Skip to main content
Top
Published in: Diabetologia 4/2016

01-04-2016 | Mini-Review

Mitochondrial network regulation and its potential interference with inflammatory signals in pancreatic beta cells

Author: Simone Baltrusch

Published in: Diabetologia | Issue 4/2016

Login to get access

Abstract

Mitochondria fulfil multiple tasks in nutrient metabolism, energy production, redox homeostasis and stress response, and are essential for pancreatic beta cell function. The dynamism and health of the mitochondrial network is regulated by fission- and fusion-triggering factors and by a quality control system that removes dysfunctional organelles. Alongside the role of mitochondria in regulating apoptotic cell death mediated primarily via production of reactive oxygen species and release of cytochrome c, there is evidence of other links between mitochondria and inflammation that have implications for cell viability. This review briefly outlines two pathways that are potentially vital for pancreatic beta cell function. The first concerns the regulation of Parkin, a protein that acts, not only as a central player in regulating mitophagy, but also as an activator of the NF-ĸB pathway. The fact that expression of optic atrophy protein 1 (OPA1), a mitochondrial fusion inducer and master mitochondrial cristae biogenetic factor, is increased following NF-ĸB activation highlights a point of mitochondrial control that might be influenced by TNFα signalling. A second axis of interest is suggested by IL-6-mediated upregulation of the fission inducer FIS1 alongside downregulation of mitofusin 2 (MFN2), a guard of mitochondrial fusion and metabolism and an inhibitor of apoptosis. This review summarises a presentation given at the ‘Islet inflammation in type 2 diabetes’ symposium at the 2015 annual meeting of the EASD. It is accompanied two other reviews on topics from this symposium (by Marc Donath, DOI: 10.​1007/​s00125-016-3873-z, and Jerry Nadler and colleagues, DOI: 10.​1007/​s00125-016-3890-y) and a commentary by the Session Chair, Piero Marchetti (DOI: 10.​1007/​s00125-016-3875-x).
Literature
1.
go back to reference Kaufman BA, Li C, Soleimanpour SA (2015) Mitochondrial regulation of beta-cell function: maintaining the momentum for insulin release. Mol Asp Med 42:91–104CrossRef Kaufman BA, Li C, Soleimanpour SA (2015) Mitochondrial regulation of beta-cell function: maintaining the momentum for insulin release. Mol Asp Med 42:91–104CrossRef
3.
go back to reference Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252CrossRefPubMed Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252CrossRefPubMed
5.
go back to reference Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884CrossRefPubMed Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884CrossRefPubMed
6.
go back to reference Stiles L, Shirihai OS (2012) Mitochondrial dynamics and morphology in beta-cells. Best Pract Res Clin Endocrinol Metab 26:725–738CrossRefPubMed Stiles L, Shirihai OS (2012) Mitochondrial dynamics and morphology in beta-cells. Best Pract Res Clin Endocrinol Metab 26:725–738CrossRefPubMed
7.
8.
go back to reference Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256CrossRefPubMedPubMedCentral Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256CrossRefPubMedPubMedCentral
9.
go back to reference Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420CrossRefPubMedPubMedCentral Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420CrossRefPubMedPubMedCentral
10.
11.
go back to reference Westermann B (2008) Molecular machinery of mitochondrial fusion and fission. J Biol Chem 283:13501–13505CrossRefPubMed Westermann B (2008) Molecular machinery of mitochondrial fusion and fission. J Biol Chem 283:13501–13505CrossRefPubMed
12.
go back to reference Twig G, Elorza A, Molina AJ et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446CrossRefPubMedPubMedCentral Twig G, Elorza A, Molina AJ et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446CrossRefPubMedPubMedCentral
13.
go back to reference Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097CrossRefPubMed Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097CrossRefPubMed
14.
go back to reference Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608CrossRefPubMed Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608CrossRefPubMed
15.
go back to reference Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803CrossRefPubMedPubMedCentral Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803CrossRefPubMedPubMedCentral
16.
17.
go back to reference Winklhofer KF (2014) Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol 24:332–341CrossRefPubMed Winklhofer KF (2014) Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol 24:332–341CrossRefPubMed
18.
go back to reference Watada H, Fujitani Y (2015) Minireview: autophagy in pancreatic beta-cells and its implication in diabetes. Mol Endocrinol 29:338–348CrossRefPubMed Watada H, Fujitani Y (2015) Minireview: autophagy in pancreatic beta-cells and its implication in diabetes. Mol Endocrinol 29:338–348CrossRefPubMed
19.
go back to reference Jung HS, Chung KW, Won Kim J et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324CrossRefPubMed Jung HS, Chung KW, Won Kim J et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324CrossRefPubMed
20.
go back to reference Chu KY, O’Reilly L, Ramm G, Biden TJ (2015) High-fat diet increases autophagic flux in pancreatic beta cells in vivo and ex vivo in mice. Diabetologia 58:2074–2078CrossRefPubMed Chu KY, O’Reilly L, Ramm G, Biden TJ (2015) High-fat diet increases autophagic flux in pancreatic beta cells in vivo and ex vivo in mice. Diabetologia 58:2074–2078CrossRefPubMed
21.
go back to reference Goginashvili A, Zhang Z, Erbs E et al (2015) Insulin granules. Insulin secretory granules control autophagy in pancreatic beta cells. Science 347:878–882CrossRefPubMed Goginashvili A, Zhang Z, Erbs E et al (2015) Insulin granules. Insulin secretory granules control autophagy in pancreatic beta cells. Science 347:878–882CrossRefPubMed
22.
go back to reference Han D, Yang B, Olson LK et al (2010) Activation of autophagy through modulation of 5'-AMP-activated protein kinase protects pancreatic beta-cells from high glucose. Biochem J 425:541–551CrossRefPubMed Han D, Yang B, Olson LK et al (2010) Activation of autophagy through modulation of 5'-AMP-activated protein kinase protects pancreatic beta-cells from high glucose. Biochem J 425:541–551CrossRefPubMed
23.
24.
go back to reference Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G (2014) Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 57:1505–1516CrossRefPubMed Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G (2014) Autophagy in adipose tissue and the beta cell: implications for obesity and diabetes. Diabetologia 57:1505–1516CrossRefPubMed
25.
go back to reference Ebato C, Uchida T, Arakawa M et al (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332CrossRefPubMed Ebato C, Uchida T, Arakawa M et al (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332CrossRefPubMed
26.
go back to reference Masini M, Bugliani M, Lupi R et al (2009) Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52:1083–1086CrossRefPubMed Masini M, Bugliani M, Lupi R et al (2009) Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52:1083–1086CrossRefPubMed
27.
28.
go back to reference Hakonarson H, Grant SF, Bradfield JP et al (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448:591–594CrossRefPubMed Hakonarson H, Grant SF, Bradfield JP et al (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448:591–594CrossRefPubMed
30.
go back to reference Hofmeister-Brix A, Kollmann K, Langer S, Schultz J, Lenzen S, Baltrusch S (2013) Identification of the ubiquitin-like domain of midnolin as a new glucokinase interaction partner. J Biol Chem 288:35824–35839CrossRefPubMedPubMedCentral Hofmeister-Brix A, Kollmann K, Langer S, Schultz J, Lenzen S, Baltrusch S (2013) Identification of the ubiquitin-like domain of midnolin as a new glucokinase interaction partner. J Biol Chem 288:35824–35839CrossRefPubMedPubMedCentral
31.
go back to reference Jin HS, Kim J, Lee SJ et al (2014) The PARK2 gene is involved in the maintenance of pancreatic β-cell functions related to insulin production and secretion. Mol Cell Endocrinol 382:178–189CrossRefPubMed Jin HS, Kim J, Lee SJ et al (2014) The PARK2 gene is involved in the maintenance of pancreatic β-cell functions related to insulin production and secretion. Mol Cell Endocrinol 382:178–189CrossRefPubMed
32.
go back to reference Sha D, Chin LS, Li L (2010) Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum Mol Genet 19:352–363CrossRefPubMedPubMedCentral Sha D, Chin LS, Li L (2010) Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum Mol Genet 19:352–363CrossRefPubMedPubMedCentral
33.
go back to reference Muller-Rischart AK, Pilsl A, Beaudette P et al (2013) The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol Cell 49:908–921CrossRefPubMed Muller-Rischart AK, Pilsl A, Beaudette P et al (2013) The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol Cell 49:908–921CrossRefPubMed
34.
go back to reference Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746CrossRefPubMed Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746CrossRefPubMed
35.
go back to reference Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 22:207–218CrossRefPubMed Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 22:207–218CrossRefPubMed
36.
go back to reference Laforge M, Rodrigues V, Silvestre R et al (2016) NF-κB pathway controls mitochondrial dynamics. Cell Death Differ 23:89–98CrossRefPubMed Laforge M, Rodrigues V, Silvestre R et al (2016) NF-κB pathway controls mitochondrial dynamics. Cell Death Differ 23:89–98CrossRefPubMed
37.
go back to reference Civiletto G, Varanita T, Cerutti R et al (2015) Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 21:845–854CrossRefPubMedPubMedCentral Civiletto G, Varanita T, Cerutti R et al (2015) Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 21:845–854CrossRefPubMedPubMedCentral
38.
go back to reference Varanita T, Soriano ME, Romanello V et al (2015) The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21:834–844CrossRefPubMedPubMedCentral Varanita T, Soriano ME, Romanello V et al (2015) The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21:834–844CrossRefPubMedPubMedCentral
39.
go back to reference Zhang Z, Wakabayashi N, Wakabayashi J et al (2011) The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells. Mol Biol Cell 22:2235–2245CrossRefPubMedPubMedCentral Zhang Z, Wakabayashi N, Wakabayashi J et al (2011) The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells. Mol Biol Cell 22:2235–2245CrossRefPubMedPubMedCentral
40.
go back to reference Parra V, Verdejo HE, Iglewski M et al (2014) Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway. Diabetes 63:75–88CrossRefPubMedPubMedCentral Parra V, Verdejo HE, Iglewski M et al (2014) Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway. Diabetes 63:75–88CrossRefPubMedPubMedCentral
41.
go back to reference Azevedo-Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, Tiedge M (2003) Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes 52:93–101CrossRefPubMed Azevedo-Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, Tiedge M (2003) Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes 52:93–101CrossRefPubMed
42.
go back to reference Cardozo AK, Heimberg H, Heremans Y et al (2001) A comprehensive analysis of cytokine-induced and nuclear factor-κB-dependent genes in primary rat pancreatic beta-cells. J Biol Chem 276:48879–48886CrossRefPubMed Cardozo AK, Heimberg H, Heremans Y et al (2001) A comprehensive analysis of cytokine-induced and nuclear factor-κB-dependent genes in primary rat pancreatic beta-cells. J Biol Chem 276:48879–48886CrossRefPubMed
43.
go back to reference Chan JY, Biden TJ, Laybutt DR (2012) Cross-talk between the unfolded protein response and nuclear factor-kappaB signalling pathways regulates cytokine-mediated beta cell death in MIN6 cells and isolated mouse islets. Diabetologia 55:2999–3009CrossRefPubMed Chan JY, Biden TJ, Laybutt DR (2012) Cross-talk between the unfolded protein response and nuclear factor-kappaB signalling pathways regulates cytokine-mediated beta cell death in MIN6 cells and isolated mouse islets. Diabetologia 55:2999–3009CrossRefPubMed
44.
go back to reference Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61CrossRefPubMed Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61CrossRefPubMed
45.
go back to reference Igoillo-Esteve M, Marselli L, Cunha DA et al (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53:1395–1405CrossRefPubMed Igoillo-Esteve M, Marselli L, Cunha DA et al (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53:1395–1405CrossRefPubMed
46.
go back to reference Russell MA, Cooper AC, Dhayal S, Morgan NG (2013) Differential effects of interleukin-13 and interleukin-6 on Jak/STAT signaling and cell viability in pancreatic beta-cells. Islets 5:95–105CrossRefPubMedPubMedCentral Russell MA, Cooper AC, Dhayal S, Morgan NG (2013) Differential effects of interleukin-13 and interleukin-6 on Jak/STAT signaling and cell viability in pancreatic beta-cells. Islets 5:95–105CrossRefPubMedPubMedCentral
48.
go back to reference White JP, Puppa MJ, Sato S et al (2012) IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the Apc Min/+ mouse. Skelet Muscle 2:14CrossRefPubMedPubMedCentral White JP, Puppa MJ, Sato S et al (2012) IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the Apc Min/+ mouse. Skelet Muscle 2:14CrossRefPubMedPubMedCentral
49.
go back to reference Martinez-Redondo V, Pettersson AT, Ruas JL (2015) The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia 58:1969–1977CrossRefPubMed Martinez-Redondo V, Pettersson AT, Ruas JL (2015) The hitchhiker’s guide to PGC-1α isoform structure and biological functions. Diabetologia 58:1969–1977CrossRefPubMed
50.
go back to reference Waxman AB, Kolliputi N (2009) IL-6 protects against hyperoxia-induced mitochondrial damage via Bcl-2-induced Bak interactions with mitofusins. Am J Respir Cell Mol Biol 41:385–396CrossRefPubMedPubMedCentral Waxman AB, Kolliputi N (2009) IL-6 protects against hyperoxia-induced mitochondrial damage via Bcl-2-induced Bak interactions with mitofusins. Am J Respir Cell Mol Biol 41:385–396CrossRefPubMedPubMedCentral
51.
go back to reference Zorzano A, Liesa M, Palacin M (2009) Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J Biochem Cell Biol 41:1846–1854CrossRefPubMed Zorzano A, Liesa M, Palacin M (2009) Role of mitochondrial dynamics proteins in the pathophysiology of obesity and type 2 diabetes. Int J Biochem Cell Biol 41:1846–1854CrossRefPubMed
53.
Metadata
Title
Mitochondrial network regulation and its potential interference with inflammatory signals in pancreatic beta cells
Author
Simone Baltrusch
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 4/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3891-x

Other articles of this Issue 4/2016

Diabetologia 4/2016 Go to the issue

List of Refereees

Referees 2015

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine