, Gould F. Pest control by the release of insects carrying a female-killing allele on multiple loci. J Econ Entomol. 2000; 93:1566–79.CrossRefPubMed
41.
go back to reference Barclay HJ. Modeling incomplete sterility in a sterile release program: interactions with other factors. Popul Ecol. 2001; 43:197–206.CrossRef Barclay HJ. Modeling incomplete sterility in a sterile release program: interactions with other factors. Popul Ecol. 2001; 43:197–206.CrossRef
42.
go back to reference Esteva L, Yang HM. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Math Biosci. 2005; 198:132–47.CrossRefPubMed Esteva L, Yang HM. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Math Biosci. 2005; 198:132–47.CrossRefPubMed
43.
go back to reference Dye C. Models for the population-dynamics of the yellow-fever mosquito, Aedes aegypti. J Anim Ecol. 1984; 53:247–68.CrossRef Dye C. Models for the population-dynamics of the yellow-fever mosquito, Aedes aegypti. J Anim Ecol. 1984; 53:247–68.CrossRef
44.
go back to reference Kean JM, Wee SL, Stephens AEA, Suckling DM. Modelling the effects of inherited sterility for the application of the sterile insect technique. Agric Forest Entomol. 2008; 10:101–10.CrossRef Kean JM, Wee SL, Stephens AEA, Suckling DM. Modelling the effects of inherited sterility for the application of the sterile insect technique. Agric Forest Entomol. 2008; 10:101–10.CrossRef
45.
go back to reference Yakob L, Bonsall MB. Importance of Space and Competition in Optimizing Genetic Control Strategies. Biol Microb Control. 2009; 102:50–7. Yakob L, Bonsall MB. Importance of Space and Competition in Optimizing Genetic Control Strategies. Biol Microb Control. 2009; 102:50–7.
46.
go back to reference White SM, Rohani P, Sait SM. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J Appl Ecol. 2010; 47:1329–39.CrossRef White SM, Rohani P, Sait SM. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J Appl Ecol. 2010; 47:1329–39.CrossRef
47.
go back to reference Deredec A, Godfray CJH, Burt A. Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci USA. 2011; 108:E874–80.CrossRefPubMedCentralPubMed Deredec A, Godfray CJH, Burt A. Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci USA. 2011; 108:E874–80.CrossRefPubMedCentralPubMed
48.
go back to reference Dumont Y, Tchuenche JM. Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. J Math Biol. 2011; 65:1–46. Dumont Y, Tchuenche JM. Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. J Math Biol. 2011; 65:1–46.
49.
go back to reference Lee SS, Baker RE, Gaffney EA, White SM. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks. J Theor Biol. 2013; 331:78–90.CrossRef Lee SS, Baker RE, Gaffney EA, White SM. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks. J Theor Biol. 2013; 331:78–90.CrossRef
50.
go back to reference Arifin SM, Zhou Y, Davis G, Gentile JE, Madey GR, Collins FH. An agent-based model of the population dynamics of Anopheles gambiae. Malar J. 2014; 13:424.CrossRefPubMedCentralPubMed Arifin SM, Zhou Y, Davis G, Gentile JE, Madey GR, Collins FH. An agent-based model of the population dynamics of Anopheles gambiae. Malar J. 2014; 13:424.CrossRefPubMedCentralPubMed
51.
52.
go back to reference Styer LM, Carey JR, Wang JL, Scott TW. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg. 2007; 76:111.PubMedCentralPubMed Styer LM, Carey JR, Wang JL, Scott TW. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg. 2007; 76:111.PubMedCentralPubMed
53.
go back to reference Yakob L, Alphey L, Bonsall MB. Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. J Appl Ecol. 2008; 45:1258–1265.CrossRef Yakob L, Alphey L, Bonsall MB. Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. J Appl Ecol. 2008; 45:1258–1265.CrossRef
Metadata
Title
Modelling sterile insect technique to control the population of Anopheles gambiae
Authors
James E Gentile
Samuel SC Rund
Gregory R Madey
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2015
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-015-0587-5

Other articles of this Issue 1/2015

Malaria Journal 1/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.